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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 



3

1

2

A1

Final State 
Interaction 

(FSI)

A2

t

Hadronization

High energy nuclear collision and FSI

k1

k2

: Source functionS(r)

φ(−)(q, r) : Relative wave function

r

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 



4

 Line shapes of : relation to interactionC(q)

Hadron correlation in high energy nuclear collision
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

Bound state 
or repulsive  
 ( )a0 > 0

Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

• Attractive int. w/ bound state  
  ( , large ) a0 > 0 |a0 |

• Repulsive int. ( , small ) a0 > 0 |a0 |

Suppressed C(q)

Suppressed  for Large C(q) R
Enhanced  for small C(q) R

• Attractive int. w/o bound state ( ) a0 < 0

Enhanced  C(q)

• Scattering length  and source size   
determines the suppression/enhancement  
of line shape 

a0 R

* a0 = − ℱ(q = 0)
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 interaction and  correlationK̄N K−p
 interaction and  K̄N Λ(1405)

K−pπΣ K̄0n

Λ(1405)
Λ(1380)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen

aK−p
0

M. Bazzi, et al.. PLB 704 (2011)

• Structure of  and  Λ(1405) Λ(1380)
• two pole structure

•  molecular pictureK̄N
 J. A. Oller and U. G. Meißner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)
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Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula
S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
R. Lednicky, et.al. Phys. At. Nucl. 61(1998) 

• Contribution from coupled-channel source 

C(q) = ∫ d3r S(r) |ψ (−)(q; r) |2 + ∑
j≠i

ωj ∫ d3r Sj(r) |ψ (−)
j (q; r) |2

Coupled-channel effect

, , , , , K−p K̄0n π0Σ0 π+Σ− π−Σ+ π0Λ

K−

p
CK−p

FSI

• Enhance  
• Enhance cusp structure   
•  : production rate  
         (compared to measured channel)

C(q)

ωi

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

R = 1 fm
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Source size dependence of coupled-channel effect 
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• Less prominent cusp structure 
• Weaker coupled-channel source contribution

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
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d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.

PHYSICAL REVIEW LETTERS 124, 132501 (2020)

132501-3

• Strong source size dependence  
  < == Due to the near-threshold  pole  
           

Λ(1405)

R = 1 fm

R = 3 fm
CK−p

•  with large source C(q)

Coupled-channel effect

•Large source：  scattering 
•Small source：detailed coupled-channel effect

K−p
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 correlation from large sourceK−p
• ALICE data PbPb collisions data

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 3: Left: scattering parameters obtained from the Lednický–Lyuboshitz fit compared with available world
data and theoretical calculations. Statistical uncertainties are represented as bars and systematic uncertainties, if
provided, as boxes. Right: experimental femtoscopic correlation function for K�p�K+p pairs in the 30–40%
centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.

and ¡ f0 = 0.92± 0.05(stat)+0.12
�0.33(syst) fm.

The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.

2Note that systematic uncertainties are not provided for some of the older results.

7

• Large source —> weaker coupled-channel effect 
                        —> more direct approach to interaction of the measured channel 
• Extraction of the  scattering length from correlation function K−p

* Fitting with 1 channel LL model with Gaussian source

ALICE PLB 822 (2021) 136708
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Figure 3: Left: scattering parameters obtained from the Lednický–Lyuboshitz fit compared with available world
data and theoretical calculations. Statistical uncertainties are represented as bars and systematic uncertainties, if
provided, as boxes. Right: experimental femtoscopic correlation function for K�p�K+p pairs in the 30–40%
centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.

and ¡ f0 = 0.92± 0.05(stat)+0.12
�0.33(syst) fm.

The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.

2Note that systematic uncertainties are not provided for some of the older results.
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Figure 7: Scaling factor (a j) for K0n (black circles) and pS (red squares) extracted from the different fits of the
K�p correlation function as a function of the core radius rcore extracted for pp, p–Pb and Pb–Pb collisions. The
vertical error bars and boxes represent the statistical and systematic uncertainties on the extracted parameters,
respectively. The widths of the boxes represent the systematic uncertainty associated to each extracted rcore. The
black and red bands represent the uncertainty coming from the yield estimates in TF and the variations applied in
the BW kinematics summed in quadrature as described in the text for K0n and pS, respectively.

be equal to unity if the coupling strength is correctly estimated within the Kyoto model. From the fits to
the measured correlation functions with the state-of-the-art Kyoto model, calculated within the coupled
channel approach, it is possible to observe that the dynamics of the coupled channels is under control in
the case of pS, while the deviation from unity of aK0n indicates that the transition between the K�p and

the K0n channel, as currently implemented in the Kyoto model, is too weak. Hence, the data presented
in this work provide a unique constraint to pin down the coupling strength to the K0n channel.
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Figure 5: (K�p � K+p) correlation functions obtained in p–Pb collisions at
p

sNN = 5.02 TeV in the 0–20%
(left), 20–40% (middle) and 40–100% (right) centrality intervals. The measurement is shown by the black markers,
the vertical error bars and the boxes represent the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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the vertical error bars and the boxes represent the statistical and systematic uncertainties respectively. The red and
blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.

Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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blue bands in the upper panels represent the model calculations and their systematic uncertainty as described in
the text. The rcore and reff values of the source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as described in the text.
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Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Schrödinger equation.

Since the coupled channel dynamics mostly acts at inter-particle distances of the order of 1 fm, the
inelastic terms shown in Eq. (3) should be relevant for femtoscopic measurements performed in small
colliding systems like pp, p–Pb, peripheral and semi-peripheral Pb–Pb. It has been shown that the probed
source sizes in such small systems are around 1 fm [72] and the explicit inclusion of the inelastic corre-
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Figure 2: The genuine p–f correlation function Cp–f (k⇤) with statistical (bars) and systematic uncertainties
(boxes). The red band depicts the results from the fit employing the Lednický–Lyuboshits approach [58]. The
width corresponds to one standard deviation of the uncertainty of the fit.

decays feeding to protons are explicitly considered [33], while for the f a 100% primordial fraction is
assumed [14]. The resulting source function is parametrized by a Gaussian profile with reff = (1.08±
0.05) fm.

The interaction parameters are extracted by fitting the genuine p–f correlation function Cp–f (k⇤) with
the respective model within k

⇤ < 200 MeV/c. The systematic uncertainties of the procedure are assessed
by varying the upper limit of the fit range by ±30 MeV/c and the source radius within its uncertainties.

