Data/ideas we have, fora we formed, where are the combinations?

A provocative talk from personal (i.e., biased) perspective given that

 \rightarrow Since the kick-off meeting of the LPCC WG we **remained mostly silent** \rightarrow the HonexComb effort successfully concludes it's mission in the **coming November**

1

All experiments welcomed the group implementation

- We deemed the time ideal
 - Experiments: large enough data sets while preparing for the "boost" from Runs 3 & 4
 - <u>Accelerator front</u>: valuable running experience gained
 - <u>Theory community</u>: improved modeling but need experimental input (observables, common format, uncertainties...)
- But..

Still long way to go..

- We deemed the time ideal
 - Experiments: large enough data sets while preparing for the "boost" from Runs 3 & 4
 - <u>Accelerator front</u>: valuable running experience gained
 - <u>Theory community</u>: improved modeling but need experimental input (observables, common format, uncertainties...)
- Organization wise, there is still lots to be defined to form a basis of a thriving working group
 - mandate of the group yet to be formed, e.g., approval process, treatment of confidential information...
 - splitting into working subgroups
 - frequent closed meetings
 - key persons, e.g., generator experts, can be invited
 - **regular** (e.g., biannual) open plenary meetings
 - web page with formed recommendations and updated results, and links to documentation
 - ..

How can we achieve these goals?

First things first: Summary Plots

- A series of LHC measurements that can be included
 - **subgroups** can identify and propose their lists
 - a common repository for code sharing and easy reproduction to be formed
- Summary plots (so far custom made or in the realm of publications) to be
 - provided by the LHC HI Working Group
 - for the benefit of the LHC Collaborations
 - **reproduction** of the figures allowed as specified in a Creative Commons license

Some past combination efforts: What is the gain?

- HEP colleagues already performed joint publications
 - in BPH, HIG, and TOP physics
 - all highly cited publications —
- Combination efforts (not necessarily the very same motivations in HIN physics) lead to
 - improved final uncertainty and probably most precise measurements to date
 - better understanding of the underlying physics
 - first definitive **observations** in cases where neither of the individual results have sufficient precision
 - highly cited publications → motivation to "counterbalance" the extra internal review time

5

Combination efforts: What is the pain?

- Joint **publications** so far mostly concentrated on **Run 1 data**
 - experiments well-motivated priority is first to understand and publish with their own data
- By the time decision is made to perform a combination I think it might be relative late
 - the data conditions are "old"
 - expertise in the teams might have lost/migrated
 - HIN physics is experimentally driven & dynamic field \rightarrow why "look back" when new ideas "ahead of" us?
 - overall possibly leading to efforts with **narrow scope**: understand differences at most

Combination efforts: What is the pain? How to mitigate?

- Joint publications so far mostly concentrated on Run 1 data
 - experiments well-motivated priority is first to understand and publish with their own data
- By the time decision is made to perform a combination I think it's relative late
 - the data conditions are "old"
 - Expertise in the teams might have lost/migrated
 - HIN physics is experimentally driven & dynamic field → why "look back" when new ideas "ahead of" us?
 - overall possibly leading to efforts with narrow scope: understand differences at most
- Following up on past experience from other LHC working groups (some of them already since early Run 1)
 - we could envisage some interaction with them at least for the beginning?
 - ways they did (i.e., technicalities), milestones they reached, and challenges they faced
 - can we form a common, simplified review process? I wouldn't dare to go 2, 3, 4 times the review..
 - not an unorthodox idea: these results were scrutinized why redo the whole review from scratch?

Combination efforts: What is the pain? How to mitigate?

- Joint publications so far mostly concentrated on Run 1 data
 - experiments well-motivated priority is first to understand and publish with their own data
- By the time decision is made to perform a combination I think it's relative late
 - the data conditions are "old"
 - Expertise in the teams might have lost/migrated
 - HIN physics is experimentally driven & dynamic field \rightarrow why "look back" when new ideas "ahead of" us?
 - overall possibly leading to efforts with narrow scope: understand differences at most
- Following up on past experience from other LHC working groups (some of them already since early Run 1)
 - we could envisage some interaction with them at least for the beginning?
 - ways they did (i.e., technicalities), milestones they reached, and challenges they faced
 - can we form a common, simplified review process? I wouldn't dare to go 2, 3, 4 times the review.
 - not an unorthodox idea: these results were scrutinized why redo the whole review from scratch?
- Who is driving the combination efforts?
 - To me the best driving force for heavy ion related combinations is synergies with theo/pheno community
 - In principle anyone can perform combinations with rough approximations so why not engage?
 - <u>Proposal:</u> "calls for combinations" with existing/new (at the time when results became public) results
 - I don't have a metric at hand but experiments typically promptly followup \rightarrow dispersion is low
 - It's a win-win situation: theo/pheno gets citations, exp closely interacts with them \rightarrow we all gain!

