

Yuki Kamiya HISKP, Bonn Univ.

Femtoscopic studies of meson-baryon and baryonbaryon pairs with strangeness

		F
	ROCKSTA	+ F
	measurements neutron sTARs	0

ROCKSTAR(Towards a ROadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron sTARs equation of state) @ECT*, October 13th, 2023 1

Hadron correlation in high energy nuclear collision

High energy nuclear collision and FSI

Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r}) \quad : \text{Source function}$ $\varphi^{(-)}(\mathbf{q}, \mathbf{r}) : \text{Relative wave function}$

• Depends on ...

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

High energy nuclear collision and FSI

Hadron correlation in high energy nuclear collision

• Un-bound Unitary Bound • Un-bound Unitary Bound $C(\mathbf{q}) \simeq \int d^3\mathbf{r} S(\mathbf{r})/[2]{\varphi}^{(-)}(\mathbf{q},\mathbf{r})|^2$

- Scattering length a_0 and source size Rdetermines the suppression/enhancement of line shape $*a_0 = -\mathcal{F}(q=0)$
- Repulsive int. $(a_0 > 0, \text{ small } |a_0|)$ Suppressed C(q)
- Attractive int. w/ bound state $(a_0 > 0, |arge|a_0|)$
 - Suppressed C(q) for Large REnhanced C(q) for small R
- Attractive int. w/o bound state ($a_0 < 0$)

Enhanced C(q)

$\bar{K}N$ interaction and $\bar{K}p$ correlation

• $\bar{K}N$ interaction and $\Lambda(1405)$

• Chiral SU(3) based $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

Constructed based on the amplitude with NLO chiral SU(3) dynamics

Ikeda, Hyodo, Weise, NPA881 (2012)

Miyahara, Hyodo, Weise, PRC 98 (2018)

• Coupled-channel, energy dependent as

 $V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha,ij} (E/100 \text{ MeV})^{\alpha}$

• Constructed to reproduce the chiral SU(3) amplitude around the $\bar{K}N$ sub-threshold region 5

Coupled-channel effect

Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula

$$C(\mathbf{q}) = \int d^3 \mathbf{r} \, S(\mathbf{r}) \, |\psi^{(-)}(q;r)|^2 + \sum_{j \neq i} \omega_j \int d^3 \mathbf{r} \, S_j(\mathbf{r}) \, |\psi_j^{(-)}(q;r)|^2$$

S.E. Koonin, PLB 70 (1977)S. Pratt et. al. PRC 42 (1990)R. Lednicky, et.al. Phys. At. Nucl. 61(1998)

• Contribution from coupled-channel source

$$K^-p, \bar{K}^0n, \pi^0\Sigma^0, \pi^+\Sigma^-, \pi^-\Sigma^+, \pi^0\Lambda$$

$$FSI K^{-} C_{K^{-}p}$$

- Enhance C(q)
- Enhance cusp structure
- ω_i : production rate

(compared to measured channel)

Coupled-channel effect

Source size dependence of coupled-channel effect

•Large source : K^-p scattering

 \bullet

•Small source : detailed coupled-channel effect

Coupled-channel effect

- K^-p correlation from large source
 - ALICE data PbPb collisions data ALICE PLB 822 (2021) 136708
 - Large source —> weaker coupled-channel effect
 - —> more direct approach to interaction of the measured channel
 - Extraction of the K^-p scattering length from correlation function * Fitting with 1 channel LL model with Gaussian source

• $p\phi$ correlation data from pp collisions

ALICE, PRL 127 (2021) 17, 172301

- Enhancement in the low momentum region
 - attractive $p\phi$ interaction
 - Analysis with Lednický–Lyuboshits formula

Re $a_0 = -0.85 \pm 0.34$ (stat.) ± 0.14 (syst.) fm Im $a_0 = -0.16 \pm 0.10$ (stat.) ± 0.09 (syst.) fm

• Decomposition for spin channels? $C_{p\phi}(k^*) = \frac{2}{3}C_{3/2}(k^*) + \frac{1}{3}C_{1/2}(k^*)$

• $p\phi$ correlation data from pp collisions

ALICE, PRL 127 (2021) 17, 172301

- Enhancement in the low momentum region
 - attractive $p\phi$ interaction
 - Analysis with Lednický–Lyuboshits formula

Re $a_0 = 0.85 \pm 0.34(\text{stat.}) \pm 0.14(\text{syst.})$ fm Im $a_0 = 0.16 \pm 0.10(\text{stat.}) \pm 0.09(\text{syst.})$ fm

• Decomposition for spin channels?

 $C_{p\phi}(k^*) = \frac{2}{3}C_{3/2}(k^*) + \frac{1}{3}C_{1/2}(k^*)$

use the latest lattice potential determine from data

Reanalyze data to extract spin 1/2 int.

