New studies of the K^-pp system

Nina V. Shevchenko

Nuclear Physics Institute, Řež, Czech Republic

ROCKSTAR: Towards a ROadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron sTARs equation of state ECT*, Italy, October 9–13, 2023

Introduction

Interest to antikaon-nucleon systems: quasi-bound state in the K^-pp system \rightarrow experimental and theoretical efforts with different results

Experimental evidences (FINUDA, DISTO); J-PARK E15 experiment: clear observation of the K^-pp quasi-bound state with $BE = 42 \pm 3$ MeV, $\Gamma = 100 \pm 7$ MeV.

The problem: big difference between theoretical and experimental widths

Our K^-pp calculations: Faddeev-type dynamically exact equations with coupled $\bar{K}NN - \pi\Sigma N$ channels, different $\bar{K}N - \pi\Sigma - \pi\Lambda$ and NN interactions

What could change the theoretical results:

- More accurate model of the $\Sigma N \Lambda N$ interaction (previous calculations: " ΣN is important to include, but no strong effects")
- Inclusion of the πN interaction (was switched off till now),
- Direct inclusion of the $\pi \Lambda N$ channel

Faddeev-type three-body AGS equations, two channels

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} (1 - \delta_{ij}) (G_0^{\alpha})^{-1} + \sum_{k=1}^3 \sum_{\gamma=1}^3 (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}$$

KN interaction is strongly coupled to $\pi\Sigma$ via $\Lambda(1405)$ resonance \rightarrow $\pi\Sigma$ channel was included directly. Particle channels:

$$\alpha = 1 : |\bar{K}_1 N_2 N_3\rangle, \qquad \alpha = 2 : |\pi_1 \Sigma_2 N_3\rangle \qquad \alpha = 3 : |\pi_1 N_2 \Sigma_3\rangle$$

Separable form of the potentials:

$$V_i^{\alpha\beta} = \lambda_i^{\alpha\beta} |g_i^{\alpha}\rangle \langle g_i^{\beta}| \qquad \rightarrow \qquad T_i^{\alpha\beta} = |g_i^{\alpha}\rangle \tau_i^{\alpha\beta} \langle g_i^{\beta}|$$

the three-body equations are rewritten as

$$X_{ij}^{\alpha\beta}(z) = \delta_{\alpha\beta} Z_{ij}^{\alpha} + \sum_{k=1}^{3} \sum_{\gamma=1}^{3} Z_{ik}^{\alpha} \tau_{k}^{\alpha\gamma} X_{kj}^{\gamma\beta}$$

with new four-body transition $X_{ij}^{\alpha\beta}$ and kernel Z_{ij}^{α} operators.

Input for the system: two-body (potentials) *T*-matrices.

Nina V. Shevchenko (NPI $\tilde{R}e\tilde{z}$) New studies of the K^-pp system

Three antikaon-nucleon interaction models:

- phenomenological $\bar{K}N \pi\Sigma$ with one-pole $\Lambda(1405)$ resonance
- phenomenological $\bar{K}N \pi\Sigma$ with two-pole $\Lambda(1405)$ resonance
- chirally motivated $KN \pi\Sigma \pi\Lambda$ potential, two-pole $\Lambda(1405)$

reproduce (with the same level of accuracy):

- 1s level shift and width of kaonic hydrogen (SIDDHARTA) direct inclusion of Coulomb interaction, no Deser-type formula used
- Cross-sections of $K^-p \to K^-p$ and $K^-p \to MB$ reactions
- Threshold branching ratios γ , R_c and R_n (or γ , $R_{\pi\Sigma}(R_c, R_n)$ for phen.)
- $\Lambda(1405)$ resonance (one- or two-pole structure) $M_{\Lambda(1405)}^{PDG} = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \Gamma_{\Lambda(1405)}^{PDG} = 50.5 \pm 2.0 \text{ MeV} [PDG (2023)]$