The real and imaginary parts of the scattering length obtained from the Lednický–Lyuboshits fit are
¬( f0) = 0.85± 0.34(stat.)± 0.14(syst.) fm and ¡( f0) = 0.16± 0.10(stat.)± 0.09(syst.) fm. The re-
sulting effective range is d0 = 7.85± 1.54(stat.)± 0.26(syst.) fm. ¬( f0) deviates by 2.3s from zero,
indicating the attractiveness of the p–f interaction in the approximate vacuum of pp collisions. Notably,
¡( f0) vanishes within uncertainties, indicating that inelastic processes do not play a prominent role in
the interaction. Instead, the elastic p–f interaction appears to be dominant in vacuum. The scattering
length is larger than values found in literature: a recent analysis of data recorded with the CLAS exper-
iment reports | f0| = (0.063± 0.010) fm [61]; a value of around f0 = 0.15 fm is consistent with LEPS
measurements of the f cross section [62, 63]; studies of an effective Lagrangian combining chiral SU(3)
dynamics with vector meson dominance obtain f0 = (�0.01+ i0.08) fm [64]; and a QCD sum rule
analysis finds f0 = (�0.15±0.02) fm [65]. The obtained scattering lengths are rather model dependent
since the data refer to the properties of the f meson inside a nucleus and not to a two-body system as
in this work. This underlines the importance of direct measurements of the two-body N–f interaction to
provide constraints for theoretical models.

Finally, the data are employed to constrain the parameters of phenomenological Gaussian- and Yukawa-
type potentials. As the imaginary contribution of the scattering length is consistent with zero, only
real values are used for the parameters. The fits yield a comparable degree of consistency as the
fit with the Lednický–Lyuboshits approach. The resulting values for the Gaussian-type potential are
Veff = 2.5± 0.9(stat.)± 1.4(syst.) MeV and µ = 0.14± 0.06(stat.)± 0.09(syst.) fm�2, indicating a
much shallower strong interaction potential than lattice QCD results for the N–J/y strong interac-
tion [66]. For the Yukawa-type potential the fit yields A = 0.021 ± 0.009(stat.)± 0.006(syst.) and
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Figure 2: The genuine p–f correlation function Cp–f (k⇤) with statistical (bars) and systematic uncertainties
(boxes). The red band depicts the results from the fit employing the Lednický–Lyuboshits approach [58]. The
width corresponds to one standard deviation of the uncertainty of the fit.

decays feeding to protons are explicitly considered [33], while for the f a 100% primordial fraction is
assumed [14]. The resulting source function is parametrized by a Gaussian profile with reff = (1.08±
0.05) fm.

The interaction parameters are extracted by fitting the genuine p–f correlation function Cp–f (k⇤) with
the respective model within k

⇤ < 200 MeV/c. The systematic uncertainties of the procedure are assessed
by varying the upper limit of the fit range by ±30 MeV/c and the source radius within its uncertainties.

The real and imaginary parts of the scattering length obtained from the Lednický–Lyuboshits fit are
¬( f0) = 0.85± 0.34(stat.)± 0.14(syst.) fm and ¡( f0) = 0.16± 0.10(stat.)± 0.09(syst.) fm. The re-
sulting effective range is d0 = 7.85± 1.54(stat.)± 0.26(syst.) fm. ¬( f0) deviates by 2.3s from zero,
indicating the attractiveness of the p–f interaction in the approximate vacuum of pp collisions. Notably,
¡( f0) vanishes within uncertainties, indicating that inelastic processes do not play a prominent role in
the interaction. Instead, the elastic p–f interaction appears to be dominant in vacuum. The scattering
length is larger than values found in literature: a recent analysis of data recorded with the CLAS exper-
iment reports | f0| = (0.063± 0.010) fm [61]; a value of around f0 = 0.15 fm is consistent with LEPS
measurements of the f cross section [62, 63]; studies of an effective Lagrangian combining chiral SU(3)
dynamics with vector meson dominance obtain f0 = (�0.01+ i0.08) fm [64]; and a QCD sum rule
analysis finds f0 = (�0.15±0.02) fm [65]. The obtained scattering lengths are rather model dependent
since the data refer to the properties of the f meson inside a nucleus and not to a two-body system as
in this work. This underlines the importance of direct measurements of the two-body N–f interaction to
provide constraints for theoretical models.

Finally, the data are employed to constrain the parameters of phenomenological Gaussian- and Yukawa-
type potentials. As the imaginary contribution of the scattering length is consistent with zero, only
real values are used for the parameters. The fits yield a comparable degree of consistency as the
fit with the Lednický–Lyuboshits approach. The resulting values for the Gaussian-type potential are
Veff = 2.5± 0.9(stat.)± 1.4(syst.) MeV and µ = 0.14± 0.06(stat.)± 0.09(syst.) fm�2, indicating a
much shallower strong interaction potential than lattice QCD results for the N–J/y strong interac-
tion [66]. For the Yukawa-type potential the fit yields A = 0.021 ± 0.009(stat.)± 0.006(syst.) and
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 HAL QCD potential for spin 3/2 Y. Lyu et al, PRD 106, 074507 (2022).

3

We use 200 gauge configurations separated by 10 tra-
jectories. To reduce the statistical fluctuation, the for-
ward and backward propagations are averaged in each
configuration, the hypercubic symmetry on the lattice
(four rotations) is utilized, and 80 measurements are
performed by shifting the source position in a tem-
poral direction. In total, 128,000 measurements were
taken. Quark propagators are calculated by the domain-
decomposed solver [32] with the periodic boundary con-
dition for all directions. Hadron correlation functions
are obtained by the unified contraction algorithm [33].
The OZI (Okubo-Zweig-Iizuka) violating ss̄ annihilation
is not considered. The statistical errors are evaluated by
the jackknife method with a bin size of 20 configurations
throughout this paper, and a comparison with a bin size
of 40 configurations shows that the bin size dependence is
small. The major systematic error stems from the vari-
ation of the potential with respect to t/a as discussed
below.

FIG. 1. (Color online). The N -� potential V (r) in the 4S3/2

channel as a function of separation r at Euclidean time t/a =
12 (red squares), 13 (green circles), and 14 (blue triangles).

