ULTRAPERIPHERAL HEAVY-ION COLLISIONS -THEORY CONSIDERATIONS

Mariola Kłusek-Gawenda

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

- Equivalent Photon Approximation
- $\ \, \gamma\gamma\to\gamma\gamma$
- $\ell^+\ell^-\ell^+\ell^-$ production
- $\pi^+\pi^-\pi^+\pi^-$ production
- Electromagnetic excitation of nuclei and neutron evaporation

2023 CMS heavy ion workshop: bringing together the LHC heavy ion community

MARIOLA KŁUSEK-GAWENDA

1/30

MAY 30, 2023 TRENTO

ULTRAPERIPHERAL COLLISION OF HEAVY IONS

The strong electromagnetic field is a source of photons that can induce electromagnetic reactions in ion-ion collisions. Electromagnetism is a long-range force, so electromagnetic interactions occur even at relatively large ion-ion separations.

UPC:
$$\frac{b_{min}}{b_{min}} = R_1 + R_2 \approx 14 \text{ fm}$$

Photon energy: $\omega = \frac{\gamma}{b_{min}} \approx \gamma \times 15 \text{ MeV}$
Virtuality: $Q^2 = \frac{1}{R^2} \approx 0.0008 \text{ GeV}^2$

• $\rho^0, J/\psi$ • $\rho^0 \rho^0, J/\psi J/\psi$ is interest version of gains

UPC - THEORY

EQUIVALENT PHOTON APPROXIMATION

EPA

$$\sigma_{A_{1}A_{2}\rightarrow A_{1}A_{2}X_{1}X_{2}} = \int \sigma_{\gamma\gamma \rightarrow X_{1}X_{2}}(\omega_{1}, \omega_{2})d\omega_{1} d\omega_{2} n(\omega_{1})n(\omega_{2}) \rightarrow ...n(\omega) = \int_{R_{min}}^{\infty} 2\pi b db N(\omega, b)...$$

$$= \int \sigma_{\gamma\gamma \rightarrow X_{1}X_{2}} \left(W_{\gamma\gamma}\right) N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b}) \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_{1}X_{2}} d\bar{b}_{x} d\bar{b}_{y} d^{2}b$$

$$= \int \frac{d\sigma_{\gamma\gamma \rightarrow X_{1}X_{2}} \left(W_{\gamma\gamma}\right)}{d\cos\theta} N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b}) \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_{1}X_{2}} d\bar{b}_{x} d\bar{b}_{y} d^{2}b$$

$$\times \frac{d\cos\theta}{dy_{X_{1}} dy_{X_{2}} dp_{t}} \times dy_{X_{1}} dy_{X_{2}} dp_{t} .$$

$$\int d\omega_{X} e^{2} \frac{f\left(\frac{\chi^{2}+\psi^{2}}{y^{2}}\right)}{\chi^{2}+\psi^{2}} d_{1}(\chi) \Big|^{2}$$

$$F\left(q^{2}\right) = \frac{4\pi}{|q|} \int \rho(r) \sin(|q|r) r dr$$

UPC - THEORY

MARIOLA KŁUSEK-GAWENDA

LIGHT-BY-LIGHT SCATTERING

LIGHT-BY-LIGHT SCATTERING

LIGHT-BY-LIGHT SCATTERING

We have compared our results with:

- Jikia et al. (1993),
- Bern et al. (2001),
- Bardin et al. (2009).

Bern et al. consider QCD and QED corrections (two-loop Feynman diagrams) to the one-loop fermionic contributions in the ultrarelativistic limit (\hat{s} , $|\hat{t}|$, $|\hat{\nu}| \gg m_f^2$). The corrections are quite small numerically.

ELEMENTARY CROSS SECTION

$AA{ ightarrow}AA\gamma\gamma$ - form factor

$AA \rightarrow AA\gamma\gamma$ - CMS & ATLAS RESULTS - $M_{\gamma\gamma}$ > 5 GeV

- CMS Coll., Phys. Lett. B797 (2019) 134826 ≫
- $K E_{t_{\gamma}} > 2 \text{ GeV}$
- **X** $|\eta_{\gamma}| < 2.4$
- **X** $M_{\gamma\gamma} > 5 \text{ GeV}$
- X $p_{t_{\gamma\gamma}} < 1 \text{ GeV}$
- X Aco < 0.01

- ATLAS Collaboration, JHEP 03 (2021) 243 ≫≁
- X $E_{t_{\gamma}} > 2.5 \, \text{GeV}$
- **X** $|\eta_{\gamma}| < 2.4$
- X $M_{\gamma\gamma} > 5 \text{ GeV}$
- X $p_{t_{\gamma\gamma}} < 1 \text{ GeV}$
- X Aco < 0.01