K^-p cross-sections: theory vs. experiment

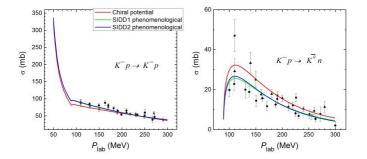
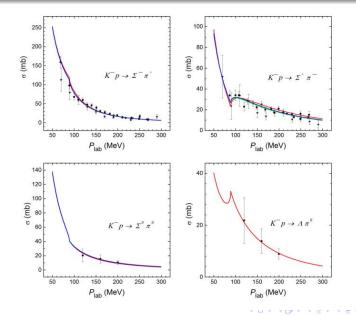


Figure: Comparison with the experimental data on K^-p cross-sections (phenomenological and chirally motivated potentials)

K^-p cross-sections: theory vs. experiment



Nina V. Shevchenko (NPI Řež)

Physical characteristics of the three $\bar{K}N - \pi\Sigma(-\pi\Lambda)$ potentials

Physical characteristics of the three $\bar{K}N - \pi\Sigma(-\pi\Lambda)$ potentials: 1s level shift and width, strong pole(s), γ , R_c , R_n threshold branching ratios, a_{K^-p} scattering length (physical masses in all channels, Coulomb in K^-p).

	$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{Chiral}}$	Exp
ΔE_{1s}	-313	-308	-313	$-283\pm36\pm6$
Γ_{1s}	597	602	561	$541\pm89\pm22$
E_1	1426 - i48.0	1414 - i58	1417-i33	
E_2	—	1386 - i104	1406 - i89	
γ	2.36	2.36	2.35	2.36 ± 0.04
R_c	—	—	0.663	0.664 ± 0.011
R_n	_	_	0.191	0.189 ± 0.015
$R_{\pi\Sigma}$	0.709	0.709	—	0.709 ± 0.011
a_{K^-p}	-0.76 + i0.89	-0.74 + i0.90	-0.77 + i0.84	

$$R_{\pi\Sigma} = \frac{R_c}{1 - R_n (1 - R_c)}$$

Nir

New NN potential

 $\frac{\text{Two-term Separable New potential (TSN) of nucleon-nucleon interaction}}{[N.V.S. Few-body syst 61, 27 (2020)]}$

$$V_{NN}^{\text{TSN}}(k,k') = \sum_{m=1}^{2} g_m(k) \,\lambda_m \, g_m(k') \,,$$

$$g_m(k) = \sum_{n=1}^{3} \frac{\gamma_{mn}}{(\beta_{mn})^2 + k^2}, \quad \text{for } m = 1, 2$$

fitted to Argonne V18 potential [R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)] phase shifts

Triplet and singlet scattering lengths a and effective ranges $r_{\rm eff}$

$$\begin{split} a_{np}^{\rm TSN} &= -5.400\,{\rm fm}, \qquad r_{\rm eff,np}^{\rm TSN} = 1.744\,{\rm fm} \\ a_{pp}^{\rm TSN} &= 16.325\,{\rm fm}, \qquad r_{\rm eff,pp}^{\rm TSN} = 2.792\,{\rm fm}, \end{split}$$

deuteron binding energy $E_{\text{deu}} = 2.2246$ MeV.

(日) (日) (日) (日) (日) (日)

New NN potential

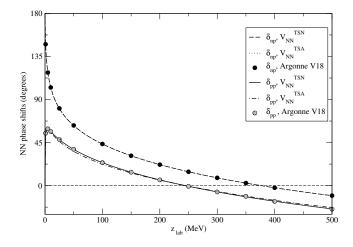


Figure: Phase shifts of np and pp scattering calculated using the new V_{NN}^{TSN} and $V_{NN}^{\text{TSA-B}}$ potentials plus phase shifts of Argonne V18

Previously used YN potential: parameters of

$$V_{I,S}^{\Sigma N}(k,k') = \lambda_{I,S}^{\Sigma N} g_{I,S}^{\Sigma N}(k) g_{I,S}^{\Sigma N}(k'), \quad g_{I,S}^{\Sigma N}(k) = \frac{1}{(k^2 + \beta_{I,S}^{\Sigma N})^2}$$

were fitted to experimental cross-sections

- I = 3/2: Real parameters, one-channel case
- I = 1/2 :
 - **1** Two-channel $\Sigma N \Lambda N$ potential, real parameters,
 - **2** One-channel (exact) optical $\Sigma N(-\Lambda N)$ potential, complex energy-dependent strength

