

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

Tuhin Malik

CFisUC, University of Coimbra, Portugal

October 10, 2023

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

Introduction	Machine Learning	Methodology 00000	Results 0000000	Conclusion 0	References

Outline

1 Introduction

2 Motivation

- 3 Machine Learning
- 4 Methodology
- 5 Results
- 6 Conclusion

Tuhin Malik

・ロト・日本・日本・日本・日本・今日・

CFisUC, University of Coimbra, Portugal

The dense matter equation of state (EOS)

- A neutron star (NS), also known as a pulsar, is one of the densest and most compact objects in the universe.
- A significant probe to reduce uncertainty can be the NS maximum mass, radii, moments of inertia, and tidal Love numbers, which are all accessible to observation.

Tuhin Malik

Introduction

00

DQCD Previously not constrained Pressure p [MeV/fm⁻³] 00 00 01 Causality ---- Allowed region constraint Integral constraints Causality constraints 10 /CET 1000 5000 Energy density c [MeV/fm-3]

Results

Phys. Rev. Lett. 128, 202701 (2022), 2111.05350

References

Introduction	Machine Learning	Methodology 00000	Results 0000000	Conclusion 0	References

The workflow

Tuhin Malik

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

< ロ > < 回 > < 回 > < 回 > < 回 >

CFisUC, University of Coimbra, Portugal

э

Introduction	Motivation ●	Machine Learning	Methodology 00000	Results 0000000	Conclusion 0	References

One-to-one correspondence

General relativity guarantees a unique one-to-one correspondence between static observables of neutron stars(NSs) accessible by multi-messenger astronomy, such as mass-radius or tidal deformability, and the equation of state (EOS) of beta equilibrated matter.

Tuhin Malik

CFisUC, University of Coimbra, Portugal

• = •

Machine Learning

Tuhin Malik

Machine Learning aims to build a mathematical function that solves a human task.

<ロト <回ト < 回ト < 回ト < 回ト = のへの

CFisUC, University of Coimbra, Portugal

Challenges of ML

- Not enough training data.
- Poor Quality of data.
- Irrelevant features.
- Overfitting and Underfitting.

Global Minima in the loss function may look like this:

< (17) >

Tuhin Malik

• = • • CFisUC. University of Coimbra. Portugal

э

Introduction	Machine Learning ○○●	Methodology 00000	Results 0000000	Conclusion 0	References 000

Deep Neural Network

Tuhin Malik

CFisUC, University of Coimbra, Portugal

3

Introduction	Machine Learning	Methodology ●0000	Results 0000000	Conclusion 0	References

Relativistic description of the neutron star equation of state

(a Bayesian approach)

Tuhin Malik

CFisUC, University of Coimbra, Portugal

< ∃⇒

IntroductionMotivationMachine LearningMethodology
0 ● 000ResultsConclusionReferences
000

EOS: relativistic mean field description

RMF Lagrangian for stellar matter

- Lagrangian density
 - Lorentz-covariant Lagrangian with baryon densities and meson fields
 - causal by construction

$$\mathcal{L} = \mathcal{L}_N + \mathcal{L}_M + \mathcal{L}_{NL},$$

Baryonic contribution:

$$\mathcal{L}_{N} = \bar{\Psi} \Big[\gamma^{\mu} \left(i \partial_{\mu} - \Gamma_{\omega} A^{(\omega)}_{\mu} - \Gamma_{\varrho} t \cdot \boldsymbol{A}^{(\varrho)}_{\mu} \right) - (m - \Gamma_{\sigma} \phi) \Big] \Psi,$$

Meson contribution

$$\begin{split} \mathcal{L}_{M} = & \frac{1}{2} \left[\partial_{\mu} \phi \partial^{\mu} \phi - m_{\sigma}^{2} \phi^{2} \right] - \frac{1}{4} F_{\mu\nu}^{(\omega)} F^{(\omega)\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} \\ & - \frac{1}{4} F_{\mu\nu}^{(\varrho)} \cdot F^{(\varrho)\mu\nu} + \frac{1}{2} m_{\varrho}^{2} \varrho_{\mu} \cdot \varrho^{\mu}. \end{split}$$

