

Studying of jet-induced diffusion wake in an expanding quark-gluon plasma

Zhong Yang

Tan Luo, Yayun He, Wei Chen, Longgang Pang and Xin-nian Wang

ECT 2023 Italy Trento

Jet in heavy-ion collisions

QGP(quark-gluon plasma): A deconfined strongly interacting matter that behaves like a perfect fuild

Jet-induced medium response

Jet-induced medium response in the form of Mach-cone-like excitation.

R.B.Neufeld. PRC79,054909(09')

 Width of front wake of Mach cone is related with viscous properties of QGP medium;

• Mach cone angle is sensitive to

EoS.

$$sin\theta = \frac{c_s}{v}$$

LBT: Linear Boltzmann Transport

$$p_1 \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4 (\sum_i p^i) + inelastic$$

Medium-induced gluon(HT):

$$\frac{dN_g}{dzd^2k_{\perp}dt} \approx \frac{2C_A\alpha_s}{\pi k_{\perp}^4} P(z)\hat{q}(\hat{p}\cdot u)sin^2 \frac{k_{\perp}^2(t-t_0)}{4z(1-z)E}$$
Tracked partons:
Jet shower partons
Thermal recoil partons
Radiated gluons
Negative partons(Back reaction induced by
energy-momentum conservation)

CoLBT-hydro model

1. LBT for energetic partons(jet shower and recoil)

2. Hydrodynamic model for bulk and soft hadrons: CLVisc

3. Sorting jet partons according to a cut-off parameter p_{cut}^0 hard partons: $p\partial f(p) = -C(p)$ $(p \cdot u > p_{cut}^0)$ soft and negative partons:

$$j^{\nu} = \sum_{i} p_i^{\nu} \delta^{(4)}(x - x_i) \theta(p_{cut}^0 - p \cdot u)$$

4. Updating medium information by solving the hydrodynamic equation with source term

$$\partial_{\mu}T^{\mu\nu}(x) = j^{\nu}(x)$$

5. The final hadron spectra:

(1) hadronization of hard partons within a parton recombination model

(2) jet-induced hydro response via Cooper-Frye freeze-out

Medium modifications of gamma-jets at LHC

Luo, Cao, He & Wang, arXiv:1803.06785

Jet-induced medium response can contribute to enhancement of soft hadrons within the jet cone

Jet fragmentation Function

Chen, Cao, Luo, Pang & Wang, arXiv: 2005.09678

Medium response and soft gluon radiation

Medium response leads to enhancement of soft hadrons in the direction of jet. (Jet shape, I_{AA}...) Medium-induced gluon radiation has the similar effect.

Medium response: $\delta f(p) \sim e^{-p \cdot u/T}$

Medium-induced gluon radiation: $\omega pprox \lambda^2 \hat{q}/2 \sim T$

It is difficult to separate their contribution to enhancemet of soft hadrons.

Diffusion wake: an unambiguous part of the jet-induced medium response. It can lead to depletion of soft hadrons in the opposite direction of the jet.

Azimuthal distribution of soft hadrons at RHIC

Chen, Cao, Luo, Pang & Wang, PLB777(2018)86

Azimuthal distribution of soft hadrons at LHC

Mixed event MPI(Initail Multiple parton intercation) subtraction:

Chen, Yang, He, Ke, Pang & Wang, PRL 127 (2021) 8, 082301

Motivation to study 3D structure of DW

(1) The previous studies of diffusion wake focus on the azimuthal angle.

(2) The jet is a 3D observable, thus the diffusion wake should also have a 3D strucutrue.

3D structure of diffusion wake

Yang, Luo, Chen, Pang, Wang, Phys.Rev.Lett., 2023,130(5):052301

Diffusion wake valley(DF-wake valley): a valley is formed on top of the MPI ridge due to the depletion of soft hadrons by jet-induced diffusion wake.