HAL QCD potential for spin 3/2

Y. Lyu et al, PRD 106, 074507 (2022).

 $\longrightarrow 2 \pi$ exchange int.

J. Tarrús Castella` and G. a. Krein, PRD 98, 014029 (2018).

• Threshold parameters from fitted potential

• Strongly attractive but no bound state (nuclear physics convention for a_0)

• Spin 1/2 $N\phi$ int. from femtoscopic data and HAL QCD potential $C_{\text{Total}} \stackrel{\cdot}{=} C_{1/2} + C_{3/2}$ E.~Chizzali, et. al. [arXiv:2212.12690 [nucl-ex]]. $C_{p\phi}(k^*)$ HAL QCD Fit with effective potential $\overline{C_{3/2}} \leftarrow (\text{HAL QCD})$ Fitting function for spin 1/2 potential $V_{1/2} = \beta \sum_{k=1}^{\infty} a_k e^{-(r/b_i)^2} + a_3 m_{\pi}^4 f(r; b_3) \frac{e^{-2m_{\pi}r}}{r^2} + i\gamma \sqrt{f(r; b_3)} \frac{e^{-m_{K}r}}{r}$ • Inspired by HAL QCD potential for spin 3/2: -Total 0.5 • Two fitting parameters Eff. Potential) β : relative strength of short range int. γ : strength of imaginary part Fitting result 200 250 50 100 150 300 k* (MeV/c) • Well fitted range Attractive $\beta = 7.0^{+0.8}_{-0.2}$ (stat.) $^{+0.2}_{-0.2}$ (syst.) $(\beta > 0)$ 20 $\gamma = 0.0^{+0.0}_{-0.2}$ (stat.) $^{+0.0}_{-0.2}$ (syst.) 15 • No good parameter sets for -5 repulsive interactions Repulsive 10 Strongly attractive interaction $(\beta < 0)$ -3 -2.5 -2 -0.5 -1.5 -1 0 13 with small decay effect

• Analysis with fitted potential

- Threshold parameters (high energy phys. convention)
 - Scattering length

Re $a_0 = 1.47^{+0.44}_{-0.37}$ (stat.) $^{+0.14}_{-0.17}$ (syst.) fm Im $a_0 = -0.00^{+0.26}_{-0.00}$ (stat.) $^{+0.15}_{-0.00}$ (syst.) fm → indicating bound state

Eigenenergy of quasibound state

$$E = -26.6^{+10.5}_{-29.4}(\text{stat.})^{+5.5}_{-6.2}(\text{syst.})$$
$$-i0.0^{+0.0}_{-7.8}(\text{stat.})^{+0.0}_{-6.6}(\text{syst.}) \text{ [MeV]}$$

- $\phi N \text{ spin } 1/2 \text{ bound state below the threshold found!}$
- Comparable or larger binding energy compared to model calculations

QCD van der Waals attractive potential (Yukawa-type)

$$\rightarrow E_B = 1.8 \text{ MeV}$$

• $E_R \sim 3 \text{ MeV}$

SU(3) chiral quark model

F. Huang, Z. Y. Zhang, and Y. W. Yu, PRC 73, 025207 (2006).

E.~Chizzali, et. al. [arXiv:2212.12690 [nucl-ex]].

14

Y-N(Y) correlation

Y-N(Y) correlation

$\alpha\Lambda$ correlation

• $N\Lambda$ interaction at finite density

- Key to solve the <u>Hyperon puzzle</u>
- Chiral EFT with NLO D. Gerstung, N. Kaiser, W. Weise, EPJA 55 (2020)
 -> ΛNN three body interaction gives the additional repulsion
 -> stiffer EOS
- Chi3: Skyrme type Λ potential based on Chiral EFT with three body A. Jinno. K. Murase, Y. Nara, and A. Ohnishi arXiv:2306.17452

$$U_{\Lambda}^{\text{local}} = a_1^{\Lambda} \rho_N + a_2^{\Lambda} \tau_N - a_3^{\Lambda} \triangle \rho_N + a_4^{\Lambda} \rho_N^{4/3} + a_5^{\Lambda} \rho_N^{5/3}$$

- Well reproduces the binding energy of Λ in hypernuclei
- $N\Lambda$ potential model with different density dependence
 - LY-IV

	D. E. Lanskoy and	Y, Yamamoto, P	RC 55, 2330 (1997)	
•	$HP\Lambda 2$	Chi2mom	Chi3mom	LÝ-IV	ΗΡΛ2
	a1 (Menterfans?3). I	Dhima352620	Shy :38881:30	Phy 500889	1 (2302.72
$\alpha \Lambda$	a2 (MeV fm 15)	39.35	47.28	16.00	23.73
α_{1}	al (Mev third)	52.18	36.56	20.00	29.84
• Nuc		aus 356 96	m:-405.68	480.54	581.04
	a5 (MeV fm^5),	31,000.80	₂ 1256.74	0.00	0.00
ĥ	RMSD (MeV)c / 7	t) <i>³⁷²e</i> 1.59	0.75	0.74	0.78
	J_A (MeV)	-33.45	-30.03	-29.78	-31.23
	L_A (MeV)	-23.55	9.32	-36.24	-46.10
	K_A (MeWe see	the effect Q	rep53203P	core 217.80	277.40
	m*Λ/mΛ	0.73	0.70	0.87	0.82
• Unk	nown a_2^{-1} : fit to rep	produce the	He experi	mental E_R	= 3.12 Me

