FONDAZIONE EN CENTRE FONDAZIONE EN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

2023 CMS heavy ion workshop: bringing together the LHC heavy ion community

Heavy quarks and quarkonia (Theory)

Jiaxing Zhao (SUBATECH)

jzhao@subatech.in2p3.fr

29/05/2023

Heavy quark in Heavy ion collisions

 $m_c \sim 1.5 GeV, m_b \sim 4.7 GeV$

- + $\tau_c \sim 1/m_c, \tau_b \sim 1/m_b < \tau_0 \sim 1 fm/c$, "see" full system evolution.
- + $\tau_c, \tau_b < \tau_B \approx R/\gamma \sim 0.1 fm/c$, feel strong electromagnetic fields.
- + $m_c, m_b \gg \Lambda_{QCD}$, produced by hard scattering, pQCD.
- $m_c, m_b \gg T$, Number is conserved during the evolution (thermal production can be neglected).
- ← $m \gg T \sim q$, can be treated as Brownian particle.

Heavy flavor is a nice probe to each stage of HIC and very useful to study the hot QCD!

I. Open Heavy Flavor

- Energy loss (backup slides)
- * Hadronization
- EPOS4+HQ framework

Hadronization mechanism in the hot medium

Hadronization in the hot medium shows a huge difference compared to the vacuum case (Fragmentation).

• Enhancement of Baryon / Meson Ratio

• Quark Number Scaling of Elliptic flow

4

Hadronization mechanism in the hot medium

Low pT heavy quark hadronizes via recombination, while high pT through the fragmentation! $P_{frag.}(p_T) = 1 - P_{recomb.}(p_T)$

Hadronization models

	Frag.	Recom.	Recom. Form	Charmed hadrons involved
Catania	Peterson	Phase space Wigner function	$W(x,p) = \prod_{i=1}^{N_q-1} A_W \exp\left(-\frac{x_i^2}{\sigma_{ri}^2} - p_i^2 \sigma_{ri}^2\right)$	S-wave, D0,Ds, D*+,D*0,D*s,several excited states of \Lambda_c,\Sigma_c
Duke	Pythia 6.4/ Peterson	Momentum space Wigner function	$W(p) = g_h \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 p^2},$	S-wave,D,D*
LBT	Pythia 6.4/ Peterson	Momentum space Wigner function	$W_{s}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} e^{-\sigma^{2}p^{2}},$ $W_{p}(p) = g_{h} \frac{(2\sqrt{\pi}\sigma)^{3}}{V} \frac{2}{3} \sigma^{2} p^{2} e^{-\sigma^{2}p^{2}}.$	S-wave,P-wave,D,Ds,D*, \Lambda_c,\Sigma_c,\Xi_c. \Omega_c
Nantes	HQET	Phase space Wigner function	$W(x_Q, x_q, p_Q, p_q) = \exp\left(\frac{(x_q - x_Q)^2 - [(x_q - x_Q) \cdot u_Q]^2}{2R_c^2} - \alpha_d^2(u_Q \cdot u_q - 1)\right)$	S-wave, D0
PHSD	Peterson	Phase space Wigner function	$W_s(r,p) = \frac{8(2S+1)}{36}e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$ $W_p(r,p) = \frac{2S+1}{36}\left(\frac{16}{3}\frac{r^2}{\sigma^2} + \frac{16}{3}\sigma^2 p^2 - 8\right)e^{-\frac{r^2}{\sigma^2}-\sigma^2 p^2},$	S-wave, P-wave D+,D0,Ds, D*+,D*0,D*s
TAMU	thermal density correlated	Resonance amplitude	$\frac{\gamma_M}{\Gamma} v_{rel} g_\sigma \frac{4\pi}{k^2} \frac{(\Gamma m)^2}{(s-m^2)^2 + (\Gamma m)^2}$	D+,D0,Ds and few excited states. Charm baryons+missing baryons
Turin	Pythia 6.4/ String fragmentation	Invariant mass criterion	$M_D < M_{Cluster} < M_{max.}$	(prompt) D+,D0,Ds,\Lambda_c, \Xi_c,\Omega_c
Los Alamos	HQET	_		S-wave, D+,D0,Ds, charm- baryons

Each model with a recombination part can give a nice explanation of the experimental data!

Hadronization Model comparison

Phase-space vs. momentum space criterion; energy conservation; space-momentum correlation;... Aiming to compare the hadronization model itself and put the understanding forward.