To study dependence of the K^-pp pole position on the $\Sigma N - \Lambda N$ interaction – new fits: spin-dependent (SDep) or spin-independent (SInd) potentials fitted to experimental cross-sections with/without scattering lengths (ScL/noScL) from an "advanced" potential [J. Haidenbauer et al., nucl-th/2301.00722]

Dependence on $\Sigma N - \Lambda N$

Dependence of the binding energy B (MeV) and width Γ (MeV) of the quasi-bound state in the K^-pp system on $\Sigma N - \Lambda N$ interaction models. Previous results are from [N.V.S. Few-body syst 61, 27 (2020)]

	$V_{\bar{K}N}^{1,\mathrm{SIDD}}$		$V_{\bar{K}N}^{2,\mathrm{SIDD}}$		$V_{\bar{K}N}^{ m Chiral}$	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V_{\Sigma N-\Lambda N}^{\mathrm{Prev}}$	52.2	67.1	46.6	51.2	29.4	46.4
$V_{\Sigma N-\Lambda N}^{\mathrm{noScL,SInd}}$	63.5	96.5	52.2	61.0	28.3	49.5
$V_{\Sigma N-\Lambda N}^{\mathrm{noScL,SDep}}$	52.5	67.0	46.1	49.8	29.6	46.8
$V_{\Sigma N-\Lambda N}^{ m ScL,SInd}$	38.1	48.9	35.4	41.1	29.5	39.3
$V_{\Sigma N-\Lambda N}^{ m ScL,SDep}$	34.3	65.6	34.7	53.4	27.9	42.8

Strong dependence (phenomenological $\bar{K}N - \pi\Sigma$ potentials)

C → < □ → < □ → < □ → < □ →
 ROCKSTAR, ECT*

<u>Previous calculations:</u> " πN interaction is weak" – $V^{\pi N}$ was set to zero. <u>Now:</u> parameters of

$$V_I^{\pi N}(k,k') = \lambda_I^{\pi N} g_I^{\pi N}(k) g_I^{\pi N}(k'), \quad g_I^{\pi N}(k) = \frac{1}{(k^2 + \beta_I^{\pi N})^2}$$

were arbitrary (no bound states) chosen in order to see at the dependences:

•
$$\beta_{I=1/2}^{\pi N} = \beta_{3/2}^{\pi N} = 3 \text{ fm}^{-1}; \quad \lambda_I^{\pi N} = \lambda_I^{\pi N} = -0.1 \text{ (1a), } 0.1 \text{ (1b);}$$

• $\beta_{I=1/2}^{\pi N} = \beta_{3/2}^{\pi N} = 1.5 \text{ fm}^{-1}; \quad \lambda_I^{\pi N} = \lambda_I^{\pi N} = -0.03 \text{ (2a)}, 0.03 \text{ (2b)}$

or fitted to experimental data ("ScL-1" and "ScL-2"):

•
$$a_{\pi N,I=1/2}^{\text{Exp}} = 0.25 \text{ fm}; a_{\pi N,I=3/2}^{\text{Exp}} = -0.12 \text{ fm}; \quad \beta_{I=1/2}^{\pi N} = \beta_{3/2}^{\pi N} = 3 \text{ fm}^{-1}$$

• $a_{\pi N,I=1/2}^{\text{Exp}} = 0.25 \text{ fm}; a_{\pi N,I=3/2}^{\text{Exp}} = -0.12 \text{ fm}; \quad \beta_{I=1/2}^{\pi N} = \beta_{3/2}^{\pi N} = 1.5 \text{ fm}^{-1}$

イロト 不同 トイヨト イヨト 一日

Dependence on πN

Dependence of the binding energy B (MeV) and width Γ (MeV) of the quasi-bound state in the K^-pp on πN interaction models (with $V_{\Sigma N-\Lambda N}^{\text{ScL,SDep}}$).