IV. NUMERICAL RESULTS

The N -� potential V (r) in the 4S3/2 channel defined in
Eq. (5) with the lattice measurement of R(r, t) is shown
in Fig. 1 for Euclidean times, t/a = 12, 13, and 14. (See
Appendix B for the t dependence of V (r) in a wider range
of t.) These Euclidean times are chosen such that they
are large enough to suppress contaminations from excited
states in the single-hadron correlator and simultaneously
small enough to avoid exponentially increasing statistical
errors. The variation of the potential between di↵erent
t/a is due to the contamination of inelastic states and the
truncation of the derivative expansion. Such a variation
is taken into account as a major source of the system-
atic error in our final results. A relatively small varia-
tion of V (r) as a function of t/a indicates that the N -�

correlation function is mostly dominated by the elastic
scattering states in the 4S3/2 channel without significant
e↵ects from the two-body open channels (⇤K(2D3/2) and
⌃K(2D3/2)) and the three-body open channels including
N� ! {⌃⇤K,⇤(1405)K} ! {⇤⇡K,⌃⇡K}. This is in
sharp contrast to the 2S1/2 case where we found that
the N -� potential shows a clear t dependence, as ex-
pected from the S-wave fall-apart decay into ⇤K(2S1/2)
and ⌃K(2S1/2).

The potential V (r) in the 4S3/2 channel shown in Fig. 1
is attractive for all distances and has a characteristic two-
component structure, the attractive core at short dis-
tance and the attractive tail at long distance, similar to
the case of the N⌦(5S2) potential [15]. We note that
the Pauli exclusion principle between quarks, which par-
tially gives rise to the repulsive core in the NN interac-
tion [34, 35], does not operate in the present case, since
N and � have no common valence quarks.
As has been discussed for the interaction between color

dipoles [36–38], nonperturbative gluon exchange is ex-
pected to appear in the form of the TPE at long dis-
tance. The idea was generalized to the interaction be-
tween a color-dipole and the nucleon with the result,
V (r � (2m⇡)�1) = �↵ exp(�2m⇡r)

r2 , where ↵ is propor-
tional to m4

⇡ [14]. To check such a long distance behavior
of V (r), we show in Fig. 2 the spatial e↵ective energy as
a function of r,

Ee↵(r) = � ln[�V (r)r2/↵]

r
, (7)

with ↵ ' 91 MeV · fm2 determined by fitting the lattice
data of V (r) at long distance. We find that Ee↵(r) has
a plateau at 2m⇡ = 292.8 MeV for r > 1.0 fm, which
indicates that the long-range part of the N -� potential
is indeed dominated by the TPE.

FIG. 2. (Color online). The spatial e↵ective energy Ee↵(r)
as a function of separation r at Euclidean time t/a = 12
(red squares), 13 (green circles) and 14 (blue triangles). The
orange dashed line corresponds to 2m⇡ with lattice pion mass
m⇡ = 146.4 MeV.

4

In order to convert the potential to physical observ-
ables, we perform an uncorrelated fit of the lattice QCD
potential by using two di↵erent functional forms,

A : Vfit(r) =
X

i=1,2

aie
�(r/bi)

2

+ a3m
4
⇡f(r; b3)

e�2m⇡r

r2
,

B : Vfit(r) =
X

i=1,2,3

aie
�(r/bi)

2

. (8)

The fit A is motivated by the TPE tail at long dis-
tance with an overall strength proportional to m4

⇡ [14],
while the fit B is a purely phenomenological Gaussian
form for comparison. In fit A, we consider two types of
form factors commonly used in the NN potentials: (i)
the Nijmegen-type form factor ferfc(r; b3) [39], and (ii)
the Argonne-type form factor fexp(r; b3) [40]. They are
defined as

ferfc(r; b3) =


erfc

✓
m⇡

⇤
� ⇤r

2

◆

�e2m⇡rerfc

✓
m⇡

⇤
+

⇤r

2

◆�2
/4,

fexp(r; b3) =
⇣
1� e�(r/b3)

2
⌘2

. (9)

Here ⇤ = 2/b3 and erfc(x) = 2p
⇡

R1
x e�z2

dz.

The Nijmegen-type form factor is motivated by the
exponential-type regularization of the pion propagator in
the momentum space, 1/(k2+m2

⇡) ! e�(k/⇤)2/(k2+m2
⇡).

We refer to fit A with (i) and (ii) as fit Aerfc and fit
Aexp, respectively. The pion mass in fit Aerfc,exp is taken
to be m⇡ = 146.4 MeV, and the fit range is chosen
as 0 < r < 3.0 fm. We found that all fits provide
an equally good result (�2

d.o.f =0.3-0.4) and are stable
against the choice of t. In Table II we show the fit re-
sults for t/a = 14, which are expected to have least con-
tamination from the inelastic states. Changing the fit
range of the potential to 0.1 < r < 2.5 fm does not af-
fect the results within statistical errors. Also we found
that the simple fitting functions such as the Yukawa form
⇠ � exp(�µr)

r [41, 42] and the van der Waals (Casimir-
Polder) form ⇠ � 1

rk with k = 6 (7) [43] cannot reproduce
the lattice data.

TABLE II. The fit parameters in Eq. (8) with statistical errors
quoted in the parentheses at t/a = 14. The fit range is 0 <
r < 3.0 fm. In a3m

4n
⇡ , we take n = 1 and n = 0 for fit

A and B, respectively. Aerfc (Aexp) denotes fit A with the
Nijmegen-type (Argonne-type) form factor.

fit Aerfc Aexp B
a1 [MeV] -376(20) -371(27) -371(19)
b1 [fm] 0.14(1) 0.13(1) 0.15(3)

a2 [MeV] 306(122) -119(39) -50(35)
b2 [fm] 0.46(4) 0.30(5) 0.66(61)

a3m
4n
⇡ [MeV·fm2n] -95(13) -97(14) -31(53)
b3 [fm] 0.41(7) 0.63(4) 1.09(41)

FIG. 3. The N -� scattering phase shifts �(3/2)0 in the 4S3/2

channel obtained from Vfit(r) at t/a = 12 (red squares), 13
(green circles), and 14 (blue triangles).

