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Update: Millener, Dover, Gal PRC 38, 2700 (1988)
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OUTLINE
Experimental binding energies of Λ hypernuclei up to Pb

PLB 837 (2023) 137669; Fit 16
ΛN BΛ(1s, 1p) and

extrapolate up to 208
ΛPb (E.F. + A.G.)

New analysis: least-squares fits to all (18) data points.
Focus on the ρexcess − ρcore interaction
**Just published: NPA 1039 (2023) 122795

Predictions of BΛ(1s, 1p) for
40
ΛK and 48

ΛK

Discussion and summary
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Statement of mission

The optical potential employed in this work,

V opt
Λ (ρ) = V

(2)
Λ (ρ) + V

(3)
Λ (ρ),

consists of terms representing two-body ΛN and three-body ΛNN
interactions, respectively.

Our aim in the present phenomenological study is to check to what
extent properly chosen Λ hypernuclear binding energy data, with

minimal extra assumptions, imply repulsive V
(3)
Λ (ρ), and how large

it is.
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Use high-quality data for a single species for calibration.
16
ΛN is not too light, single proton hole in the 1p shell.
1st and 3rd peaks from left are 1s and 1p Λ-nucleus states
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The optical potential VOPT
Λ (ρ) = V

(2)
Λ (ρ) + V

(3)
Λ (ρ), with

two-body ΛN and three-body ΛNN terms is

V
(2)
Λ (ρ) = − 4π

2µΛ
f
(2)
A CPauli(ρ) b0ρ, (1)

V
(3)
Λ (ρ) = +

4π

2µΛ
f
(3)
A B0

ρ2

ρ0
, (2)

b0 and B0 are strength parameters in units of fm (ℏ = c = 1). A is
the mass number of the nuclear core of the hypernucleus, ρ is a
nuclear density normalized to A, ρ0 = 0.17 fm−3 is nuclear-matter

density, µΛ is the Λ-nucleus reduced mass, f
(2,3)
A are kinematical

factors transforming b0 and B0 from the ΛN and ΛNN c.m.
systems, respectively, to the Λ-nucleus c.m. system:

f
(2)
A = 1 +

A− 1

A

µΛ

mN
, f

(3)
A = 1 +

A− 2

A

µΛ

2mN
. (3)
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CPauli(ρ) = (1 + αP
3kF
2π

f
(2)
A b0)

−1 (4)

with Fermi momentum kF = (3π2ρ/2)1/3.
The parameter αP in Eq. (4) switches off (αP=0) or on (αP=1)
the Pauli correlation correction which may be considerable.

The low-density limit of VOPT
Λ requires that b0 is identified with

the c.m. ΛN spin-averaged scattering length (positive here).

Experimental ΛN spin-averaged scattering length=1.7±0.1 fm
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In optical model applications it is crucial to ensure that the radial
extent of the densities, e.g., their r.m.s. radii, follow closely values
derived from experiment. Best known are r.m.s. radii of proton
densities throughout the periodic table,

ρ = ρp + ρn.

We use charge densities for ρp. For ρn we use the same radial
parameter as for ρp in light and medium-weight nuclei, and slightly
different parameters for ρn in heavy species,

rn − rp = 1.1N−Z
A − 0.04 fm, for r.m.s radii

from wide range of strong-interaction probes and model
calculations.

The value of rn − rp is also known as ‘the neutron skin’.
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Method

potential P: fit only b0 to B1s(
16
Λ N) = 13.76± 0.16 MeV

potential P’: as P but with inevitable Pauli correlations (not
shown)

potential Q: fit b0 and B0 to B1s(
16
Λ N) = 13.76± 0.16 MeV

and B1p(
16
Λ N) = 2.84± 0.18 MeV. No Pauli correlations.

potential X: as Q, including Pauli correlations.

potential Y; as X, including ‘core-excess’ correction.
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Strength parameters b0,B0 (fm) in models P,P’,Q plus their

respective potential depths D
(2)
Λ , D

(3)
Λ and sum DΛ (MeV) at

nuclear matter density ρ0 = 0.17 fm−3. Pauli correlations are
switched off (on) using αP = 0 (1).