We prepared several tasks for different groups with the same hadronization hypersurface and charm distribution functions at hadronization hypersurface. (2022.04-now)

More results, analysis, and draft are coming soon!

J. Zhao, P.B. Gossiaux, J. Aichelin,... See detail: J. Zhao, HP2023, Tue. 16:00

EPOS4+HQ

EPOS4: multiple (nucleonic or partonic) scatterings are treated parallelly based on S-matrix theory https://klaus.pages.in2p3.fr/epos4 K. Werner. arXiv: 2301.12517

- Heavy quarks are produced perturbatively.
- + Heavy quark loss energy in hot medium via both collisional and raditive energy loss.

P.B. Gossiaux, R. Bierkandt and J. Aichelin. PRC79 (2009) 044906

+ Hadronzation: Coalescence + Fragmentation.

For ground states: $D^0, D^+, D_s^+, \Lambda_c, \Xi_c, \Omega_c, \dots$

$$W(r,p) = 8e^{-\frac{r^2}{\sigma^2} - p^2 \sigma^2}.$$

$$W(\rho,\lambda,p_\rho,p_\lambda) = 8^2 e^{-\frac{\rho^2}{\sigma_\rho^2} - p_\rho^2 \sigma_\rho^2} e^{-\frac{\lambda^2}{\sigma_\lambda^2} - p_\lambda^2 \sigma_\lambda^2}.$$

 σ are given by their root mean radius!

The contributions from all excited states (no matter they are P-or D-waves) are encoded in an overall momentum independent factor \mathcal{F} , which is given by the statistical model.

$$n_i = rac{d_i}{2\pi^2} m_i^2 T_H K_2(rac{m_i}{T_H}) \; ,$$

J. Zhao, J. Aichelin, K. Werner, P.B. Gossiaux, In preparation...

EPOS4+HQ

Charm hadrons in pp collisions at RHIC and LHC.

EPOS4+HQ

J. Zhao, J. Aichelin, K. Werner, P.B. Gossiaux, In preparation...

Charm hadrons in AA collisions at LHC.

II. Quarkonium

- * In-medium properties of quarkonium and complex potential
- * Real-time evolution in hot QCD medium (backup slides)

Quarkonium in the hot medium

Quarkonia suppression has been considered as a smoking gun of the QGP (Matsui, Satz at 1986, ...)

Besides the static color screening of heavy potential, quarkonia will obtaine the thermal width!

N. Brambilla, M. Escobedo, J. Ghiglieri, M. Laine, O. Philipsen, P. Romatschke, M. Tassler, P. Petreczky, et al, JHEP 03, 054 (2007). PRD 78, 014017 (2008). JHEP 09, 038 (2010). JHEP 1112 (2011) 116...

Heavy Quark Potential at finite temperature

* In the weak-coupling regime (High temperature —> HTL,...) $T, m_D \sim gT, g^2T, \Lambda_{OCD}$

Static Wilson loop in the imaginary-time: M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03 (2007) 054

$$V(r,T) = -\frac{g^2 C_F}{4\pi} \left[m_{\rm D} + \frac{\exp(-m_{\rm D}r)}{r} \right] - \frac{ig^2 T C_F}{4\pi} \phi(m_{\rm D}r) \qquad \phi(x) = 2 \int_0^\infty \frac{\mathrm{d}z \, z}{(z^2+1)^2} \left[1 - \frac{\sin(zx)}{zx} \right]$$

Real part shows strong Debye screening, identical to the singlet free energy. Landau damping contribute to the imaginary part.

* In the strong-coupling regime (Lattice QCD, T-Matrix approach...)

Obvious screening for the real part potential, the imaginary part larger than HTL results (large uncertainty)

Heavy Quark Potential at finite temperature

Extract the spectral functions from correlators with four different methods:

- 1. Gaussian fit;
- 2. HTL inspired fit;
- 3. Pade fit;

Ω[GeV]

4. Bayesian reconstruction (BR) method.

Large difference caused by the extraction strategy !

Lattice QCD with dynamical fermions indicate no screening in static quark-antiquark potential !

Also supported by:

S. Shi, K. Zhou, J. Zhao, S. Mukherjee, and P. Zhuang. PRD 105 (2022) 1, 1. X. Du, S. Liu, R. Rapp. Phys.Lett.B 796 (2019) 20-25.