Figure 3 shows the N -� scattering phase shifts �(3/2)0
in the 4S3/2 channel as a function of the center of mass

kinetic energy ECM =
p

m2
N + k2 +

q
m2

� + k2 � (mN +

m�) obtained by using Vfit(r) with the fit Aerfc. The
scattering phase shifts from di↵erent t are consistent with
each other within statistical errors. The scattering length

a(3/2)0 and the e↵ective range r(3/2)e↵ can be extracted from
the e↵ective range expansion for small k as

k cot �(3/2)0 (k) = � 1

a(3/2)0

+
1

2
r(3/2)e↵ k2 +O(k4). (10)

In Table III, a(3/2)0 and r(3/2)e↵ are shown for the present
pion mass m⇡ = 146.4 MeV; the central values and the
statistical errors of about 15% are obtained from the data
at t/a = 14 with the fit Aerfc, while the systematic errors
of about 25% in the second parentheses are estimated
by comparing results for t/a = 12-14 with Aerfc,exp and
B. Other possible systematic errors are as follows: (i)
The finite volume e↵ect, which is expected to be small
as exp(�2m⇡(L/2)a) <⇠ 0.3% due to the large volume;
(ii) The finite cuto↵ e↵ect, which is also expected to be
small as O((a⇤QCD)2) ⇠ O(1)% due to the nonperturba-
tive O(a)-improvement; (iii) As an alternative estimate
of the cuto↵ e↵ect, we remove the potential at r < 0.1
fm, and found that the scattering parameters change only
⇠ 2%; (iv) The e↵ect of ss̄ annihilation is known to be
less than 1% correction to the �-meson mass and the
mixing to non-ss̄ mesons [44, 45]. Assuming that the
ss̄ annihilation e↵ect on R(r, t) is the similar magnitude
of about 1%, the resultant systematic error to the final
scattering parameters is found to be less than 1%.
To estimate how the scattering parameters change to-

ward the physical quark mass, we keep a1,2,3 and b1,2,3
in Vfit(r) fixed in fit Aerfc,exp and smoothly change the
long-range potential by taking the isospin-averaged phys-
ical pion mass m⇡ = 138.0 MeV in the region where the

• Decay effect to / :  
     strongly suppresses by d-wave coupling

ΛK ΣK

well described with real potential 

• Fitting function 

• Long range tail
2  exchange int.π

• Threshold parameters from fitted potential

5

TABLE III. The scattering length a(3/2)
0 and the e↵ective

range r(3/2)e↵ obtained by using Vfit(r) atm⇡ = 146.4 MeV with
statistical and systematic errors. Estimated central values us-
ing a model-dependent extrapolation of Vfit(r) to m⇡ = 138.0
MeV are also shown for comparison.

m⇡ [MeV] a(3/2)
0 [fm] r(3/2)e↵ [fm]

146.4 �1.43(23)stat.
�
+36
�06

�
syst.

2.36(10)stat.
�
+02
�48

�
syst.

138.0 ' �1.25 ' 2.49

TPE is dominated (r > 1.0 fm from Fig.2). By calcu-
lating the scattering phase shifts with such a potential
with the physical masses of � and N , we obtain esti-

mated values of a(3/2)0 and r(3/2)e↵ for m⇡ = 138.0 MeV
in Table III. Although the range of the TPE is increased
by the smaller pion mass, the characteristic m4

⇡ behavior
of the TPE strength makes the overall attraction weaker.
Note that this is only a model-dependent qualitative esti-
mate and needs to be confirmed by future physical-point
simulations.

FIG. 4. The scattering length a(3/2)
0 obtained from

V (r; rc) = ✓(rc � r)Vfit(r) as a function of cuto↵ length rc
at t/a = 12 (red squares), 13 (green circles), and 14 (blue
triangles).

Since we do not have reliable information on the
N�(2S1/2) potential from lattice QCD at the moment
due to the e↵ect of the open channels, a comparison of our
results with spin-averaged scattering parameters should
be made with caution. With this reservation in mind,

our a(3/2)0 is found to be one or two orders of magnitude
larger than the previous theoretical results in QCD sum
rules [46, 47]. Such a discrepancy may be due to the
di�culty of obtaining the long-range TPE contribution
from the low-order truncation of the operator product
expansion in QCD sum rules. In fact, the magnitude

of a(3/2)0 becomes considerably smaller when the long-

range potential is cut o↵. Shown in Fig. 4 is a(3/2)0 as
a function of cuto↵ length rc obtained by the potential,
V (r; rc) = ✓(rc�r)Vfit(r) with the fit Aerfc. Considerable

decrease of |a(3/2)0 | from 1.43 fm at rc = 1 to about 0.1
fm at rc = 0.5 fm can be seen.

V. SUMMARY

In this paper, we present a first lattice QCD calcula-
tion on the interaction of the N -� system in the 4S3/2

channel based on the (2 + 1)-flavor simulations with
nearly physical quark masses. The interaction poten-
tial in the N�(4S3/2) channel is extracted from lattice
data of the hadronic spacetime correlation using the HAL
QCD method. The potential is found to be attractive for
all distances and appears to be a combination of an at-
tractive core at short distances and a two-pion exchange
(TPE) tail at long distances (r > 1 fm). The latter is
well fitted by the characteristic form of the TPE ob-
tained by the interaction of a color-dipole and the nu-
cleon. The scattering parameters obtained from our po-
tential at m⇡ = 146.4 MeV is summarized in Table III.
By examining the potential fitted to the lattice data, we

find that the scattering length a(3/2)0 is sensitive to the
length scale of r > 0.5 fm. Also, we suggest that the N -�
attraction could be weaker at the physical pion mass due
to the characteristic m4

⇡ dependence of the strength of
the TPE.
Our a(3/2)0 is substantially larger in magnitude than the

previous calculations of the spin-averaged a0 using QCD
sum rules but is comparable to the spin-averaged a0 by
ALICE Collaboration within the error bar [7]. Also, our

r(3/2)e↵ is about three times smaller than the spin-averaged
re↵ by ALICE Collaboration. To make a solid compari-
son between theory and experiments, we need to extract
complex-valued scattering parameters in the 2S1/2 and
4S3/2 channels through the coupled-channel analysis of
the data from physical-point simulations. The present
lattice QCD study near the physical point provides a first
step to exploring the interaction of ss̄ with the nucleon
from the first principles. The heavier system such as cc̄
interacting with the nucleon pioneered in [48, 49] is also
an important problem to be studied.
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Spin 1/2  int. from femtoscopic data and HAL QCD potential Nϕ
E.~Chizzali, et. al. [arXiv:2212.12690 [nucl-ex]].

• Fitting function for spin 1/2 potential
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Analysis with fitted potential E.~Chizzali, et. al. [arXiv:2212.12690 [nucl-ex]].