Non-linear meson terms

Tuhin Malik

$$\mathcal{L}_{NL} = -\frac{1}{3}bg_{\sigma}^{3}(\sigma)^{3} - \frac{1}{4}cg_{\sigma}^{4}(\sigma)^{4} + \frac{\xi}{4!}(g_{\omega}\omega_{\mu}\omega^{\mu})^{4} + \Lambda_{\omega}g_{\varrho}^{2}\varrho_{\mu} \cdot \varrho^{\mu}g_{\omega}^{2}\omega_{\mu}\omega^{\mu}$$

CFisUC, University of Coimbra, Portugal

Nuclear matter properties at saturation

Taylor expansion, parabolic approximation

$$\begin{split} \frac{E_{\text{nuc}}}{A} (n, \delta) &= \frac{E_{\text{SNM}}}{A} (n) + S(n) \, \delta^2, \\ S(n) &= \frac{1}{2} \left. \frac{\partial^2 E_{\text{nuc}} / A}{\partial \delta^2} \right|_{\delta = 0}, \\ \frac{E_{\text{SNM}}}{A} (n) &= E_0 + \frac{K_0}{2} \eta^2 + \frac{J_0}{3!} \eta^3 + \frac{Z_0}{4!} \eta^4, \\ S(n) &= E_{\text{sym}} + L_{\text{sym}} \eta + \frac{K_{\text{sym}}}{2} \eta^2 + \frac{J_{\text{sym}}}{3!} \eta^3 + \frac{Z_{\text{sym}}}{4!} \eta^4, \\ \delta &= (n_p - n_n) / n, \qquad \eta = (n - n_0) / (3n_0) \end{split}$$

CFisUC, University of Coimbra, Portugal

э

イロト イポト イヨト イヨト

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

Bayesian estimation of model parameters Bayesian Inference:

$$P(\boldsymbol{ heta} \mid D) = rac{\mathcal{L}(D \mid \boldsymbol{ heta}) P(\boldsymbol{ heta})}{\mathcal{Z}}$$

- The θ is the model parameter vector and D is the set of fit data.
- P(θ | D) is the joint posterior distribution of the parameters.
- $\mathcal{L}(D \mid \theta)$ is the likelihood function.
- P(θ) is the prior distribution for the model parameters.
- Z is the evidence. It can be obtained by complete marginalization of the likelihood function.

The marginalized posterior distribution for a parameter θ_i :

$$P\left(heta_i \mid D
ight) = \int P(oldsymbol{ heta} \mid D) \prod_{k
eq i} d heta_k$$

Tuhin Malik

Gaussian likelihood function

Methodology

00000

$$\mathcal{L}(D \mid \boldsymbol{\theta}) = \prod_{j} \frac{1}{\sqrt{2\pi\sigma_{j}^{2}}} e^{-\frac{1}{2} \left(\frac{d_{j} - m_{j}(\boldsymbol{\theta})}{\sigma_{j}}\right)^{2}}$$

References

- The index j runs over all the data points.
- The d_j and m_j are the data and corresponding model values, respectively.
- The σ_j are the uncertainties for every data point.

