Light hypernuclei in the framework of J-NCSM and χ EFT

Hoai Le, IAS-4 Forschungszentrum Jülich

ROCKSTAR: Towards a Roadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron Stars EOS

9th - 13th October 2023, ECT* Trento, Italy

In collaboration with: Johann Haidenbauer, Ulf-G. Meißner, Andreas Nogga

- STAR collaboration PRC 74(2006)

- J. Haidenbauer et al. EPJA 59(2023)

- K. Miwa et al. PRL 128(2022)

- ab initio treatment of light p-shell $\boldsymbol{\Lambda}(\Xi)$ hypernuclei with the NCSM:

$$
A=3-9
$$

\rightarrow directly compute B_{Λ} from the underlying YN interactions
R. Wirth et al. PRL117 (2016), PRC100 (2019)
H. Le et al. EPJA 56 (2020), PRC 117(2023)

YN,YY: H. Polinder et al. NPA 779(2006); J. Haidenbauer et al .NPA 915(2013), EPJA $(\mathbf{2 0 1 9} \mathbf{2 0 2 0} \mathbf{2 0 2 3})$

- $\sim 5000 \mathrm{NN}+{ }^{2} \mathrm{H} \rightarrow \mathrm{NN}$ forces up to $\mathrm{N}^{4} \mathrm{LO}^{+}\left(\chi^{2} \sim 1\right) \quad$ (P. Reinert et al. EPJA (2018))

3NF at $\mathbf{N}^{\mathbf{2}} \mathbf{L O}: c_{1,3,4}$ from fit to πN data; $c_{E, D}$ from ${ }^{\mathbf{3}} \mathbf{H}+\mathbf{N d}$ scattering data
\rightarrow good description for energies of light and medium nuclei $(A \leq 40)$
(E. Epelbaum et al. EPJA 56(2020))
(LENPIC(2021,2022))

- ~36 YN data, no YN bound state \rightarrow YN forces up to NLO, $\mathbf{N}^{2} \mathbf{L O}$
(talk by Nogga)
YNN forces at $\mathbf{N}^{2} \mathbf{L O}$ with decuplet saturation: 2LECs
(S. Petschauer et al. PRC 93(2016))
- fix 2 LECs to $\boldsymbol{B}_{\boldsymbol{\Lambda}}\left({ }_{\Lambda}^{4} \mathrm{He}\left(\mathbf{0}^{+}, 1^{+}\right)\right)$? (work in progress)

Jacobi-NCSM approach

- Idea: represent the A-body translationally invariant hypernuclear Hamiltonian:

$$
\mathrm{H}=\mathrm{T}_{r e l}+\mathrm{V}^{\mathrm{NN}}+\mathrm{V}^{\mathrm{YN}}+\mathrm{V}^{\mathrm{NNN}}+\mathrm{V}^{\mathrm{YNN}}+\Delta M+\cdots
$$

in a basis constructed from HO functions
$\Lambda \mathrm{N} \leftrightarrow \Sigma \mathrm{N}$

- Jacobi basis: depends on relative Jacobi coordinates of all particles
(A-1)N

$$
\underset{\Lambda(\Sigma)}{\longrightarrow}\rangle=|\mathcal{N} J T, \underbrace{\mathcal{N}_{A-1} J_{A-1} T_{A-1}}_{\text {antisym. }(A-1) N}, \underbrace{n_{Y} l_{Y} I_{Y} t_{Y}}_{\Lambda(\Sigma) \text { state }} ;\left(J_{A-1}\left(l_{Y} S_{Y}\right) I_{Y}\right) J,\left(T_{A-1} t_{Y}\right) T\rangle \quad \text { (independent of } \omega \text {) }
$$

- intermediate bases for evaluating Hamiltonian:

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020)

- basis truncation: $\mathcal{N}=\mathcal{N}_{A-1}+2 n_{\lambda}+\lambda \leq \mathcal{N}_{\max } \Rightarrow E_{b}=E_{b}\left(\omega, \mathcal{N}_{\max }\right) \quad \xrightarrow{\text { extrapolation }} \mathbf{E}_{\mathbf{b}, \infty}$

Extrapolation in $\omega \& \mathcal{N}$ spaces

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020)

- $\mathbf{E}_{\mathbf{b}}(\omega, \mathcal{N})=\mathbf{E}_{\mathcal{N}}+\kappa\left(\log (\omega)-\log \left(\omega_{\text {opt }}\right)\right)^{\mathbf{2}}$
- $\mathbf{E}_{\mathcal{N}}=\mathbf{E}_{\boldsymbol{\infty}}+\mathbf{A} \mathbf{e}^{-\mathbf{b} \cdot \mathcal{N}}$