• Threshold parameters (high energy phys. convention) 
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ALICE Collaboration Physics Letters B 833 (2022) 137272

Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass 〈mT〉 =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(〈mT〉) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass 〈mT〉 =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(〈mT〉) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.
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p
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Fig. 2. Measured correlation function of p–p ⊕ p–p . Statistical (bars) and systematic 
uncertainties (boxes) are shown separately. The width of the band corresponds to 
one standard deviation of the systematic uncertainty of the fit.

k∗ ∈ [0, 375] MeV/c to determine simultaneously the femtoscopic 
radius r0 and the parameters of the baseline. To assess the sys-
tematic uncertainties on r0 related to the fitting procedure the 
upper limit of the fit region is varied within k∗ ∈ [350, 400] MeV/c. 
The baseline is modeled as a polynomial of zeroth, first, and sec-
ond order. Additionally, as discussed above, all three models for 
the p–! residual correlation function are employed, and the in-
put to the λ parameters is modified by ±20% while maintaining 
a constant sum of the primary and secondary fractions. The p–p
correlation function is shown in Fig. 2, where the width of the 
bands corresponds to one standard deviation of the total system-
atic uncertainty of the fit. The inset shows a zoom of the p–p
correlation function at intermediate k∗ , where the effect of re-
pulsion becomes apparent. The femtoscopic fit yields a radius of 
r0 = 1.249 ± 0.008 (stat) +0.024

−0.021 (syst) fm.
Analyses of π–π and K–K correlation functions at ultrarelativis-

tic energies in elementary [56] and heavy-ion collisions [57] indi-
cate a source distribution significantly deviating from a Gaussian. 
Indeed, strongly decaying resonances are known to introduce sig-
nificant exponential tails to the source distribution, especially for 
π–π pairs [47–49]. This becomes evident when studying the cor-
responding resonance contributions obtained from the statistical 
hadronization model within the canonical approach [58]. The main 
resonances feeding to pions, ρ and ω, are significantly longer-lived 
than those feeding to protons (&) and '0 (!(1405)). Hence, it is 
not surprising that the source distribution for π–π deviates from 
a Gaussian. These conclusions are underlined when fitting the p–p
correlation function with a Lévy-stable source distribution [59,60]. 
Leaving both the femtoscopic radius and the stability parameter α
for the fit to determine, the Gaussian source shape (α = 2) is re-
covered. Employing a Cauchy-type source distribution (α = 1), the 
data cannot be satisfactorily described. Therefore, the premise of a 
Gaussian source holds for baryon–baryon pairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is 
used to fit the p–'0 correlation function. The parameters of the 
linear baseline are obtained from a fit to the p–(!γ ) correlation 
function in k∗ ∈ [250, 600] MeV/c, where it is consistent and kine-
matically comparable with p–'0, however featuring significantly 
smaller uncertainties. The experimental p–'0 correlation function 
is then fitted in the range k∗ < 550 MeV/c, and varied during the 
fitting procedure within k∗ ∈ [500, 600] MeV/c to determine the 
systematic uncertainty. Additionally, the input to the λ parame-
ters is modified by ±20% while maintaining a constant sum of 
the primary and secondary fractions. The parameters of the base-

Fig. 3. Measured correlation function of p–'0 ⊕ p–'0. Statistical (bars) and system-
atic uncertainties (boxes) are shown separately. The gray band denotes the p–(!γ )

baseline. The data are compared with different theoretical models. The correspond-
ing correlation functions are computed using CATS [46] for χEFT [20], NSC97f [26]
and ESC16 [23], and using the Lednický–Lyuboshits approach [51,52] for fss2 [24]. 
The width of the bands corresponds to one standard deviation of the systematic 
uncertainty of the fit. The absolute correlated uncertainty due to the modeling of 
the p–(!γ ) baseline is shown separately as the hatched area at the bottom of the 
figure.

line are varied within 1σ of their uncertainties considering their 
correlation, including the case of a constant baseline. Finally, the 
femtoscopic radius is varied according to its uncertainties. Possible 
variations of the p–'0 source due to contributions of mT scaling 
and strong decays are incorporated by decreasing r0 by 15%, sim-
ilarly as in [28,29]. The corresponding resonance yields are taken 
from the statistical hadronization model within the canonical ap-
proach [58].

All correlation functions resulting from the above mentioned 
variations of the selection criteria are fitted during the procedure, 
additionally considering variations of the mass window to extract 
the p–(!γ ) baseline. The width of the bands in Fig. 3 corresponds 
to one standard deviation of the total systematic uncertainty of the 
fit. The absolute correlated uncertainty due to the modeling of the 
p–(!γ ) baseline correlation function is shown separately at the 
bottom of the figure.

4. Results

The experimental p–'0 ⊕ p–'0 correlation function is shown 
in Fig. 3. The k∗ value of the data points is chosen according to the 
〈k∗〉 of the same event distribution Nsame(k∗) in the correspond-
ing interval. Therefore, due to the low number of counts in the 
first bin, the data point is shifted with respect to the bin centre. 
Since the uncertainties of the data are sizable, a direct determina-
tion of scattering parameters via a femtoscopic fit is not feasible. 
Instead, the data are directly compared with the various models of 
the interaction. These include, on the one hand, meson-exchange 
models, such as fss2 [24] and two versions of soft-core Nijmegen 
models (ESC16 [23], NSC97f [61]), and on the other hand results of 
χEFT at Next-to-Leading Order (NLO) [20]. The correlation function 
is modeled using the Lednický–Lyuboshits approach [51] consider-
ing the couplings of the p–'0 system to p–! and n-'+ [52] with 
scattering parameters extracted from the fss2 model. For the case 
of ESC16, NSC97f and χEFT, the wave function of the p–'0 system, 
including the couplings, is used as an input to CATS to compute the 
correlation function. The degree of consistency of the data with the 
discussed models is expressed by the number of standard devia-
tions nσ , computed in the range k∗ < 150 MeV/c from the p-value 
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.

 ALICE 
 Pb 5.02 TeV
ΛΛ
p

ALICE PLB 797 (2019).

ALICE PRL 123 (2019). 