イロト イポト イヨト イヨト

CFisUC, University of Coimbra, Portugal

Tuhin Malik

Sampling EOS

Markov Chain Monte Carlo sampling (we do):

- Cost-function guided random walk
- Sample the posterior

we use the nested sampling algorithm, first proposed in J Skilling, American Institute of Physics Conference Series, Vol. 735, edited

Constraints					
Quantit	у	Value/Band	Ref		
NMP (MeV)	ρ_0	0.153 ± 0.005	Typel & Wolter (1999)		
	ϵ_0	-16.1 ± 0.2	Dutra et al. (2014)		
	K_0	230 ± 40	Todd-Rutel & Piekar-		
			ewicz (2005); Shlomo		
			et al. (2006)		
	$J_{\rm svm,0}$	32.5 ± 1.8	Essick et al. (2021a)		
PNM (MeV fm ⁻³)	$P(\rho)$	$2\times N^3 LO$	Hebeler et al. (2013)		
NS mass (M_{\odot})	M _{max}	>2.0	Fonseca et al. (2021)		

by R. Fischer, R. Preuss, and U. V. Tous- Monte Carlo sampling (we dont): saint (2004) pp. 395–405.

- suitable for low-dimensional problems
- approximately 25K samples we have obtained in the posterior

Public available data: 10.5281zenodo.7854112

- Generate random uniform samples in the parameter hyperspace.
- Apply filter
- Analyze filtered samples' properties

(ロ) (個) (目) (目) (日) (の)

CFisUC, University of Coimbra, Portugal

Results

Structuring of Data

- We generate two types of datasets that share the output Yi structure but with different input Xi structures.
- The **Y** as proton fraction y_p or square of speed of sound v_s^2 at 15 fixed baryonic densities n_k , e.g., $y_p(n) = [y_p(n_1), y_p(n_2), ..., y_p(n_{15})].$
- X1 = [M₁, ..., M₅, R₁, ..., R₅] corresponding to five M_i(R_i) simulated observations
- $X2 = [M_1, ..., M_5, R_1, ..., R_5, M'_1, ..., M'_5, \Lambda_1, ..., \Lambda_5]$ corresponding to five $M_i(R_i)$ and five $\Lambda_j(M'_j)$ simulated observations.

For each EoS, we randomly select

$$\begin{split} \mathsf{M}_{i}^{(0)} &\sim \mathcal{U}(1, \mathcal{M}_{\mathsf{max}}) \quad (\text{in units of } \mathsf{M}_{\odot}) \\ \mathcal{R}_{i} &\sim \mathcal{N}\left(\mathcal{R}\left(\mathcal{M}_{i}^{(0)}\right), \sigma_{R}^{2}\right) \\ \mathcal{M}_{i} &\sim \mathcal{N}\left(\mathcal{M}_{i}^{(0)}, \sigma_{M}^{2}\right), \quad i = 1, .., 5 \end{split}$$

Generation parameters for each dataset. $\hat{\sigma}(M_j)$ denotes the standard deviation of $\Lambda(M)$ calculated on the train set.

Dataset	$\sigma_M [M_{\odot}]$	σ_R [km]	$\sigma_{\Lambda}(M_j)$
1	0.05	0.15	_
2	0.1	0.3	_
3	0.1	0.3	$0.5\hat{\sigma}(M_j)$
4	0.1	0.3	$2\hat{\sigma}(M_j)$

(日) (同) (日) (日)

CFisUC. University of Coimbra. Portugal

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

The BNNs predictions for square of speed of sound v_s^2

The models trained on datasets 1 (blue) and 2 (orange) are in the left figure while datasets 3 (purple) and 4 (green) models are in the right figure. The prediction mean values (solid lines) and 2σ confidence intervals are shown. The true values are shown in black dots and the range of $v_s^2(n)$ from the train set is indicated by the grev region.

Tuhin Malik

CFisUC, University of Coimbra, Portugal

-

The BNNs predictions for proton fraction y_p

The models trained on datasets 1 (blue) and 2 (orange) are in the left figure while datasets 3 (purple) and 4 (green) models are in the right figure. The prediction mean values (solid lines) and 2σ confidence intervals are shown. The true values are shown in black dots and the range of y_p from the train set is

indicated by the grey region.