	$V_{\bar{K}N}^{1,\mathrm{SIDD}}$		$V_{\bar{K}N}^{2,\mathrm{SIDD}}$		$V_{\bar{K}N}^{ m Chiral}$	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V^{\rm Prev}_{\pi N}$	34.3	65.6	34.7	53.4	27.9	42.8
$V_{\pi N}^{(1a)}$	34.6	66.4	34.9	54.2	27.7	43.3
$V_{\pi N}^{(1\mathrm{b})}$	34.1	64.8	34.4	52.7	28.0	42.4
$V_{\pi N}^{(2a)}$	34.6	69.5	35.1	56.6	27.1	43.9
$V_{\pi N}^{(2b)}$	33.9	62.3	34.1	50.8	28.4	41.6
$V_{\pi N}^{ m ScL-1}$	37.6	71.4	37.7	58.2	27.2	46.6
$V_{\pi N}^{ m ScL-2}$	35.7	70.5	35.9	57.4	27.0	44.6

Nina V. Shevchenko (NPI $\tilde{R}e\tilde{z}$) New studies of the K^-pp system ROCKSTAR, ECT*

Faddeev-type three-body AGS equations, three channels

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} (1 - \delta_{ij}) (G_0^{\alpha})^{-1} + \sum_{k=1}^{3} \sum_{\gamma=1}^{5} (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}$$

 $\overline{K}N$ interaction is strongly coupled to $\pi\Sigma$ via $\Lambda(1405)$ resonance $\rightarrow \pi\Sigma$ and $\pi\Lambda$ channel was included directly. Particle channels:

$$\begin{array}{ll} \alpha = 1: |\bar{K}_1 N_2 N_3 \rangle, & \alpha = 2: |\pi_1 \Sigma_2 N_3 \rangle & \alpha = 3: |\pi_1 N_2 \Sigma_3 \rangle \\ & \alpha = 4: |\pi_1 \Lambda_2 N_3 \rangle & \alpha = 5: |\pi_1 N_2 \Lambda_3 \rangle \end{array}$$

The three-body equations are rewritten as

$$X_{ij}^{\alpha\beta}(z) = \delta_{\alpha\beta} Z_{ij}^{\alpha} + \sum_{k=1}^{3} \sum_{\gamma=1}^{5} Z_{ik}^{\alpha} \tau_{k}^{\alpha\gamma} X_{kj}^{\gamma\beta}$$

Two-body $\bar{K}N - \pi\Sigma - \pi\Lambda$ *T*-matrices are necessary. The chirally motivated potential was refitted, new phenomenological ones were constructed (before: $\pi\Lambda$ channel was taken in $V^{1,\text{SIDD}}$, $V^{2,\text{SIDD}}$ into account indirectly through complex $\lambda_{I=1}^{11}$).

Three antikaon-nucleon interaction models:

- phenomenological $\bar{K}N \pi \Sigma \pi \Lambda$ with one-pole $\Lambda(1405)$ resonance
- phenomenological $\bar{K}N \pi \Sigma \pi \Lambda$ with two-pole $\Lambda(1405)$ resonance
- chirally motivated $\bar{K}N \pi\Sigma \pi\Lambda$ potential, two-pole $\Lambda(1405)$

reproduce (with the same level of accuracy):

- 1s level shift and width of kaonic hydrogen (SIDDHARTA) direct inclusion of Coulomb interaction, no Deser-type formula used
- $\bullet~{\rm Cross-sections}~{\rm of}~K^-p\to K^-p~{\rm and}~K^-p\to MB$ reactions
- Threshold branching ratios γ , R_c and R_n
- $\Lambda(1405)$ resonance (one- or two-pole structure) $M^{PDG}_{\Lambda(1405)} = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \ \Gamma^{PDG}_{\Lambda(1405)} = 50.5 \pm 2.0 \text{ MeV} \ [PDG (2023)]$

15/20

New $\bar{K}N$ potentials, K^-p scattering

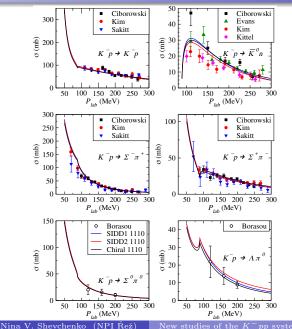


Figure: New $V_{\bar{K}N}$ potentials: one-pole, two-pole phenomenological and chirally motivated

ROCKSTAR, ECT*

Physical characteristics of the three new $\bar{K}N - \pi\Sigma - \pi\Lambda$ potentials

Physical characteristics of the three $\bar{K}N - \pi\Sigma - \pi\Lambda$ potentials: 1s level shift and width, strong pole(s), γ , R_c , R_n threshold branching ratios, a_{K^-p} scattering length (physical masses in all channels, Coulomb in K^-p).