S = − 2
PLB 833 (2022) 137272 

 ALICE 
  13 TeV
pΛ
pp

 ALICE 
  13 TeV
pΣ
pp

NLO 19 
J. Haidenbauer,  et al  

EPJA 56(2020) 

K. Sasaki et al., NPA, 121737 (2019). 
Y. Kamiya, et al PRC 105 (2022)  014915

HAL QCD at almost physical mπ

• In good agreement data and theor. model 

• Further constraint on the  int? YN(YY )



ALICE Collaboration Physics Letters B 833 (2022) 137272

Fig. 1. Upper panels: p! correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal 
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass 〈mT〉 =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(〈mT〉) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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cut-off ! =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p$− ⊕ p$0 (pink) and p%0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of 
p%0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p! interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off ! =600 MeV [2,3]. This leads to an improved 
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p%0 is modelled by χEFT (panel a) and 1.8 in case the p%0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p!
pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass 〈mT〉 =
1.55 GeV of the measured p! pairs a corresponding core source 
radius of rcore(〈mT〉) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p! correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter ! (cf. Ref. [2]) is explored, while 
! =600 MeV is chosen as a default value. Both NLO versions 
provide an excellent description of the available scattering data, 
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {%0,$} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N% channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.
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Fig. 2. Measured correlation function of p–p ⊕ p–p . Statistical (bars) and systematic 
uncertainties (boxes) are shown separately. The width of the band corresponds to 
one standard deviation of the systematic uncertainty of the fit.

k∗ ∈ [0, 375] MeV/c to determine simultaneously the femtoscopic 
radius r0 and the parameters of the baseline. To assess the sys-
tematic uncertainties on r0 related to the fitting procedure the 
upper limit of the fit region is varied within k∗ ∈ [350, 400] MeV/c. 
The baseline is modeled as a polynomial of zeroth, first, and sec-
ond order. Additionally, as discussed above, all three models for 
the p–! residual correlation function are employed, and the in-
put to the λ parameters is modified by ±20% while maintaining 
a constant sum of the primary and secondary fractions. The p–p
correlation function is shown in Fig. 2, where the width of the 
bands corresponds to one standard deviation of the total system-
atic uncertainty of the fit. The inset shows a zoom of the p–p
correlation function at intermediate k∗ , where the effect of re-
pulsion becomes apparent. The femtoscopic fit yields a radius of 
r0 = 1.249 ± 0.008 (stat) +0.024

−0.021 (syst) fm.
Analyses of π–π and K–K correlation functions at ultrarelativis-

tic energies in elementary [56] and heavy-ion collisions [57] indi-
cate a source distribution significantly deviating from a Gaussian. 
Indeed, strongly decaying resonances are known to introduce sig-
nificant exponential tails to the source distribution, especially for 
π–π pairs [47–49]. This becomes evident when studying the cor-
responding resonance contributions obtained from the statistical 
hadronization model within the canonical approach [58]. The main 
resonances feeding to pions, ρ and ω, are significantly longer-lived 
than those feeding to protons (&) and '0 (!(1405)). Hence, it is 
not surprising that the source distribution for π–π deviates from 
a Gaussian. These conclusions are underlined when fitting the p–p
correlation function with a Lévy-stable source distribution [59,60]. 
Leaving both the femtoscopic radius and the stability parameter α
for the fit to determine, the Gaussian source shape (α = 2) is re-
covered. Employing a Cauchy-type source distribution (α = 1), the 
data cannot be satisfactorily described. Therefore, the premise of a 
Gaussian source holds for baryon–baryon pairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is 
used to fit the p–'0 correlation function. The parameters of the 
linear baseline are obtained from a fit to the p–(!γ ) correlation 
function in k∗ ∈ [250, 600] MeV/c, where it is consistent and kine-
matically comparable with p–'0, however featuring significantly 
smaller uncertainties. The experimental p–'0 correlation function 
is then fitted in the range k∗ < 550 MeV/c, and varied during the 
fitting procedure within k∗ ∈ [500, 600] MeV/c to determine the 
systematic uncertainty. Additionally, the input to the λ parame-
ters is modified by ±20% while maintaining a constant sum of 
the primary and secondary fractions. The parameters of the base-

Fig. 3. Measured correlation function of p–'0 ⊕ p–'0. Statistical (bars) and system-
atic uncertainties (boxes) are shown separately. The gray band denotes the p–(!γ )

baseline. The data are compared with different theoretical models. The correspond-
ing correlation functions are computed using CATS [46] for χEFT [20], NSC97f [26]
and ESC16 [23], and using the Lednický–Lyuboshits approach [51,52] for fss2 [24]. 
The width of the bands corresponds to one standard deviation of the systematic 
uncertainty of the fit. The absolute correlated uncertainty due to the modeling of 
the p–(!γ ) baseline is shown separately as the hatched area at the bottom of the 
figure.

line are varied within 1σ of their uncertainties considering their 
correlation, including the case of a constant baseline. Finally, the 
femtoscopic radius is varied according to its uncertainties. Possible 
variations of the p–'0 source due to contributions of mT scaling 
and strong decays are incorporated by decreasing r0 by 15%, sim-
ilarly as in [28,29]. The corresponding resonance yields are taken 
from the statistical hadronization model within the canonical ap-
proach [58].

All correlation functions resulting from the above mentioned 
variations of the selection criteria are fitted during the procedure, 
additionally considering variations of the mass window to extract 
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.
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 interaction at finite densityNΛ

 correlationαΛ
• Key to solve the Hyperon puzzle 

D. Gerstung, N. Kaiser, W. Weise, EPJA 55 (2020) 

A. Jinno. K. Murase, Y. Nara, and A. Ohnishi arXiv:2306.17452

 potentialαΛ

• high central density ~ 2ρ0

• Unknown : fit to reproduce the  experimental aΛ
3

5
ΛHe EB = 3.12 MeV

• Chiral EFT with NLO  
—>  three body interaction gives the additional repulsion 
—> stiffer EOS

ΛNN

Can we see the effect of repulsion core? 

• Chi3: Skyrme type  potential based on Chiral EFT with three body Λ

3 A. Ohnishi @ 3rd J-PARC HEF-ex WS, Mar. 14, 2023

Λ potential (U
Λ
) in SHF

Skyrme Hartree-Fock equation

Parameters in Empirical and Chiral EFT

Chi2mom Chi3mom LY-IV H.Λ2

a1 (MeV fm^3) -352.20 -388.30 -500.89 -302.72

a2 (MeV fm^5) 39.35 47.28 16.00 23.73

a3 (MeV fm^5) 52.18 36.56 20.00 29.84

a4 (MeV fm^4) -356.96 -405.68 480.54 581.04

a5 (MeV fm^5) 1000.80 1256.74 0.00 0.00

RMSD (MeV) 1.59 0.75 0.74 0.78

J%Λ (MeV) -33.45 -30.03 -29.78 -31.23

L%Λ (MeV) -23.55 9.32 -36.24 -46.10

K%Λ (MeV) 415.00 532.30 217.80 277.40

m'Λ(mΛ 0.73 0.70 0.87 0.82

5

FIG. 2. Normalized baryon density dependence of the single-particle
potentials for ⇤ in the symmetric nuclear matter. GKW2 and GKW3
represent the results of the ⇤ single-particle potential with only two-
body interactions and two- and three-body interactions obtained from
the �EFT [23], respectively. The solid and dashed lines represent
the fitting results to GKW2 and GKW3, respectively. The dotted
and dash-dotted lines correspond to the ⇤ potentials, LY-IV [49] and
HP⇤2 [50], respectively.