Tuhin Ma<u>lik</u>

ৰ □ ▶ ৰ ঐ ▶ ৰ ই ▶ ৰ ই ▶ ট ≫ি ৭৫ CFisUC, University of Coimbra<u>, Portugal</u>

The BNNs predictions for unknown data

The BNN model predictions, v_s^2 (left) and y_p (right), for one mock observation of the DD2 EoS, the blue area represents the 95.4% confidence interval, and the solid line the mean.

CFisUC, University of Coimbra, Portugal

-

A (1) > A (2) > A

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

Discussion

- We have explored Bayesian Neural Networks (BNNs), a probabilistic machine learning model, to predict the proton fraction and speed of sound of neutron star matter from a set of NS mock observations. This method is based upon the usual neural networks but with the crucial advantage of attributing an uncertainty measurement to its predictions.
- The tidal deformability data with a smaller uncertainty improved the speed of sound prediction, but not the proton fraction. This is because the proton fraction has a correlation with the symmetry energy slope, which is weaker with the increase of the NS mass.

@ Phys.Rev.D 108 (2023) 4, 043031

CFisUC, University of Coimbra, Portugal

イロト イポト イヨト イヨト

Introduction	Machine Learning	Methodology 00000	Results 00000●0	Conclusion 0	References

Study 2

CFisUC, University of Coimbra, Portuga

Unveiling Neutron Star Composition and Observables: A Comprehensive Study using Deep Bayesian Neural Networks

The Neural Network fun for very expensive simulation

@ Phys.Rev.D 108 (2023) 6, 063028

Table: CPU inference time estimates for the ANN model and a Skyrme model to infer NS observations from a set of NMPs. The timing tests were performed on a 12-core Intel i7-8700K CPU @ 3.70 GHz. The inference is performed with a batch size of one.

Model	Time
ANN	2.23 min
Skyrme	16h 27 min

Tuhin Malik

CFisUC, University of Coimbra, Portugal

Conclusion

- The role of theoretical models go way beyond producing numbers. A theoretical model also indicates the actual physical mechanisms behind the properties being predicted. Since each term in the model is physically motivated, a theoretical model which comes close to experimental predictions also identifies what are the actual physical processes which are important in that energy scale. To have a theoretical understanding of any system, a physics based model is necessary. ML algorithms cannot replace physics modeling in that respect.
- However an interesting area of future work might be in combining the theoretical model and the machine learning methods to arrive at a better physical models. Our theoretical knowledge may help determine which features are physically relevant in a given data set while ML algorithms will help us find patterns and make predictions.

Tuhin Malik

CFisUC, University of Coimbra, Portugal

(人間) シスヨン スヨン

References

- Ameya Thete, Kinjal Banerjee, Tuhin Malik, Phys.Rev.D 108 (2023) 6, 063028
- Valéria Carvalho, Márcio Ferreira, Tuhin Malik, Constança Providência, Phys.Rev.D 108 (2023) 4, 043031
- Shriya Soma, Lingxiao Wang, Shuzhe Shi, Horst Stöcker, Kai Zhou, JCAP 08 (2022) 071
- de Tovar et al. (2021) Rev. D, 104, 123036; Imam et al. (2021) Phys. Rev. C 105, 015806 (2022); Mondal & Gulminelli (2021) Phys. Rev. D 105, 083016 (2022)

Tuhin Malik

CFisUC, University of Coimbra, Portugal

イロト イポト イヨト イヨト

Acknowledgements

Tuhin Malik

Collaborators

- Constança Providência, CFisUC, Coimbra
- B. K. Agrawal, SINP, India
- Márcio Ferreira, CFisUC, Coimbra
- Kinjal Banerjee, BITS-Pilani, Goa, India
- Valéria Carvalho, CFisUC, Coimbra
- Ameya Thete, Wisconsin U., Madison, USA

CFisUC, University of Coimbra, Portugal

Tuhin Malik

onclusion

References ○○●

Thank You!

Email: tm@uc.pt, tuhin.malik@gmail.com

- * ロ > * 個 > * 注 > * 注 > ・注 ・ のへの

CFisUC, University of Coimbra, Portugal