NN: bare SMS $\mathrm{N}^{2} \mathrm{LO}(550)$
$\mathbf{E}\left({ }^{4} \mathrm{He}, \mathrm{NCSM}\right)=-25.14 \pm 0.06$
$\mathbf{E}\left({ }^{\mathbf{4}} \mathrm{He}, \mathbf{F Y}\right)=-\mathbf{2 5} .15 \pm \mathbf{0 . 0 2}$
$\delta E=E_{\infty}-E_{\mathcal{N}_{\max }}$

Numerical uncertainties

- NCSM calculations for hypernuclei with bare SMS NN (3N) and YN interactions converge poorly
- NCSM uncertainties for SRG-evolved potentials:
- ~ several keV for $\mathrm{A} \leq 5$
- ~hundred(s) keV for $\mathbf{A}=7$ (8)

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements
\rightarrow speed up the convergence of NCSM calculations (observables e.g. energies are conserved)
F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$
\begin{array}{ll}
\frac{\mathbf{d V}(\mathbf{s})}{\mathbf{d s}}=\left[\left[\mathrm{T}_{\text {rel }}, \mathbf{V}(\mathbf{s})\right], \mathbf{H}(\mathbf{s})\right], & \mathbf{H}(\mathbf{s})=\mathrm{T}_{\text {rel }}+\mathbf{V}(\mathrm{s})+\Delta \mathbf{M} \\
\mathbf{s}=\mathbf{0} \rightarrow \infty & \mathbf{V}(\mathbf{s})=\mathbf{V}_{12}(\mathbf{s})+\mathbf{V}_{13}(\mathbf{s})+\mathbf{V}_{23}(\mathbf{s})+\mathbf{V}_{\mathbf{1 2 3}}(\mathbf{s}), \quad \mathbf{V}_{123, s=0} \equiv \mathbf{V}_{\mathrm{NNN}}^{\text {bare }} ;\left(V_{\mathrm{YNN}}^{\text {bare }}=0\right)
\end{array}
$$

- separate flow equations for 2- and 3-body interactions:

$$
\begin{aligned}
\frac{\mathbf{d V}^{\mathrm{NN}}(\mathbf{s})}{\mathbf{d s}} & =\left[\left[\mathbf{T}^{\mathrm{NN}}, \mathbf{V}^{\mathrm{NN}}\right], \mathbf{T}^{\mathrm{NN}}+\mathbf{V}^{\mathrm{NN}}\right] \\
\frac{\mathbf{d V}^{\mathbf{Y N}}(\mathbf{s})}{\mathbf{d s}} & =\left[\left[\mathbf{T}^{\mathbf{Y N}}, \mathbf{V}^{\mathrm{YN}}\right], \mathbf{T}^{\mathbf{Y N}}+\mathbf{V}^{\mathbf{Y N}}+\Delta \mathbf{M}\right] \\
\frac{\mathbf{d} \mathbf{V}_{123}}{\mathbf{d s}}= & {\left[\left[\mathbf{T}_{12}, \mathbf{V}_{12}\right], \mathbf{V}_{31}+\mathbf{V}_{23}+\mathbf{V}_{123}\right] } \\
& +\left[\left[\mathrm{T}_{31}, \mathbf{V}_{31}\right], \mathbf{V}_{12}+\mathbf{V}_{23}+\mathbf{V}_{123}\right] \\
+ & {\left[\left[T_{23}, \mathbf{V}_{23}\right], \mathbf{V}_{12}+\mathbf{V}_{31}+\mathbf{V}_{123}\right]+\left[\left[T_{\text {rel }}, \mathbf{V}_{123}\right], \mathbf{H}_{s}\right] }
\end{aligned}
$$

- perform evolution in p-space. Evolved potentials can be directly used in many-body \& nuclear matter calculations

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga (arXiv:2308.01756)

- induced forces beyond 3BF are not included; estimate size of omitted forces by varying $\lambda=\left(4 \mu^{2} / s\right)^{1 / 4}$

$\lambda\left[\mathrm{fm}^{-1}\right]$	$B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)$	$B_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}\right)$
1.88	1.992 ± 0.002	3.712 ± 0.001
2.00	1.991 ± 0.005	3.705 ± 0.005
2.236	1.990 ± 0.007	3.708 ± 0.006
2.60	1.989 ± 0.014	3.744 ± 0.008
3.00	1.985 ± 0.024	3.806 ± 0.030
∞	2.01 ± 0.02	