3D structure of diffusion wake

3D structure of diffusion wake

Double Gaussian fitting:
$$F(\Delta \eta) = \int_{\eta_{j1}}^{\eta_{j2}} d\eta_j F_3(\eta_j) (F2(\Delta \eta, \eta_j) + F_1(\Delta \eta))$$

 $F_2(\Delta \eta, \eta_j) = A_2 e^{(-(\Delta \eta + \eta_j)^2/\sigma_2^2)}$

Sensitivity to Jet energy loss

Yang, Luo, Chen, Pang, Wang, Phys.Rev.Lett., 2023,130(5):052301

Longer propagation length and larger jet energy loss leads to deeper DF-W valley.

The MPI ridge has a very weak and non-monotonic dependence on xjy due to the nonmonotonic dependence of the propagation length on xjy for minijets from MPI.

Sensitivity to shear viscosity

Yang, Luo, Chen, Pang, Wang, Phys.Rev.Lett., 2023,130(5):052301

Competition between increased radial flow and negative shear correction of longitudianal pressure in the energy momentum tensor leads to a slightly smaller MPI ridge and a deeper DF-wake valley in viscous hydro than in an ideal hydro.

Sensitivity to equation of state

The effective speed of sound is higher in eosq than s95.

High speed of sound \longrightarrow a larger Mach cone angle \longrightarrow shallower DF-wake valley \uparrow a stronger raidal flow \longrightarrow reduce soft hadrons \longrightarrow small MPI ridge

The signal in trigger-hadron correlation

Smearing effect may lead to the signal of diffusion wake disappearing in the rapidity distribution. This effect in Z-jet event is stronger than that in gamma-jet events due to initial radiation.

The smearing effect in Z-jet and gamma-jet

The differences of η and ϕ between trigger and jet in Z-jet events are larger than that in γ -jet events.

Using γ -hadron correlation to find signal of diffusion wake is a good choice if we don't want to reconstruct jet.

Summary

1. Jet-induced medium response can help us glean QGP properties.

2. With MPI subtraction, we can get signal of diffusion wake at LHC.

3. There is a unique signal of DF-wake in rapidity distribution of jethadron correlation.

4. By double Gaussian fit method, we studied DF-wake valley's sensitivity to jet energy loss, shear viscosity and EoS.

5. Using gamma-hadron correlation is a good chocie to look for the signal of diffusion wake.

Thanks for your attention

Back up

Energy density and quiver plot

Energy density and quiver plot

Medium response and soft gluon radiation

Medium response:
$$\delta f(p) \sim e^{-p \cdot u/T}$$

Medium-induced gluon radiation:

Formation time:
$$\tau_f = \frac{2\omega}{k_T^2}$$
 $k_T^2 \approx \tau_f \hat{q}$ $\tau_f \approx \sqrt{2\omega/\hat{q}}$
Mean-free-path limits the formation time: $\frac{\tau_f \leq \lambda \sim 1/T}{\omega \approx \lambda^2 \hat{q}/2 \sim T}$

It is difficult to separate contribution to enhancemet of soft hadrons from medium-induced soft gluon radiation or medium response.

Equation of state

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}$$

MPI Subtraction

(1) We first calculate the uniform correlation between Z/γ in one event and hadrons from another similar Z/γ -jet event.

(2) We assume the effect of the diffusion wake on the total Z/γ -hadron yield in the mixed events is negligible.

(3) Contributions from jets to the Z/ γ -hadron correlation in these mixed events, which are assumed to be the same as the integrated Z/ γ -hadron yield within an angle $|\Delta \varphi| > 1$ in Z/ γ -jet events in addition to the MPI background.

The signal in Z-hadron correlation

We can get the signal of the diffusion wake in **jet-hadron correlation**, but not in **Z-hadron** correlation.

How to enhance diffusion wake effect?

The structure of the azimuthal correlation depends on **the initial position and jet direction**, but smeared out in averaged events.

CoLBT-hydro results and experimental data are averaged over (1) the initial transverse position

(2) the direction of the Z/γ -jets

Deep learning to locate jet initial position

Jet-hadron correlation with engineered initial jet production positions

3D structure of diffusion wake after ML selection

Jet initial positions are selected by the ML associated 2D jet tomography

LBT: Jet-induced medium response

Diffusion wake: propagation of negative partons

CoLBT-hydro: Jet-induced medium response

The Mach-cone-like jet-induced medium response including the diffusion wake is clearly seen in the right panel.