of 13
⇤ C, 11.88 MeV. The experimental value is taken from

Ref. [65] with a correction of 0.5 MeV, which is pointed out
in Ref. [66]. There are two reasons for choosing 13

⇤ C: First,
it has a larger surface-energy effect compared with a heavier
nucleus. Second, the spherical Skyrme-Hartree-Fock method
is expected to provide a relatively good description of 13

⇤ C
because it has even numbers of protons and neutrons.

TABLE I. Sets of Skyrme potential parameters. Chi2 and Chi3 are
the fitting results to the �EFT calculations [23, 34]. LY-IV [49] and
HP⇤2 [50] are the ⇤ potentials, which can explain the ⇤ binding en-
ergy data. The symbol �B⇤ represents the mean squared deviation
of the calculated ⇤ binding energy from the experimental data as de-
fined by Eq. (29).

Chi2 Chi3 LY-IV HP⇤2
t⇤0 (MeV fm3

) �352.2 �388.3 �542.5 �399.9

t⇤1 (MeV fm5
) 143.7 120.4 56.0 83.4

t⇤2 (MeV fm5
) 13.7 68.7 8.0 11.5

t⇤3,1 (MeV fm4
) �951.9 �1081.8 1387.9 2046.8

t⇤3,2 (MeV fm5
) 2669 3351 0 0

x⇤
0 0 0 �0.153 �0.486

x⇤
3,1 0 0 0.107 �0.660

x⇤
3,2 0 0 0 0

J⇤ (MeV) �33.5 �30.0 �29.8 �31.2

L⇤ (MeV) �23.5 9.3 �36.2 �46.1

K⇤ (MeV) 415 532 218 277

m⇤
⇤/m⇤ 0.73 0.70 0.87 0.82

�B⇤ (MeV) 1.55 0.72 0.71 0.78

We show in Table I the Taylor coefficients and the normal-

ized effective mass at ⇢0, which characterize the ⇤ potential:

J⇤ = U⇤(⇢N = ⇢0, k⇤ = 0), (25)

L⇤ = 3⇢N
@U⇤

@⇢N

���
⇢N=⇢0,k⇤=0

, (26)

K⇤ = 9⇢2N
@
2
U⇤

@⇢
2
N

���
⇢N=⇢0,k⇤=0

, (27)

m
⇤
⇤

m⇤

���
⇢N=⇢0

=
1

1 +
2m⇤

~2 a
⇤
2 ⇢0

. (28)

C. ⇤ single-particle potential and ⇤ binding energy

We now present the results of the Skyrme-Hartree-Fock cal-
culations for ⇤ hypernuclei using the ⇤ Skyrme interaction
discussed in the previous section.

Figure 3 shows the ⇤ single-particle potential (18) for hy-
pernucleus 208

⇤ Pb. At a distance r < 4 fm where the nucleon
density ⇢N is close to the saturation density ⇢0, both Chi3 and
LY-IV have the potential depth of �30 MeV while Chi2 has a
slightly greater depth of �33 MeV. Those values reflect J⇤,
the ⇤-potential depth at ⇢0 (see Table I).

FIG. 3. ⇤ single-particle potential (18) for hypernucleus 208
⇤ Pb in

the coordinate space. The dashed and solid lines show the results
from the ⇤ potential Chi2 and Chi3, respectively. The dotted line
corresponds to the result from the LY-IV parameter sets.

Figure 4 compares the ⇤ binding energies calculated from
different ⇤ potentials at mass number A = 13–208 in 1s, 1p,
1d, 1f , and 1g orbitals. The experimental data at A = 16–
208 are listed in Table III. Chi3, which includes the ⇤NN

three-body force, reproduces the data. This implies that the
strong repulsive ⇤ potential, which is sufficient to suppress
the presence of ⇤ hyperons in dense nuclear matter, is con-
sistent with the observed ⇤ hypernuclear data. On the other
hand, Chi2, which includes only the ⇤N two-body force, pre-
dicts the overbinding of the data in the 1s orbital. This is be-
cause J⇤ is as deep as approximately �33 MeV for Chi2. We

ρ(r) = A(2νc /π)3/2e−2νcr2
• Nucleon density with Gaussian form: 

•  potential model with different density dependenceNΛ

D. E. Lanskoy and Y. Yamamoto, PRC 55, 2330 (1997)
• LY-IV

N. Guleria, S. K. Dhiman, and R. Shyam, Nucl. Phys. A 886, 71 (2012)
• HP 2 Λ

• Well reproduces the binding energy of  in hypernuclei  Λ

Λ－α potential

4

Λ－α local potential 𝑼 Effective mass potential 𝑼𝒎

Repulsive core VαΛ
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 correlation with Chi3 modelαΛ

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi in prep.

• Strong source size dependence

• Dip structure

Model with strong repulsive core

R = 1 fm

R = 3 fm

R = 5 fm

Preliminary

 correlationαΛ

•  with Chi3 is slightly suppressed from that with LY-IVC(q)

• Characteristic lineshapes for weak binding system ( )5
ΛHe

• Effect of the repulsive core emerges in small source size  

Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345 (1995) 
•  Isle potential NΛ

V(r) = V1e−r2/b2
1 + V2e−r2/b2

2

repulsive core 
(short range)

attractive part 
(long range)

•  Much stronger suppression compared to LY-IVC(q) :
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N! and "" (the upper
right panel) at low energy, and (iii) a weak attraction in the
"" channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1
a0

+ 1
2

reffq2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,",!−, and !0.1

Note that a0 in ""(J = 0) and n!0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p!−(J = 0) and n!0(J = 0) channels
are complex due to the coupling to the lower "" channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p!−(J = 1) channel is complex in principle
due to the coupling to the lower n!0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the "" threshold nor a quasibound
state below the N! threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n!0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p!− (J = 1)
channel is essentially zero, which implies that the transition
between p!− to n!0 is very weak: This is partly due to the
fact that the N! potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|& (−)
j (q; r)|2, (2)
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I. INTRODUCTION

to be added...