Probe Heavy Quark Potential in experiments

The yield ratio of excited states may supply a chance to distinglush this two different potentials!

III. Heavy flavor rare/exotic states

- * Searching for rare charmed hadrons in the most "charming" system.
- Probe the inner structure of tetraquark states

 $N_{c\bar{c}} \sim T_A T_B \ \sigma_{c\bar{c}} \sim o(100)$ charm quarks in the QGP at LHC! $\Xi_{cc}, \ \Omega_{ccc}, \ B_c, \ X(3872), \ X(6900), \dots$

B_c in heavy-ion collisions

 \overline{c}

b

It's hard to produce a pair of $c\bar{c}$ and a pair of $b\bar{b}$ in one event of e^+e^- and pp collisions!

First observation of B_C mesons in heavy-ion collisions !

 $R_{AA} > 1$ indicate the production of B_c is largely enhanced in heavy-ion collisions! 1

B_c in heavy-ion collisions

Significant regeneration contributions with non-thermal bottom and charm quark!

Multi-heavy baryons in heavy-ion collisions

Coalescence mechanism:

$$\frac{dN}{d^2 \mathbf{P}_T dy} = C \int \prod_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,1} - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,2} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) W(\mathbf{x}, \mathbf{p}) \delta^{(2)}(P_T - p_{T,3} - p_{T,3}) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \cdot d\sigma_i \ f(r_1, p_i) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \ f(r_1, p_i) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \ f(r_1, p_i) \overset{\text{def}}{=} \sum_{i=1}^3 \frac{d^3 p_i}{(2\pi)^3 E_i} p_i \ f(r_1, p_i) \ f(r_1, p_i) \$$

The Wigner function is determined by the wavefunction (solve 3-body Schrödinger equation). Instead of taking a Gaussian distribution with the width as a free parameter.

Fully-heavy Tetraquark

The mass spectra can be explained by the potential model !

Fully-heavy Tetraquark

Fully-heavy tetraquark production in heavy-ion collisions : Coalescence model

• The four-lepton decay ($X(cc\bar{c}\bar{c}) \rightarrow l_1^+ l_2^- l_3^+ l_4^-$), well separated from the bulk back ground !

X(3872)

First observed by Belle collaboration (2003)

First evidence of X(3872) production in heavy-ion collisions, only one point at pT ~ 30GeV and with large uncertainty!

Can HIC help us to understand its inner structure ?

CMS Collaboration, PRL. 128 (2022) 3, 032001

X(3872)

- Production (at low pT) in heavy-ion collisions: Reveal the inner structure of X(3872)
- Dissociation of loosely bound molecular states in hadronic phase is important !
- Hadronic correlation (eg. DDbar) may reflect the interaction and possible molecular structure.

Summary

I. Open Heavy Flavor

- Heavy quark can help us to understand the hadronization mechanism in the QGP. Model comparison is very important to go forward.
- EPOS4+HQ can give a good description of all heavy flavor hadrons production in both pp and AA, from RHIC to LHC.

II. Quarkonium

The in-medium properties mostly can be absorbed in the finite-temperature potential, which with both real and imaginary part. Recent lattice QCD results and theoretical study show a very weak color screening but a large imaginary part.

III. Heavy flavor rare/exotic states

- The production of B_c , Ξ_{cc} , Ω_{ccc} , X(6900) are largely enhanced in heavy ion collisions!
- ✤ It is possible to probe the inner structure of tetraquark states, such as X(3872), in heavy ion collisions.

Looking forward to more experimental results!

Thanks for your attention!

Collisional and radiative energy loss in the hot medium

HQs suffer collisional and radiative energy loss in the QGP, can be simulated by Boltzmann/Langevin equations.

Spatial diffusion coefficient is found to be significantly smaller than previous quenched lattice QCD and recent phenomenological estimates—> thermalizated easily!

Collisional and radiative energy loss in the hot medium

HQs suffer collisional and radiative energy loss in the QGP, can be simulated by Boltzmann/Langevin equations.

Many approaches have been developed to simulate the radiative energy loss, such as the GLV, Higher Twist, AMY, ...

M. Gyulassy, P. Levai, and I. Vitev, Phys. Rev. Lett. 85, 5535 (2000) B. Zhang, E. Wang, and X. Wang, Phys. Rev. Lett. 93, 072301 (2004) . P. B. Arnold, G. D. Moore, and L. G. Yaffe, JHEP 06, 030 (2002). P. Gossiaux, J. Aichelin, T. Gousset and V. Guiho, J. Phys. G 37 (2010) 094019.

