K+ nucleus interaction at DAFNE

Research Center for Electron Photon Science Tohoku University Hiroaki Ohnishi

K+ nucleus interaction at DAFNE

Research Center for Electron Photon Science Tohoku University Hiroaki Ohnishi Yuta Sada and Kairo Toho

The KN interaction

- The KN interaction is known to be repulsive.
- No resonance exist below KN threshold (not the case for \overline{KN} interaction) Therefore, bare interaction between kaon and nucleon can be accessible
- via KN scattering at low energy.
- Moreover, for the reasons mentioned above, Kaons can penetrate the nucleus, making Kaon-nucleus interactions accessible under finite density conditions through Kaon nucleus scattering.

Kaon-nucleon elastic scattering

 In case of Kaon nucleon scattering, quark condensate with kaon-nucleon scattering amplitude T_{KN} as

$$\frac{\langle \bar{u}u + \bar{s}s \rangle^*}{\langle \bar{u}u + \bar{s}s \rangle_0} = \left(1 - \frac{1}{2}\right)^*$$

 So, the KN scattering amplitude will be a key measurement in revealing quark condensation with strangeness.

strangeness component can be written with isospin averaged

Y. Iizawa, D. Jido and S. Hubsch arXiv:2308.09397v1 [hep-ph] 18 Aug 2023

Experimental data from past experiment

SECTION

20

- For I=1 K+N interaction, data of K+ momentum down to 145 MeV/c already exist. $(K^+p \rightarrow K^+p)$.
- On the other hand, no data for Kaon momentum lower than 400 MeV/c exist for I=0 KN scattering.
- . K^+ scattering data with $P_K < 400 \text{ MeV/c}$ will be a unique measurement to access KN interaction.
- I =0 KN scattering channel at low energy is essential for KN scattering,

Theoretical work for I=0 KN interaction

- I=0 K+N total cross section data have been investigated by Y. Iizawa, D. Jido and S. Hubsch discussed in arXiv:2308.09397v1 They include some resonances which strongly coupled with K+p Solution Resonance (J^P) mass [MeV] width [MeV] coupling strength [10⁻³ MeV⁻¹]
 Solution 1 P₀₁ (¹/₂⁺) 1617 305 5.26 - 2.62i
- . The effect appeared around $P_K \sim 500 \text{ MeV/c}$

1678

463

 $P_{03} \left(\frac{3^+}{2} \right)$

Solution 2

 In other words, low-energy K+N scattering data may only provide information about the KN interaction (free from the effect of the possible resonance state.)

Kaon scattering on nuclei

- increases, a little, at low energy.
- expected to be significant.

New experiment?

K+ scattering experiment at DAFNE

Conceptual design of the detector

- The detector will be placed surrounding the beam pipe.
- The full detector will be segmented into 8-10 subset detectors (1/8 to 1/10 in the phi direction.)
- The number of segments required for the experiment depends on the detector construction budget.

ГΡ

Detail design (in progress)

Kaon ID detector

Kaon monitor & identifier

- Total 3 segments (for first step experiment)
 - \rightarrow Acceptance ~ 25%
- Define start timing and detect beam Kaon with the Kaon monitor.
- Identify K+/K- with stopped K inside the Kaon ID detector
- Film target inside TPC. Target thickness ~ an order of 100 μ m
- Target Materials:
 - \rightarrow Carbon, CH2, CD2, Al(?)

Expected statistics

- Nevent/sec
- *σ*_{Kp} : 12 mb
- N_{target} : 1.0 g/cm³ x film thickness (200 μ m) x N_A x 2/A_{CH2} $= 0.02 \times 10^{23}$
- $\varepsilon_{acc} \sim 0.25$ ε_{eff} : tracking (0.8) x e K+/K-(0.7) x $\varepsilon_{detector}(0.9) = 0.5$
- • ε_{decay} : 0.8 ($\beta\gamma$ of K~0.26)
- •Nevent /Sec =~ 1.2×10^{-3}
- •Nevent /20 day ~2.4 x10³

= 500(K beam/s) x σ_{KP} X N_{target} X \mathcal{E}_{acc} X \mathcal{E}_{eff} X \mathcal{E}_{decay}

i.e. ~ month / Target?