Outlook: A restart is needed

- All experiments welcomed the effort for the **official formation** of the LHC HI Working Group (WG)
 - we're all open to combination efforts
 - we even have already an extensive list of topics but ...
 - all experiments' involvement is (s)low and even <u>initial practicalities</u> yet to be done
- I think only **subgroups** could efficiently steer the effort
 - recheck with WG conveners their plans and form asap subgroups and their conveners
 - My biased view:
 - WG convs: more seniors but not heavily involved during their mandates in their experiment's activities
 - Subgroup convs: younger colleagues who can devote time (some experience preferable)
- Important to cover a common ground
 - let's start gaining some momentum: summary plots a good/promising starting point for the WG
 - knowledge sharing with other WGs can be beneficial
 - in review, analysis techniques, corrections, systematic uncertainties, ...
 - while the work remains experimental in nature, engaging with the pheno/theory community is critical
- Other/complimentary functionalities of WG can be
 - organizing dedicated workshops
 - a natural place to standardize the procedure on requesting theoretical predictions
 - potentially a good basis for discussions related to near-/far-future running schedule

Reflecting on what achieved so far and future expectations

- Thermalization and hadronization of heavy guarks
 - Modification of heavy quark hadronization with D⁰, D_s, D*, B⁺, B⁰, B_s, Λ_c , Λ_b , B_c Direct detection of charm diffusion: jet-D⁰ and γ -D⁰ angular correlation Ο
 - Ο
 - DD correlations: studies of heavy quark energy loss mechanism 0
- Pinning down uncertainties in initial state and extraction of QGP properties at various scales
 - Electroweak boson production Ο
 - Photon- and Z-tagged jets 0
 - Quarkonia and observation, e.g., of Y(3S) production Ο
 - Jet substructure as a tool for the study of QGP constituents Ο
 - Top quark production as novel tool in pPb/PbPb Ο

Initial-state effects and QGP formation in small systems

- Flow correlation in high statistics peripheral PbPb collisions 0
- Search for jet guenching in high-multiplicity pp, pPb, pO and OO collisions Ο
- Study of exotic particles and search for BSM physics
 - Probe the inner structure of X(3872) and other exotic states (for example $f_0(980)$) with QGP Ο
 - Light-by-light scattering and ALP searches 0

New MTD capabilities

- Charge and baryon number fluctuation capability with large acceptance detector (up to |eta|<4) and MTD (PID) Ο
- Jet hadronization Ο

A representative **example II**: Electroweak boson production

- For the latest two measurements in PbPb
 - ATLAS
 - 2015 data, CERN-EP-2019-182
 - CMS
 - 2018 data, CERN-EP-2021-039
 - some tension exists (~3 sigma)
 - data show an indication of an **opposite** centrality dependence

A representative example I: Light-by-light (LbL) scattering

- Four available measurements in PbPb (so far)
- ATLAS
 - 2015 data, 0.49 nb-1, CERN-EP-2016-316
 - 2018 data, 1.73 nb-1, CERN-EP-2019-051
 - 2015+18 data, 2.2 nb-1, CERN-EP-2020-135
- CMS
 - **2015 data**, 0.39 nb-1, CERN-EP-2018-271
- Ongoing work in the realm of $\underline{HonexComb} \rightarrow see$ also Giulia's presentations

How a combined measurement will

- compare to theory?
- impact reinterpretation, ALP limits?

A representative example III: Inclusive Jet RAA

- For the latest measurements in PbPb (2015 data)
 - ALICE: lower p⊤ jets (CERN-EP-2019-200)
 - ATLAS: higher p^T jets (CERN-EP-2018-105)
 - CMS: higher p_T jets, up to large R (0.2 ~ 1.0) (CERN-EP-2020-226)

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

RAA

Towards a universal description of jet suppression as a function of p_T and R

Common ground I: Observables and techniques

- We think that common work or close definition on
 - global-event variables (e.g., centrality in small systems, charged particle multiplicity, etc)
 - analysis techniques (e.g., correlations and nonflow treatment, (sub)jet reconstruction, <u>simulation</u> <u>settings</u>, Glauber MC, UPC simulation for pO/OO, binning of distributions, phase space region, etc)
- would help identify spurious selection effects and comparison with theory

Common ground II: Corrections and systematic uncertainties

- We think that some corrections can be harmonized among experiments
 - e.g., the determination of the background, and its subtraction \rightarrow relevant for unfolding
 - definition and quoting of theory uncertainties
- Same holds true for a set of systematic uncertainties
 - could be quite **different** for experiments, e.g., method or level of splitting of systematic components
- Often hard to get an idea of correlations
 - Fraction coming from MC modeling and from the detector? Correlated vs. uncorrelated? Source-by-source? Across measurements (e.g. across different centrality from same paper)?
 - Luminosity what fraction of total uncertainty is correlated among experiments?
- Good to come up with mapping of uncertainties, and
 - uncertainty correlations publicly available, e.g., on HEPData

16

A good place for discussing upcoming/future running schedule

- Before going to LHCC I think the LPCC HI Working Group can serve as basis for discussion on
 - considerations on **running schedule**
 - expected **performance** and recipes for **mitigations** if need be, e.g., beam transmutation in OO
 - setting common goals → higher chances for increased allocated HI time?

CMS Integrated Luminosity Delivered, PbPb+pPb

A natural place for communicating/interacting with theory community

- While the work remains experimental in nature, **close contact** with the theory community too
 - We expect the theory conveners to steer the effort
- It is important to come up with a standard on the theoretical predictions and request process
 - For instance, experiments depending on their needs request a set of theoretical predictions
 - This "on demand" process may not necessarily result to identical predictions
 - e.g., different parameters could have been used for the different requests or updated prescriptions could have become available
 - A **standard set** of predictions on various phase space regions covered by LHC experiments would be beneficial
- After subgroups identify a list of "higher priority observables to be combined" this procedure can be of higher relevance and wider/immediate applicability