The radiative energy loss dominates at high pT while collisional energy loss play at low pT.

Energy loss hierarchy:
$$\Delta E_b < \Delta E_c < \Delta E_q < \Delta E_g$$

• Reflected to the R_{AA} : $R_{AA}(bottom) > R_{AA}(charm)$

+ Dead cone: $\theta_D = m_O/E$

Quarkonium real-time evolution in heavy-ion collisions

+ Schrödinger approach

For bottomonium, neglect regeneration, time-dependent Schrödinger equation. With a complex potential given by Lattice (M.Strickland, A.Rothkopf...). Include stochastic term, Schrödinger-Langevin equation(P.Gossiaux...).

Transport approach

(Boltzmann equation, THU model, P.Zhuang...; Rate equation, TAMU model, R.Rapp...)

Treat both dissociation and regeneration dynamically

Transition rates are given by cross-section, detail balance, heavy quark potential control the time and BE.

Developing a genuine first principles based framework of quarkonium real-time evolution ! Quantum effects/deal with resonance with cross-section?/...

+ Open quantum system

(N.Brambilla, M.Strickland, A.Rothkopf, Y.Akamatsu, M.Asakawa, P.Blaizot, P.Gossiaux, X.Yao, B.Müller....)

J. Blaizot, M. Escobedo, JHEP. 2018, 34 (2018). X. Yao and T. Mehen, et al. PRD 99 (2019) 096028;JHEP 21 (2020) 046. N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, PRD 96 (2017) 034021;PRD 100 (2019) 054025. S. Delorme, T. Gousset, R, Katz, and P. Gossiaux,EPJ Web Conf. 259 (2022) 12001; EPJA 58 (2022) 10,198. T. Miura,Y. Akamatsu, M. Asakawa, et al, PRD 87 (2013) 045016; PRD 91 (2015) 5, 056002.; PRD97 (2018), 014003.; PRD 101 (2020) 3,034011. D. Villar, J. Zhao, J. Aichelin, and P. Gossiaux, arXiv: 2206.01308, PRC accepted.

Quarkonium real-time evolution in heavy-ion collisions

Open quantum system

$$\hat{H}_{tot} = \hat{H}_{s} \otimes I_{e} + I_{s} \otimes \hat{H}_{e} + \hat{H}_{int},$$
Subsystem Environment Interaction
$$\frac{d\hat{\rho}_{tot}}{dt} = -i[\hat{H}_{tot}, \hat{\rho}_{tot}] \quad \text{von Neumann equation} \quad \hat{\rho}_{tot} = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|$$
Trace over the environment degrees of freedom, reduced density matrix
$$i\hbar\dot{\hat{\rho}}_{s}(t) = \text{Tr}_{e}[\hat{H}_{tot}, \hat{\rho}_{tot}] = [\hat{H}_{s}, \hat{\rho}_{s}] + \text{Tr}_{e}[I_{s} \otimes \hat{H}_{e} + \hat{H}_{int}, \hat{\rho}_{tot}] \quad \text{Quantum master equation}$$

Separation of time-scales:

Environment relaxation time scale $\tau_e \sim 1/T$. Intrinsic time scale of subsystem $\tau_{s} \sim 1/\Delta E$. Subsystem relaxation time scale $\tau_r \sim 1/\Pi \sim m^2/T^3$. • Markovian approximation: $\tau_e \ll \tau_r$, memory lose $\dot{\hat{\rho}}_{s}(t) = -i[\hat{H}_{s}, \hat{\rho}_{s}] + \sum_{i=1}^{N} \gamma_{i} \left(L_{i} \hat{\rho}_{s} L_{i}^{\dagger} - \frac{1}{2} L_{i}^{\dagger} L_{i} \hat{\rho}_{s} - \frac{1}{2} \hat{\rho}_{s} L_{i}^{\dagger} L_{i} \right) \quad Lindblad \ equation$ Equation $\tau_s \ll \tau_r$ Boltzmann Equation See review: Quantum optical regime A. Rothkopf, Physics Reports 858 (2020) _indblad Master Equation with transport coefficients 1-117. $au_{
ho} \ll au_{
m c}$ Quantum Brownian Motion Non-linear Stochastic Schrödinger Equation