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The dense matter equation of state (EOS)
A neutron star (NS), also
known as a pulsar, is one of
the densest and most
compact objects in the
universe.

A significant probe to reduce
uncertainty can be the NS
maximum mass, radii,
moments of inertia, and tidal
Love numbers, which are all
accessible to observation.

The NS core composition
remains a mystery

Phys. Rev. Lett. 128, 202701 (2022), 2111.05350
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The workflow
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One-to-one correspondence

Composition?

TOV

BNN

General relativity guarantees a unique one-to-one correspondence between static

observables of neutron stars(NSs) accessible by multi-messenger astronomy,

such as mass-radius or tidal deformability, and the equation of state (EOS) of

beta equilibrated matter.
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Machine Learning

Machine Learning aims to build a mathematical function that solves
a human task.
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Challenges of ML
Not enough training data.
Poor Quality of data.
Irrelevant features.
Overfitting and Underfitting.

Global Minima in the loss function may
look like this:
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Deep Neural Network
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Relativistic description of the neutron star
equation of state

(a Bayesian approach)
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EOS: relativistic mean field description
RMF Lagrangian for stellar matter

Lagrangian density
Lorentz-covariant Lagrangian with baryon densities and meson
fields
causal by construction

L = LN + LM + LNL,
Baryonic contribution:
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Nuclear matter properties at saturation

Taylor expansion, parabolic approximation

Enuc

A
(n, δ) =

ESNM

A
(n) + S (n) δ2,

S (n) =
1
2
∂2Enuc/A

∂δ2

∣∣∣∣
δ=0

,

ESNM

A
(n) = E0 +
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2
η2 +
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3!
η3 +

Z0

4!
η4,

S (n) = Esym + Lsymη +
Ksym

2
η2 +

Jsym

3!
η3 +

Zsym

4!
η4,

δ = (np − nn)/n, η = (n − n0)/(3n0)
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Bayesian estimation of model parameters
Bayesian Inference:

P(θ | D) =
L(D | θ)P(θ)

Z

The θ is the model parameter vector
and D is the set of fit data.

P(θ | D) is the joint posterior
distribution of the parameters.

L(D | θ) is the likelihood function.

P(θ) is the prior distribution for the
model parameters.

Z is the evidence. It can be obtained
by complete marginalization of the
likelihood function.

The marginalized posterior distribution for
a parameter θi :

P (θi | D) =

∫
P(θ | D)

∏
k ̸=i

dθk

Gaussian likelihood function

L(D | θ) =
∏
j

1√
2πσ2

j

e
− 1

2

(
dj−mj (θ)

σj

)2

The index j runs over all the data
points.

The dj and mj are the data and
corresponding model values,
respectively.

The σj are the uncertainties for
every data point.
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Sampling EOS
Markov Chain Monte Carlo
sampling (we do):

Cost-function guided random walk

Sample the posterior

we use the nested sampling algorithm, first

proposed in J Skilling, American Institute of

Physics Conference Series, Vol. 735, edited

by R. Fischer, R. Preuss, and U. V. Tous-

saint (2004) pp. 395–405.

suitable for low-dimensional problems

approximately 25K samples we have
obtained in the posterior

Public available data: 10.5281zenodo.7854112

Monte Carlo sampling (we dont):

Generate random uniform samples in
the parameter hyperspace.

Apply filter

Analyze filtered samples’ properties
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Results

Structuring of Data
We generate two types of datasets
that share the output Yi structure
but with different input Xi
structures.

The Y as proton fraction yp or
square of speed of sound v2

s at 15
fixed baryonic densities nk , e.g.,
yp(n) = [yp(n1), yp(n2), ..., yp(n15)].

X1 = [M1, ...,M5,R1, ...,R5]
corresponding to five Mi (Ri )
simulated observations

X2 =
[M1, ..,M5,R1, ..,R5,M

′
1, ..,M

′
5,Λ1, ..,Λ5]

corresponding to five Mi (Ri ) and five
Λj (M

′
j ) simulated observations.

For each EoS, we randomly
select

M
(0)
i ∼ U(1,Mmax) (in units of M⊙)

Ri ∼ N
(
R
(
M

(0)
i

)
, σ2

R

)
Mi ∼ N

(
M

(0)
i , σ2

M

)
, i = 1, .., 5

Generation parameters for each dataset. σ̂(Mj )
denotes the standard deviation of Λ(M) calculated
on the train set.

Dataset σM [M⊙] σR [km] σΛ(Mj )

1 0.05 0.15 —
2 0.1 0.3 —
3 0.1 0.3 0.5σ̂(Mj )

4 0.1 0.3 2σ̂(Mj )
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The BNNs predictions for square of speed of sound v 2
s
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The models trained on datasets 1 (blue) and 2 (orange) are in the left figure while datasets 3 (purple)

and 4 (green) models are in the right figure. The prediction mean values (solid lines) and 2σ confidence

intervals are shown. The true values are shown in black dots and the range of v2
s (n) from the train set is

indicated by the grey region.
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The BNNs predictions for proton fraction yp
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The models trained on datasets 1 (blue) and 2 (orange) are in the left figure while datasets 3 (purple)

and 4 (green) models are in the right figure. The prediction mean values (solid lines) and 2σ confidence

intervals are shown. The true values are shown in black dots and the range of yp from the train set is

indicated by the grey region.
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The BNNs predictions for unknown data
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The BNN model predictions, v2
s (left) and yp (right), for one mock observation of the DD2 EoS, the

blue area represents the 95.4% confidence interval, and the solid line the mean.
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Discussion

We have explored Bayesian Neural Networks (BNNs), a
probabilistic machine learning model, to predict the proton
fraction and speed of sound of neutron star matter from a set
of NS mock observations. This method is based upon the
usual neural networks but with the crucial advantage of
attributing an uncertainty measurement to its predictions.
The tidal deformability data with a smaller uncertainty
improved the speed of sound prediction, but not the proton
fraction. This is because the proton fraction has a correlation
with the symmetry energy slope, which is weaker with the
increase of the NS mass.

@ Phys.Rev.D 108 (2023) 4, 043031
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Study 2
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The Neural Network fun for very expensive simulation

@ Phys.Rev.D 108 (2023) 6, 063028

Table: CPU inference time
estimates for the ANN model and
a Skyrme model to infer NS
observations from a set of NMPs.
The timing tests were performed
on a 12-core Intel i7-8700K CPU @
3.70 GHz. The inference is
performed with a batch size of one.

Model Time

ANN 2.23 min

Skyrme 16h 27 min
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Conclusion

The role of theoretical models go way beyond producing numbers. A theoretical
model also indicates the actual physical mechanisms behind the properties being
predicted. Since each term in the model is physically motivated, a theoretical
model which comes close to experimental predictions also identifies what are the
actual physical processes which are important in that energy scale. To have a
theoretical understanding of any system, a physics based model is necessary. ML
algorithms cannot replace physics modeling in that respect.

However an interesting area of future work might be in combining the
theoretical model and the machine learning methods to arrive at a better
physical models. Our theoretical knowledge may help determine which features
are physically relevant in a given data set while ML algorithms will help us find
patterns and make predictions.
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Thank You!

Email: tm@uc.pt, tuhin.malik@gmail.com
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