$\lambda=\infty:$ FY calculation using bare NN, 3N \& YN potentials

- variation of B_{Λ} for $1.88 \leq \lambda \leq 3.0 \mathrm{fm}^{-1}: \quad \Delta B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}\right)=10 \pm 25 \mathrm{KeV}$

$$
\Delta B_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}\right)=90 \pm 30 \mathrm{KeV}
$$

\longrightarrow contributions of SRG-induced 4BFs to $B{ }_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He},{ }_{\Lambda}^{5} \mathrm{He}\right)$ are small

Results for $\mathbf{A = 3 - 8}$ hypernuclei

$\mathrm{NN}: \mathbf{S M S} \mathrm{N}^{4} \mathrm{LO}^{+}(450) \quad 3 \mathrm{~N}: \mathrm{N}^{\mathbf{2}} \mathrm{LO}(450)$
YN: NLO13, NLO19(500); +SRG-induced YNN, NNN

NLO13 \& NLO19 YN potentials

NLO13: J. Haidenbauer et al. NPA 915(2013); NLO19: J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56(2020)

- NLO13: S-wave LECs are fitted to YN data; NLO19: 3 LECs are inferred from NN sector
- almost phase equivalent (yield equivalent description of YN scattering data)
- NLO13 leads to a larger $V_{\Lambda N \leftrightarrow \Sigma N}\left(\right.$ especially in $\left.{ }^{3} S_{1}\right)$

\rightarrow tool to assess effect of YNN forces in many-body systems (J. Haidenbauer et al EPJA 56(2020))

$$
\begin{aligned}
U_{\Lambda}\left(\rho_{0}, 0\right) & =-28.3, \cdots,-22.3 \quad(\text { NLO13 }) \\
& =-39.3, \cdots,-29.2 \quad(\text { NLO19 }) \\
& =-33 \quad \text { (HAL QCD) }
\end{aligned}
$$

(T. Inoue PoS INPC2016 (2016)

Results for $B_{\Lambda}(A \leq 8)$ with NLO13 \& NLO19

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023)

- NLO13 \& NLO19 phase equivalent in 2-body space
- ${ }_{\Lambda}^{4} \mathrm{H}\left(1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li},{ }_{\Lambda}^{8} \mathrm{Li}$ are fairly well described by NLO19;
NLO13 underestimates these B_{Λ}
\rightarrow signal of missing YNN forces; contribute differently for NLO13 \& NLO19

	E	$V_{Y N}$	$\mathrm{SRG}-V_{Y N N}$			$\left\|\chi V_{Y N N}\right\|$
		$\Lambda N N$	$\Lambda N N-\Sigma N N$	total		
${ }_{\Lambda}^{3} \mathrm{H}$	-2.31	-1.88	0.08	0.04	0.14	~ 0.05
${ }_{\Lambda}^{4} \mathrm{He}\left(1^{+}\right)$	-9.50	-7.31	0.72	0.05	0.77	$\sim 0.2-0.4$
${ }_{\Lambda}^{4} \mathrm{He}\left(0^{+}\right)$	-10.57	-10.2	0.89	-0.02	0.90	$\sim 0.2-0.3$
${ }_{\Lambda}^{5} \mathrm{He}$	-32.42	-13.61	2.40	0.15	2.57	$\sim 0.7-1.0$

$\left|\chi V_{Y N N}\right|$ based on NLO13 \& NLO19 results and cutoff dependence
(J. Haidenbauer et al. EPJA(2019), HL et al. PRC(2023))
\rightarrow consistent with estimates based on chiral truncation (see Nogga's talk)

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV}(\text { up to } 2016)
\end{aligned}
$$

$$
\begin{aligned}
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =223 \pm 92 \mathrm{keV}(\text { up to } 2016)
\end{aligned}
$$

(see Nogga's talk)

- CSB predictions for $A=7$ are comparable to experiment.
- yield somewhat larger CSB in $\mathrm{A}=8$ doublet as compared to experiment
\rightarrow experimental CSB splitting for $A=8$ larger than $40 \pm 60 \mathrm{keV}$?
- $A=4$ CSB: too large? different spin-dependence?