Experiment		Theory		
		Nuclear radi	ius: $R = R_0 A^{\frac{1}{3}}$	Glauber model
Collaboration	σ nb	σ (<i>b</i> = 13fm)	σ (b = 14.8fm)	σ (b = 20fm)
ATLAS (2018 data)	78 \pm 13(stat.) \pm 7(syst.)	52	50	45
ATLAS (2015+2018)	120 \pm 17(stat.) \pm 13(syst.)	82	80	71
CMS (2015)	120 \pm 46(stat.) \pm 28(syst.)	105	103	92

Pb Pb, Glauber

20.0

MARIOLA KŁUSEK-GAWENDA

2022 RESULTS

The European Union's Horizon 2020 research and innovation program under STRONG-2020, G. K. Krintiras, I. Grabowska-Bold, M. Klusek-Gawenda and É. Chapon and R. Chudasama, *Acta Phys.Polon.Supp.* 16 (2023) 1, 123; Light-by-light scattering cross-section measurements at LHC

HIGHER ORDER PROCESSES..?

 $\gamma\gamma$ invariant mass

Coherent sum of both processes ...?

Pionic boxes...?

10/30

INSTITUTE OF NUCLEAR PHYSIC POLISH ACADEMY OF SCIENCES LIGHT-BY-LIGHT SCATTERING NUCLEAR CROSS SECTION

$AA \rightarrow AA\gamma\gamma$ for $M_{\gamma\gamma} < 5 \text{ GeV}$?

The role of meson exchanges in light-by-light scattering

 \rightarrow

collisions

May 30, 2023 Trento

and in ultraperipheral ultrarelativistic heavy-ion

1/30

INSTITUTE OF NUCLEAR PHYSIC

UPC OF AA...

UPC - THEORY

THE HENRYK NEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSIC POLISH ACADEMY OF SCIENCES

$AA \rightarrow AA\gamma\gamma$ @ Forward region ?

✓ ALICE Collaboration, Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment, CERN-LHCC-2020-009

FoCal ightarrow 3.4 $< \eta <$ 5.8

The forward electromagnetic and hadronic calorimeter is an upgrade to the ALICE experiment, to be installed during LS3 for data-taking in 2027–2029 at the LHC.

 $E_{\gamma} > 0.2 \text{ GeV}$

13/30

 $p_{t,\gamma} > 1 \text{ GeV}$

LIGHT-BY-LIGHT SCATTERING NUCLEAR CROSS SECTION

$AA \rightarrow AA\gamma\gamma$ @ LOW p_t REGION ?

 $M_{\gamma\gamma} < 1~{
m GeV}$

PRODUCTION OF LEPTONS POSITRON-ELECTRON

$\overline{\textit{AA} ightarrow \textit{AAe^+e^-}}$ & $\overline{\textit{AA}} ightarrow \textit{AAe^+e^-e^+e^-}$

UPC - THEORY

$AA ightarrow AA\mu^{+}\mu^{-}$ & $AA ightarrow AA\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

$\gamma\gamma \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ - Single scattering

$AA \rightarrow AA\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

It is difficult to isolate range of SS domination

*DS - double-scattering mechanism *SS - a NEW single-scattering mechanism

19/30

UPC - THEORY

MARIOLA KŁUSEK-GAWENDA

$AA \rightarrow AA\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

creation of similar distributions by ALICE or CMS?

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ photoproduction

$\overline{AA \rightarrow AA}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

H1 data

H1prelim-18-011 April 10, 2018

Submitted to DIS-2018, Kobe, 16-20 April, 2018

Exclusive Photoproduction of $2\pi^+2\pi^-$ Final State at H

Abstract

Exclusive production of four charged pions at the e_P collider HERA is studied at support photon virtualities $Q^2 < 2 \text{ GeV}^2$. The data were taken with the H1 detector in the ye 2006 and 2007 at a centre-0-mass energies of $\sqrt{s} = 319 \text{ GeV}$ and $\sqrt{s} = 225 \text{ GeV}$ i correspond to an integrated luminosity of 7.6 pb⁻¹ and 1.7 pb⁻¹ respectively. The cr section of the reaction $r_P \rightarrow (2\pi^+2\pi^-)Y$ is determined in the phase space of $35 < W_{r_I}$ 100 GeV, $|t| < 1 \text{ GeV}^2$ and $M_Y < 1.6 \text{ GeV}$. The 4π mass spectric indicate that the react proceeds predominantly via production and decay of p' resonances. The fit however d not allow yet to distinguish unambiguously between the hypotheses of one or two br and overlapping p' resonances.

vector meson ?

Updated November 2015 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Frascati).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$ because there was emerging evidence that the 1000-MeV region actually contains two ρ -like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. Domachie [2], with a full analysis of data on the 2π and 4π final states in e^+e^- aminilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta \rho^0$ mass spectra obtained in photoproduction and $e^+e^$ aminilation [3], as well as that of $e^+e^- \rightarrow m$ [4].