Simulation

- GEANT4 simulation has been proceeded.
- A differential cross-section of the K+p reaction has been taken from the old Bubble chamber's data (Nucl. Phys B 78 (1974)93), where K+ momentum =145 MeV/c.

Simulation

. The lack of data around $\cos \theta_{\rm CM} = -0.5$

is due to inefficient acceptance. . The TPC resolutions, i.e. σ_z , σ_{xy} , are

now set to ~ 200 μm

- "w/ Physics" means include multiple scattering effects.
- Evaluations of the precision of extracted parameters, cross-sections, low energy constants, etc., are underway.

Evaluate the expected signal with a 20-day data-taking situation.

Preparation status

Prototype TPC development

Signal amplification:

 → sense wire and potential

 A field cage, which will create a uniform electric field, will be constructed by wire.

Prototype TPC development

Test experiment at ELPH, Tohoku Univ.

- Tohoku University is located in Sendai, Miyagi, about 350 km away from Tokyo.
- The Research Center for Electron Photon Science (ELPH) is situated at a distance of 6 km from the center of the city

ELPH, Tohoku University

Test experiment at ELPH, Tohoku Univ.

- Tohoku University is located in Sendai, Miyagi, about 350 km away from Tokyo.
- The Research Center for Electron Photon Science (ELPH) is situated at a distance of 6 km from the center of the city
- ELPH has a 1.3 GeV electron synchrotron on its campus.

1.3 GeV electron synchrotron

Test experiment at ELPH, Tohoku Univ.

- Tohoku University is located in Sendai, Miyagi, about 350 km away from Tokyo.
- The Research Center for Electron Photon Science (ELPH) is situated at a distance of 6 km from the center of the city
- ELPH has a 1.3 GeV electron synchrotron on its campus.
- By utilizing 1.3 GeV electron, we produced photons by Bremsstrahlung.
- Tagged photon available on beam energy 0.9 GeV < $E\gamma$ < 1.26 GeV
- By inserting a metal target into the photon beamline, we can produce an electron-positron beam through pair creation.
- Those positions will be used for the detector test experiment.
- 50 MeV 1.1 GeV positron can be used for the detector test at ELPH.

Test experiment at ELPH, Tohoku Univ.

Prototype TPC tests with a positron beam have already been performed.

- Signal readout electronics are used the same as the CDC of the E15 experiment at J-PARC \rightarrow not optimized for the TPC
- Field cage is also not optimized for this test experiment

Test experiment at ELPH

Just for event display. detail analysis is under the way.

- The detector consists of a Teflon plate together with a scintillator. • Incoming K^+/K^- will be stopped inside the Teflon plate.

 \rightarrow the Teflon plate works as an absorber of Kaon.

- Once K^+/K^- stopped inside the Teflon plate, strong interaction
 - K⁻ will be absorbed immediately via strong interaction, emitting multi-charged particles.
 - K⁺ will decay via the weak interaction with a lifetime of 12 ns, producing charged particles.

KaonID detector

• The thickness of the absorber is adjusted using MC \rightarrow we choose 6mm.

- The detector consists of a Teflon plate together with a scintillator.
- Incoming K^+/K^- will be stopped inside the Teflon plate.

 \rightarrow the Teflon plate works as an absorber of Kaon.

- - K⁻ will be absorbed immediately via strong interaction, emitting multi-charged particles.
 - K⁺ will decay via the weak interaction with a lifetime of 12 ns, producing charged particles.

KaonID detector

• The thickness of the absorber is adjusted using MC \rightarrow we choose 6mm.

Detector construction

Acrylic Light Guide Plastic scintillator

Kaon detector wrapped with aluminized mylar

Used Photo multiple Tube H11934, HAMAMATSU

Kaon detector integrated in SIDDHARTA-2

 The Kaon detector was installed just below the Kaon Trigger. (opposite side of the Target)

Kaon Detector

Summary

- of the strangeness sector under finite-density matter conditions.
- at low energies. DAFNE, therefore, presents a unique opportunity to conduct these experiments.
- only K- scattering but also K+ scattering. This aspect needs further examination.
- the TPC. Collaboration with experienced individuals is essential.

 K+ scattering may provide valuable information about the quark condensate Currently, there is a shortage of available data for K+ N and K+A, especially

On the other hand, I believe that AMADEUS data should encompass not

 Detector development has recently commenced, and there are still many challenges to address, particularly concerning the readout electronics for