Fitting LECs to new Star measurement

Recent STAR measurement suggests different CSB in A=4: (STAR collaboration PLB 834 (2022))

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right)=-83 \pm 94 \mathrm{keV}(\text { up to 2016 }) \Rightarrow(\mathrm{CSB}) \\
& =-\mathbf{1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV} \Rightarrow\left(\mathrm{CSB}^{*}\right) \\
\Delta E\left(0^{+}\right) & \left.=B_{\Lambda}{ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right)=233 \pm 92 \mathrm{keV}(\text { up to 2016 }) \Rightarrow(\mathrm{CSB}) \\
& =\mathbf{1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV} \Rightarrow\left(\mathrm{CSB}^{*}\right)
\end{aligned}
$$

	NLO19(500)	CSB	CSB*
$a_{s}^{\Lambda p}$	-2.91	-2.65	-2.58
$a_{s}^{\Lambda n}$	-2.91	-3.20	-3.29
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{s}}$	$\mathbf{0}$	$\mathbf{0 . 5 5}$	$\mathbf{0 . 7 1}$
$a_{t}^{\Lambda p}$	-1.42	-1.57	-1.52
$a_{t}^{\Lambda n}$	-1.41	-1.45	-1.49
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{t}}$	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 1 2}$	$\mathbf{- 0 . 0 3}$

$\rightarrow \delta a\left({ }^{1} S_{0}\right)$ increases; $\delta a\left({ }^{3} S_{1}\right)$ decreases

Fitting LECs to new Star measurement

Recent STAR measurement suggests different CSB in A=4: (STAR collaboration PLB 834 (2022))

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right)=-83 \pm 94 \mathrm{keV}(\text { up to 2016 }) \Rightarrow(\mathrm{CSB}) \\
& =-\mathbf{1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV} \Rightarrow\left(\mathrm{CSB}^{*}\right) \\
\Delta E\left(0^{+}\right) & \left.=B_{\Lambda}{ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right)=233 \pm 92 \mathrm{keV}(\text { up to 2016 }) \Rightarrow(\mathrm{CSB}) \\
& =\mathbf{1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV} \Rightarrow\left(\mathrm{CSB}^{*}\right)
\end{aligned}
$$

Impact on CSB in $A=7,8$ multiplets

	NLO19(500)	CSB	CSB*
$a_{s}^{\Lambda p}$	-2.91	-2.65	-2.58
$a_{s}^{\Lambda n}$	-2.91	-3.20	-3.29
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{s}}$	$\mathbf{0}$	$\mathbf{0 . 5 5}$	$\mathbf{0 . 7 1}$
$a_{t}^{\Lambda p}$	-1.42	-1.57	-1.52
$a_{t}^{\Lambda n}$	-1.41	-1.45	-1.49
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{t}}$	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 1 2}$	$\mathbf{- 0 . 0 3}$

$\rightarrow \delta a\left({ }^{\mathbf{1}} \mathbf{S}_{\mathbf{0}}\right)$ increases; $\delta a\left({ }^{\mathbf{3}} \mathbf{S}_{\mathbf{1}}\right)$ decreases

- CSB* fit yields reasonable CSB in both A=7 \& 8 multiplets
- correlation between CSB in $\mathrm{A}=4\left(\mathbf{0}^{+}\right)$and $\mathrm{A}=8$, and between $A=4\left(1^{+}\right)$and $A=7$
\rightarrow independent check for $A=4$ CSB using $A=7 \& 8$ results

Results for $\mathbf{S}=-2$ hypernuclei

NN: SMS $\mathrm{N}^{4} \mathrm{LO}^{+}(450) ; \lambda_{N N}=1.6 \mathrm{fm}^{-1}$
YN: NLO19(650); $\lambda_{Y N}=0.87 \mathrm{fm}^{-1}$
YY: LO, NLO(600)

YY (ΞN) interaction at NLO

J. Haidenbauer et al. NPA 954(2016), EPJA 55(2019); J. Haidenbauer EPJ Web Conf. 271(2022)

- additional 2 S-wave LECs are constrained to a few ΞN data (weakly bound Ξ states)
+ information on $a_{\Lambda \Lambda} \quad\left(\right.$ from ${ }_{\Lambda \Lambda}^{6} \mathrm{He}$ calculations; $\Lambda \Lambda$ correlation, $\left.{ }^{12} C\left(K^{-}, K^{+} \Lambda \Lambda X\right)\right)$

J.K. Ahn et al. PLB 633(2006) (black circle) BESIII Collaboration PRL 130(2023) (open square)

$$
\begin{aligned}
U_{\Xi}\left(\rho_{0}, 0\right) & \approx-9(\text { NLO }(550)) \\
& =-6(\text { HAL QCD, } \mathrm{t} / \mathrm{a}=11)
\end{aligned}
$$

(M. Kohno PRC 100(2019);
T. Inoue PoS INPC2016 (2016))
black line: Y. Kamiya et al. PRC 105(2022) (HAL QCD)

A=4-6 $\Lambda \Lambda$ hypernuclei

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 57 7(2021)