II. FORMALISM

　
In this study, we employ the αΞ folding potential in

Ref. [1], which is obtained with the HAL QCD NΞ poten-
tial [2] This folding potential is given with the sum of the
Gaussian as

VαΞ(r) =
∑

i=1,20

Vi exp(−νir
2), (1)

where Vi is the potential strength and νi is the Gaussian range.
Because the isospin-spin ave averaged NΞ potential is given
as

Vave =
1

16

[
V (11S0) + V (11S0) + V (11S0) + 9V (33S1)

]
,

(2)

33S1 component is dominant in VαΞ. The potential shape
is shown in Fig. II. Due to the finite volume of α particle,
both the central repulsion and the attractive range are smeared
compared to the NΞ interaction. This interaction is attractive
but is not enough strong to support a bound state. Thus the
αΞ0 system, where only the strong interaction works, does
not have a bound state. The scattering length a0 and the effec-
tive range re are summarized in Table II. Note that we employ
the nuclear physics convention for the scattering length where
a0 > 0(< 0) for the repulsive interaction and the strongly
attractive interaction with a bound state (weak attractive inter-
action without supporting a bound state). The value of a0 is
sizable large which implies that the system is very close to the
unitary limit [3]. It can be understood that large re is due to
the smeared potential (1) has the long range.

On the other hand, for the αΞ− system, the further attrac-
tion by the Coulomb interaction works as

VCoulomb(r) =
Z1Z2α

r
(3)

with charge of particle i Zi and fine structure constant α. By
solving the Schrödinger equation with V = VαΞ + VCoulomb,
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FIG. 1. αΞ folding potential.

we find a Coulomb assisted shallow bound state with the bind-
ing energy B = 0.45 MeV. Note that this is not a Coulomb
bound state, which emerge for every Coulomb attractive pair
with keV order binding energy.

In the study of Ref. [4], the αΞ bound state with B =
2.16 MeV is found using chiral NLO NΞ amplitude. It is
not straight forward to construct a coordinate space potential
based on the Chiral NLO amplitude [4]. Instead, by multiply-
ing two to the VαΞ, we reproduce the binding energy of 2.16
MeV [1]. On the other hand, by using VαΞ/2, we can con-
sider the case where αΞ system does not have any bound state
for either charged or neutral system. Thus, in the following,
we consider the two additional potentials Vstrong = 2VαΞ and
Vweak = VαΞ/2 for the the deeply bound case and the un-
bound case, respectively. The scattering lengths and effective
ranges for the additional cases are shown in Table II.

The momentum correlation function in the high energy nu-
clear collisions is given by the Koonin-Pratt formula [5, 6];

C(q) =

∫
d3rS(r)

∣∣∣Ψ(−)(q; r)
∣∣∣
2
, (4)

where q is the relative momentum in the pair rest frame,
S(r) is the normalized source function, and Ψ(−)(q; r) is
the relative wave function with out going boundary condi-
tion. In this study, we employ the static Gaussian SR(r) ≡

Interaction

E. Hiyama, et al PRC 106, 064318 (2022).
H. Le, et al EPJA (2021)  

K. Sasaki et al., NPA, 121737 (2019). 

• Effect of long range attractive int.?  
• Effect of repulsive core? 

• HAL QCD  potential based folding potential NΞ • Chiral NLO potential with no core shell model
Coulomb assisted weakly bound state: 

 MeV EB = 0.45
Bound state:  MeV EB = 2.16

  can be used to see ? CαΞ(q) 5
ΞHK. Sasaki et al., NPA, 121737 (2019). 

• HAL QCD  potential NΞ
E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC 106, 064318 (2022).

NΞ αΞ

r [fm]

• Folding  potential with HAL QCD pot. αΞ

Folding

•  shows strong attractionNΞ
—>  pair may form a bound state:  (not observed)αΞ 5

ΞH

[V(11S0) + 3V(13S1)
3V(31S0) + 9V(33S1)]/16
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 correlation and   binding energyαΞ− 5
ΞH

 correlationαΞ

potential EB [MeV] Model

Vfolding 0.45 HAL QCD base folding V 
(original)

2 Vfolding 2.16 EB chiral model 
(H. Le, et al EPJA(2021)

Vfolding / 2 (Unbound) Weaker interaction case 

• Folding potenital and variations

• Result with small source ( )R = 1 fm
•  and  unnatural bump at  MeV/c Vfolding Vfolding /2 q ∼ 100

• 2 : deep bump structureVfolding

Coulomb int. included

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi in prep.
 Effect by long range interaction? 

  can be distinguished by the source size dependence5
ΞH
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Effect by the strong repulsion core?  

• Result with mid source ( )R = 3 fm
• : suppression from CoulombVfolding

• 2 : bump structure around Vfolding q ∼ 100 MeV/c

• : enhancement from Coulomb Vfolding /2

Preliminary
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 correlationαΞ

• Dip in  for  and q ∼ 100 MeV/c Vfolding Vfolding /2

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi in prep.

Detailed potential shape can be tested by  
  from small source! C(q)

 correlation and potential detailαΞ0

No Coulomb: Good to see the effect of detailed potential

potential EB [MeV]
Vfolding (Unbound)

2 Vfolding 1.15
Vfolding / 2 (Unbound)
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• Single Gaussian potential model  
—>  purely enhanced  

V ∝ e−r2/b2

C(q)

• Lednicky-Lyuboshits(LL) formula 
—>  Largely underestimate  due to the large effective rangeC(q)

• Long tail for 2Vfolding

—> Effect of the repulsive core 
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Summary
Femtoscopic study on the hadron interaction 
   • Direct approach to the low-energy interaction  
   • Sensitive to the near-threshold resonance  

 correlation  
 • Chiral SU(3) model give the good agreement with the various  data  
 • Finite deviation in small source indicates the stronger coupling 

 correlation  
 • Spin 1/2 interaction extracted with femto data and lattice spin 3/2 potential 
 • Strong attractive interaction supporting a bound state indicated  

-Hyperon correlation  
• Good observable to test the interaction detail of -  interaction 
•  : Suppression by the repulsive core  
•  : Existence of  can be tested 
           Dip structure in mid momentum by the repulsion core

K−p
K−p

ϕN

α
Y N

αΛ
αΞ 5

ΞH

Thank you for your attention!