	$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{ m Chiral}$	Exp
ΔE_{1s}	-322.6	-323.5	-311.6	$-283\pm36\pm6$
Γ_{1s}	645.4	633.8	605.8	$541\pm89\pm22$
E_1	1429.5 - i35.0	1430.9 - i41.6	1429.6 - i33.2	
E_2	_	1380.4 - i79.9	1367.8 - i66.5	
γ	2.35	2.36	2.36	2.36 ± 0.04
R_c	0.666	0.664	0.664	0.664 ± 0.011
R_n	0.190	0.189	0.190	0.189 ± 0.015
a_{K^-p}	-0.77 + i0.97	-0.78 + i0.95	-0.75 + i0.90	

Nina V. Shevchenko (NPI $\tilde{R}e\tilde{z}$) New studies of the K^-pp system ROCKSTAR, ECT*

Three-channel $\bar{K}NN - \pi\Sigma N - \pi\Sigma\Lambda$ calculations: dependence of the binding energy *B* (MeV) and width Γ (MeV) of the quasi-bound state in the K^-pp on πN interaction models (with $V_{\Sigma N-\Lambda N}^{\text{ScL},\text{SDep}}$).

	$V_{\bar{K}N}^{1,\mathrm{SIDD}}$		$V_{\bar{K}N}^{2,\mathrm{SIDD}}$		$V_{\bar{K}N}^{ m Chiral}$	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V_{\pi N}^{\rm ScL-1, Prev}$	37.6	71.4	37.7	58.2	27.2	46.6
$V_{\pi N}^{ m ScL-1,3ch}$	34.5	52.0	42.9	60.4	26.8	59.6
$V_{\pi N}^{ m ScL-2, Prev}$	35.7	70.5	35.9	57.4	27.0	44.6
$V_{\pi N}^{ m ScL-2,3ch}$	34.3	52.1	40.2	57.7	27.2	56.3

T* 18 / 20

Results

Fine tuning of the K^-pp quasi-bound state:

- different models of $\Sigma N \Lambda N$ interaction could change the three-body K^-pp pole position quite strongly (two-channel calculations)
- variation of the πN interaction parameters lead to smaller differences
- the results evaluated with chirally motivated model of antikaon-nucleon interaction are less sensitive to the $\Sigma N \Lambda N$ and πN interactions than those obtained with the phenomenological potentials (two-channel calc.)

	$V_{\bar{K}N}^{1,\mathrm{SIDD}}$		$V_{\bar{K}N}^{2,\mathrm{SIDD}}$		$V_{\bar{K}N}^{ m Chiral}$	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V_{\text{Prev}\Sigma N,\pi N}^{2\text{ch}}$	52.2	67.1	46.6	51.2	29.4	46.4
$V^{\rm 3ch}_{{ m New}\Sigma{ m N},\pi{ m N}}$	34.5	52.0	42.9	60.4	26.8	59.6

- Influence of $\Sigma N \Lambda N$ and πN potentials and the direct inclusion of the $\pi \Lambda N$ channel on the K^-pp quasi-bound state was studied
- The tuned widths calculated width the tree-channel two-pole phenomenological and chiral potentials are close each to another and larger than the previous ones; the three-channel phenom. potential lead to smaller width
- The calculated widths are still much smaller than the experimental ones; why?
- To do: calculate K^-pp with "an advanced" chiral potential (Prague model); perform fine-tuning of the $\bar{K}NNN$ system (with exact optical version of the three-channel $\bar{K}N \pi\Sigma \pi\Lambda$ potentials)