Model αP b0 B0 D
(2)
Λ D

(3)
Λ DΛ

P 0 0.418 – −34.1 – −34.1
P’ 1 0.908 – −32.3 – −32.3
Q 0 0.706 0.370 −57.6 30.2 −27.4
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More on densities

When N > Z define ρnc by ρn = ρnc + ρexcess where ρnc referrs to
a core of Z neutrons occupying the same orbitals as the protons
(ρp) and ρexcess is for the excess of N−Z neutrons.

Define ρcore = ρp + ρnc then
ρ2 = (ρcore + ρexcess)

2 = ρ2core + ρ2excess + 2ρcoreρexcess .

The last term refers to ΛNN interaction where an excess neutron
interacts closely with a core nucleon; naively suppressed compared
to the other two terms.

More formally, a suppression originates in ΛNN pion-exchange
models that couple the isospin T = 0 Λ hyperon to the T = 1
Σ and Σ∗(1385) hyperons, as suggested also in modern χEFT
models. Then a τ⃗1 · τ⃗2 factor vanishes in direct matrix elements
when N1 runs over T = 0 closed-shell core nucleons and N2 is an
excess neutron.
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Avoiding explicit models as much as possible, we replace ρ2 by
ρ2core + ρ2excess, represented by

ρ2core + ρ2excess → (2ρp)
2 + (ρn − ρp)

2, (5)

in terms of the available densities ρp and ρn.

It is straightforward to show that the volume integral of
(2ρp)

2 + (ρn − ρp)
2 is equal to F times the volume integral of ρ2

where

F =
(2Z )2 + (N − Z )2

A2
. (6)

Using Fρ2 in V
(3)
Λ (ρ) to suppress the bilinear term, instead of

using Eq. (5), leads to almost the same calculated binding
energies, as shown in the lower part of the following figure.
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Table: INPUT DATA: 1sΛ and 1pΛ binding energies (MeV) in hypernuclei
A
ΛZ, including uncertainties, from several strangeness production reactions
(SPR), see Table IV of Gal et.al, Rev. Mod Phys. 88 (2016) 035004.

A
ΛZ SPR B1s

Λ ± B1p
Λ ±

12
ΛB (e, e ′K+) 11.52 0.02 0.54 0.04
13
ΛC (π+,K+) 12.0 0.2 1.1 0.2

16
ΛN (e, e ′K+) 13.76 0.16 2.84 0.18

28
ΛSi (π+,K+) 17.2 0.2 7.6 0.2
32
ΛS (K−, π−) 17.5 0.5 8.2 0.5

51
ΛV (π+,K+) 21.5 0.6 13.4 0.6
89
ΛY (π+,K+) 23.6 0.5 17.7 0.6

139
ΛLa (π+,K+) 25.1 1.2 21.0 0.6

208
ΛPb (π+,K+) 26.9 0.8 22.5 0.6

12
ΛB is the lightest hypernucleus considered. Its extremely small
δBΛ uncertainty values were increased to ±0.2 MeV, making the
B1s,1p
Λ (12ΛB) values consistent with their corresponding values in

the charge-symmetric 12
ΛC hypernucleus.

16/31



10 100

A

0

5

10

15

20

25

30

b
in

d
in

g
 e

n
e
rg

y
 (

M
e
V

)

Λ−A binding energy

1s
Λ

1p
Λ

−−−less B and C

Least-squares fits to BΛ data. Black for the full BΛ set, red dashed lines
excluding 12

ΛB and 13
ΛC. Open circles with error bars mark experiment.

17/31



10 100

A

0

5

10

Χ
2
 p

e
r 

p
o

in
t

B

C

N

Si

S
V

Y

La

Pb

Χ
2
(1s

Λ
) values

−−−− less B and C

1

Best-fit χ2 values for 1sΛ states. Black for the full data set, red dashed
lines excluding 12

ΛB and 13
ΛC.

18/31



10 100

A

0

5

10

Χ
2
 p

e
r 

p
o

in
t

1s
Λ

1p
Λ

1s
Λ

with F (without F)

1

1p
Λ

1p
Λ

1s
Λ

1s
Λ

1p
Λ

Best-fit χ2 values for various 1sΛ and 1pΛ states, excluding 12
ΛB and 13

ΛC.
Black without the suppression factor F of Eq. (6), red with the F factor.