The analysis of [2] was further extended by [5,6] to include new data on 4 π -systems produced in e^+e^- annihilation, and in τ -decays (τ decays to 4π , and e^+e^- annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two p-like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \rightarrow$ 4 π were obtained, little could be said about the $\rho(1700)$.

RESONANCES SKETCH PDG

$\rho(1570)$)	$I^{G}(J^{PC}) = 1^{+}(1^{})$)
	-	ρ(1570) MASS	
VALUE (MeV)	EVTS	DOCUMENT IDTECN COMMEN	VT.
$1570 \pm 36 \pm 62$	54	¹ AUBERT 085 BABR 10.6 e ⁺	$e^- \rightarrow \phi \pi^0 \gamma$
		ρ(1570) WIDTH	
VALUE (MeV)	EVTS	DOCUMENT ID TECN COMMEN	VT.
$144 \pm 75 \pm 43$	54	³ AUBERT 085 BABR 10.6 e ⁺	$e^- \rightarrow \phi \pi^0 \gamma$
	ρ	(1570) DECAY MODES	
Mode		Fraction (Γ_i/Γ)	
$\Gamma_1 e^+e^-$			
l ₂ φπ Γ- ωπ		not seen	
13			
ρ(1450) [^r]	$I^{G}(J^{PC}) = 1^{+}(1^{-})$		
Mass	m - 1465 -	+ 25 MoV [/]	
Full v	width $\Gamma = 403$	00 ± 60 MeV [/]	
(
ρ(1450) DECAY M	DES	Fraction (Γ_i/Γ)	p (MeV/c)
ππ		seen	720
$\pi^{+}\pi^{-}$		seen	
4π	seen 669		
ρ(1700) [r]		$I^{G}(J^{PC}) = 1^{+}(1^{-1})^{-1}$	-)
Mass	m = 1720	+ 20 MeV [I] $(na^0 \text{ and } \pi^+\pi^-$	modes)
Full v	vidth $\Gamma = 25$	50 \pm 100 MeV ^[J] ($\eta \rho^0$ and π^-	π^- modes)
p(1700) DECAY M	ODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$		seen	803

o(770) [h]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

 $\label{eq:mass} \begin{array}{l} \mbox{Mass} \ m = 775.26 \pm 0.25 \ \mbox{MeV} \\ \mbox{Full width} \ \mbox{F} = 149.1 \pm 0.8 \ \mbox{MeV} \\ \mbox{\Gamma}_{ee} = 7.04 \pm 0.06 \ \mbox{keV} \end{array}$

ρ(770) DECAY MODES	Fraction (Γ_i/Γ)		Confidence level (MeV/c)	
ππ	\sim 100	%	363	

A · A · A · A (1.6 ±0.9)×10 · 251

MY CALCULATION

m [GeV]	Γ [GeV]	$\Gamma(e^+e^-)$ [keV]		
ρ(1570)				
1.57 ± 0.07	0.144 ± 0.09	$0.35 - 0.5^{*}$		
	ρ (1450) $\equiv \rho'$			
1.465 ± 0.025	0.40 ± 0.05	4.3 - 6*		
	$ ho$ (1700) $\equiv ho''$			
1.72 ± 0.02	0.25 ± 0.01	7.6 ± 1.3		

COHERENT VECTOR MESON PHOTOPRODUCTION

NUCLEAR CALCULATIONS

DIFFERENTIAL CROSS SECTION

Success of $\rho(1570)$ - Results for the LHC are necessary

MARIOLA KŁUSEK-GAWENDA

May 30, 2023 Trento

26/30

NSTITUTE OF NUCLEAR PHYSIC

ELECTROMAGNETIC EXCITATION

EXCITATION FUNCTION ELECTROMAGNETIC EXCITATION

$$\gamma$$
 ¹⁹⁷Au $ightarrow$ 1n ¹⁹⁶Au

$$\gamma \ ^{197}\mathrm{Au}
ightarrow rac{2}{2}\mathrm{n} \ ^{195}\mathrm{Au}$$

(γ,2n)

 $(\gamma, 2n) + (\gamma, 2n+p)$

▲ 1987

2003

2003

1962

1987

250

$$\gamma$$
 ¹⁹⁷Au \rightarrow 3n ¹⁹⁴Au

CONCLUSION

- O EPA in the impact parameter space
- O Fourier transform of the charge distribution
- $O \ \ \text{Multidimensional integrals} \to \text{differential cross} \\ section \\$
- O Description of experimental data for UPC
- O Predictions include the experimental acceptance
- O Electromagnetic excitation ZDC
- O Collaboration theoreticians and experimenters
- O Future:
 - more forward/backward region
 - lower p_t

Thank you