$\alpha\Lambda$ correlation

• $\alpha \Lambda$ correlation with Chi3 model

- Characteristic lineshapes for weak binding system $(^{5}_{\Lambda}\text{He})$
 - Strong source size dependence
 - Dip structure
- C(q) with Chi3 is slightly suppressed from that with LY-IV
 - Effect of the repulsive core emerges in small source size

• Model with strong repulsive core

 NΛ Isle potential Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345 (1995)

$$V(r) = V_1 e^{-r^2/b_1^2} + V_2 e^{-r^2/b_2^2}$$

repulsive coreattractive part(short range)(long range)

• C(q): Much stronger suppression compared to LY-IV

Strength of the repulsive core can be tested with

 $C_{\alpha\Lambda}(q)$ from small source!

18

$\alpha \Xi$ correlation

- $\alpha \Xi$ bound state $\binom{5}{\Xi}$ H)
- $N\Xi$ shows strong attraction
 - $\rightarrow \alpha \Xi$ pair may form a bound state: ${}_{\Xi}^{5}H$ (not observed)
- HAL QCD $N\Xi$ potential based folding potential Coulomb assisted weakly bound state: $E_B = 0.45$ MeV E. Hiyama, et al PRC 106, 064318 (2022).
 - K. Sasaki et al., NPA, 121737 (2019).

- Chiral NLO potential with no core shell model Bound state: $E_B = 2.16$ MeV
 - H. Le, et al EPJA (2021)

$$C_{\alpha\Xi}(q) \text{ can be used to see } \frac{5}{\Xi}\text{H?}$$

Interaction

• Folding αΞ potential with HAL QCD pot. E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022).

Effect of long range attractive int.?
Effect of repulsive core?

$\alpha \Xi$ correlation

$\alpha \Xi^{-}$ correlation and ${}_{\Xi}^{5}H$ binding energy

• Folding potenital and variations

potential	EB [MeV]	Model
Vfolding	0.45	HAL QCD base folding V (original)
2 Vfolding	2.16	<i>E_B</i> chiral model (H. Le, et al EPJA(2021)
Vfolding / 2	(Unbound)	Weaker interaction case

- Result with mid source (R = 3 fm)
 - V_{folding} : suppression from Coulomb
 - $2V_{\text{folding}}$: bump structure around $q \sim 100 \text{ MeV}/c$
 - $V_{\text{folding}}/2$: enhancement from Coulomb

 ${}_{\Xi}^{5}H$ can be distinguished by the source size dependence

- Result with small source (R = 1 fm)
 - $V_{\rm folding}$ and $V_{\rm folding}/2$ unnatural bump at $q \sim 100~{\rm MeV}/c$
 - $2V_{\text{folding}}$: deep bump structure

Effect by the strong repulsion core?

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi in prep.

20

$\alpha \Xi$ correlation

$\underline{\alpha} \Xi^0$ correlation and potential detail

No Coulomb: Good to see the effect of detailed potential

potential	EB [MeV]	
Vfolding	(Unbound)	
2 Vfolding	1.15	
Vfolding / 2	(Unbound)	

- Dip in $q \sim 100 \text{ MeV}/c$ for V_{folding} and $V_{\text{folding}}/2$
- Long tail for $2V_{\text{folding}}$
 - -> Effect of the repulsive core
- Single Gaussian potential model $V \propto e^{-r^2/b^2}$ -> purely enhanced C(q)
- Lednicky-Lyuboshits(LL) formula
 —> Largely underestimate C(q) due to the large effective range
 - Detailed potential shape can be tested by C(q) from small source!

Summary

- Femtoscopic study on the hadron interaction
 - Direct approach to the low-energy interaction
 - Sensitive to the near-threshold resonance
- K^-p correlation
 - Chiral SU(3) model give the good agreement with the various K^-p data
 - Finite deviation in small source indicates the stronger coupling
- ϕN correlation
 - Spin 1/2 interaction extracted with femto data and lattice spin 3/2 potential
 - Strong attractive interaction supporting a bound state indicated
- α -Hyperon correlation
 - Good observable to test the interaction detail of Y-N interaction
 - $\alpha \Lambda$: Suppression by the repulsive core
 - $\alpha \Xi$: Existence of ${}_{\Xi}^{5}H$ can be tested

Dip structure in mid momentum by the repulsion core

Thank you for your attention!