- $\mathbf{\Lambda} \boldsymbol{\Lambda}, \mathbf{\Lambda} \boldsymbol{\Sigma}, \boldsymbol{\Sigma \Sigma}, \boldsymbol{\Xi} \boldsymbol{N}$ conversions are explicitly included

- Effect of SRG-induced YYN forces is negligible
- NLO result is comparable to Nagara; LO leads to overbinding \longrightarrow use $\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right)$ to impose constraints on LECs
- ${ }_{\Lambda}^{5}{ }_{\Lambda} \mathrm{He}\left({ }_{\Lambda}^{5}{ }_{\Lambda} \mathrm{H}\right)$ are bound with LO, NLO

$$
{ }^{7} \mathbf{L i}\left(K^{-}, K^{+}\right){ }_{\Xi}^{7} \mathbf{H} ; \quad{ }_{\Xi}^{7} \mathbf{H} \rightarrow{ }_{\Lambda \Lambda}^{5} \mathrm{H}+\boldsymbol{n}+\boldsymbol{n} \quad \text { (E75 JPARC) }
$$

- ${ }_{\Lambda \Lambda}^{4} \mathrm{H}$ is unbound with NLO. Existence of $A=4 \Lambda \Lambda$ hypernucleus is very unlikely

$A=4-7 \Xi$ hypernuclei

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 12(2021)

- $\Xi N-\Lambda \Sigma-\Sigma \Sigma$ transitions are explicitly included; $\Lambda \Lambda-\Xi N\left({ }^{11} S_{0}\right)$ coupling is incorporated into $V_{\Xi N-\Xi N}$

	$B_{\Xi}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$
${ }_{\Xi}^{4} \mathrm{H}\left(1^{+}, 0\right)$	0.48 ± 0.01	0.74
${ }_{\Xi}^{4} \mathrm{n}\left(0^{+}, 1\right)$	0.71 ± 0.08	0.2
${ }_{\Xi}^{4} \mathrm{n}\left(1^{+}, 1\right)$	0.64 ± 0.11	0.01
${ }_{\Xi}^{4} \mathrm{H}\left(0^{+}, 0\right)$	-	-
${ }_{\Xi}^{5} \mathrm{H}\left(\frac{1}{2}^{+}, \frac{1}{2}\right)$	2.16 ± 0.10	0.19
${ }_{\Xi}^{7} \mathrm{H}\left(\frac{1^{+}}{}{ }^{+}, \frac{3}{2}\right)$	3.50 ± 0.39	0.2

${ }^{(1)}$ E. Hiyama et al. PRL 124 (2020)
${ }^{(2)}$ E. Friedman, A. Gal PLB(2021)
${ }^{(3)}$ K. Myint et al. PTPS 117 (1994)
${ }^{(4)}$ H. Fujioko APFB2021, 3(2021)

- Coulomb interaction contributes ~200, $\mathbf{6 0 0}$ and $\mathbf{4 0 0} \mathrm{keV}$ to $N N N \Xi,{ }_{\Xi}^{5} \mathrm{H},{ }_{\Xi}^{7} \mathrm{H}$
- the attraction of chiral ΞN potential in ${ }^{33} S_{1}$ is essential for binding of $\mathrm{A}=4-7 \boldsymbol{\Xi}$ hypernuclei
- production: ${ }^{\mathbf{4}} \mathbf{H e}\left(K^{-}, K^{+}\right){ }_{\Xi}^{4} \mathbf{H} ; \quad{ }^{7} \mathbf{L i}\left(K^{-}, K^{+}\right){ }_{\Xi}^{7} \mathbf{H}$ (JPARC)

Summary

- At our disposal we have 2 tools to tackle light (hyper)nuclear systems:
- s-shell (hyper)nuclei: Faddeev-Yakubovsky
- s-shell \& light p-shell: Jacobi NCSM approach; numerical uncertainties (s-shell) ~ few keV
\rightarrow establish a direct link between the interactions and observables $(A \leq 9)$
- $\mathrm{YN}(\mathrm{YY})$ at NLO yield reasonable $\mathbf{B}_{\Lambda(\Lambda \Lambda)}$ in $\mathbf{A = 3 - 8}$ hypernuclei; bound states in $A=4-7 \boldsymbol{\Xi}$ systems
$\rightarrow \quad \chi \mathrm{YNN}$ forces are expected to contribute sizeably to B_{Λ} (work in progress) use $\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda}{ }_{\Lambda} \mathrm{He}\right)$ to constrain $\Lambda \Lambda$ scattering length?
- CSB NLO interactions reproduce experimental CSB for $A=4,7$ multiplets;
$\boldsymbol{A}=\mathbf{8}$ CSB prediction is larger than experiment

Thank you for the attention!