19/31



The above figure demonstrates the importance of
the suppression factor F of Eq. (6) applied to the ρ2

term of the potential for medium weight and heavy
hypernuclei.

The introduction of this factor does not involve any
additional parameter beyond b0 and B0. Its explicit
form, Eq. (6), is based on a simple shell-model
picture.
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Results
Results of the least-squares fits are typically χ2 = 7 for 14 data
points, excluding 12

ΛB and 13
ΛC.

The two parameters are

b0 = 1.437 ± 0.095 fm, (attraction), (7)

B0 = 0.190 ± 0.024 fm, (repulsion) (8)

with 100% correlation between the two.

The depths of the partial potentials are (in MeV):

D
(2)
Λ = −38.6± 0.8, D

(3)
Λ = 11.3± 1.4, DΛ = −27.3± 0.6 (9)

at nuclear-matter density ρ0 = 0.17 fm−3.

22/31



Results
Results of the least-squares fits are typically χ2 = 26 for 18 data
points, INcluding 12

ΛB and 13
ΛC.

The two parameters are

b0 = 1.526 ± 0.108 fm, (attraction), (10)

B0 = 0.218 ± 0.026 fm, (repulsion) (11)

with 100% correlation between the two.
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Higher states
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Testing the F suppression factor?

0.2 0.3 0.4 0.5

Z/A

0.5

0.6

0.7

0.8

0.9

1

s
u
p
p
re

s
s
io

n
 f
a
c
to

r 
F

V

Y

La

Pb
U

48
K

40
K

Λ hypernuclei

min.

26/31



Predictions for (e, e ′K+) experiments on Ca isotopes

Forthcoming 40,48Ca(e, e ′K+)40,48ΛK experiments at JLab. will

study single-particle Λ spectra in 40,48
ΛK. With relatively large

neutron-excess fraction (N − Z )/A it may be possible to test
also the suppression factor F .

Calculated B1s
Λ and B1p

Λ in 40
ΛK and in 48

ΛK assuming
neutron-skin values of rn − rp = −0.04 fm in 40

ΛK and 0.16 fm
in 48

ΛK.

BΛ (MeV) 40
ΛK (F = 1) 48

ΛK (F = 1) 48
ΛK (F = 0.69)

1sΛ 18.70 19.78 22.39
1pΛ 10.70 12.35 14.35

The effect of the suppression factor F is 2-2.5 MeV.
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Summary
Least-squares fits of two parameters to experimental 1s and 1p
Λ-nuclear binding energies from 16

ΛN to 208
ΛPb lead to well-defined

ρ and ρ2-depended optical potential, (at ρ0 = 0.17 fm−3):

D
(2)
Λ = −38.6± 0.8, D

(3)
Λ = 11.3± 1.4, DΛ = −27.3± 0.6 MeV.

For the first time predictions are made of isospin-dependence that
could be tested by forthcoming 40,48Ca(e, e ′K+)40,48ΛK experiments
at JLab.

The repulsive ρ2 term is larger by a few MeV than the one leading
to the Λ chemical potential to be larger than the chemical
potential for neutrons in pure neutron matter. (Gerstung, Kaiser
and Weise, Eur. Phys. J. A 56,175 (2020)).

A direction for solving the Hyperon Puzzle?
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Thanks for your attention!
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Suppressing ρ2 in medium-weight and heavy species

ρ = ρcore + ρex .

By definition:∫
ρ2dr⃗ = A

∫
ρ ρ
Adr⃗ = Aρ̄∫

ρ2coredr⃗ = 2Z
∫
ρcore

ρcore
2Z dr⃗ = 2Z ρ̄core∫

ρ2exdr⃗ = (N − Z )
∫
ρex

ρex
N−Z dr⃗ = (N − Z )ρ̄ex

ρ2 = (ρcore + ρex)
2 = ρ2core + ρ2ex + 2ρcoreρex .

Ignoring the crossed term 2ρcoreρex and approximating
ρ̄core = 2Z

A ρ̄, ρ̄ex = N−Z
A ρ̄, we get∫

ρ2dr⃗ →
∫
(ρcore + ρex)

2dr⃗ = (2Z)2+(N−Z)2

A2

∫
ρ2dr⃗ .

Hence we apply a suppression factor F = (2Z)2+(N−Z)2

A2 to the ρ2

term in the potential.
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