

Universiteit Utrecht

SMASH

 $\tau_{\pi\pi}/\tau_{\pi}$

)0.8 GeV

ie Ifim/c

[GeV] [GeV] τ_πsT/η

Macroscopic QGP Properties Towards precision physics with global analyses

2112.13771, 2206.13522 (PRL) and 2305.00015 with Govert Nijs and Giuliano Giacalone

Wilke van der Schee CMS Week, ECT* Trento 29 May 2023

Outline

Three parts:

- 1. Neutron skin, also as an illustration of Bayesian analyses
- 2. Ultracentral collisions: specific and interesting physics
- 3. The shape of nuclei and preparing for oxygen collisions

Wilke van der Schee, CERN/Utrecht

Standard model of heavy ion collisions

Trajectum

- New public heavy ion code
- Originally Utrecht (now MIT/CERN)
- Fast
- Precise (all cuts equal to experiment)
- Scalable

Roman excavations in Utrecht in 1929

Initial stage (13)

Subnucleonic structure? (8)

Non-thermal flow? (2) with hydrodynamised initial stage

Fluctuations? (1)

Shape (2)

(# parameters)

Jonah Bernhard, Scott Moreland and Steffen Bass, Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma (2019) Govert Nijs, WS, Umut Gursoy and Raimond Snellings, A Bayesian analysis of Heavy Ion Collisions with Trajectum (2020)

Trajectum

1. Quite straightforward to use (see param file, right)

- 2. Includes analyse routine
 - Parallelised: can analyse unlimited number of events

cooperfryehadronizer{ freezeouttemp=153.456 rapidityrange=0.1

Neutron skin

WITH A SHORT INTRO ON BAYESIAN ANALYSIS

Performing a global analysis

Model depends on parameters non-linearly

- Run model on 1200 `design' points
- Use an emulator for any point in parameter space (GP)

Markov Chain Monte Carlo

- 653 data points
- Obtain posterior probability density of parameters

Compare posterior with data

• Can include high statistics run

Same technique: gravitational waves

Design parameter-observable correlations:

Full posterior distributions

- Some parameters better constrained than others
 - Correlations add important information, e.g. width constrained much more accurately if *q* parameter is known

Energy + viscosities + experiment

The neutron skin

- 1. Nucleus charge profile can be measured very accurately
 - Much more uncertainty in the profile of the neutrons
 - Relevant to understand cold QCD: EOS for neutron stars
- 2. Can we make progress using heavy ion collisions?
 - Isospin symmetry makes distinction neutron/proton difficult
 - Leverage accurate proton knowledge and obtain profile of nucleus?
- 3. How to obtain the profile of a nucleus?
 - Wood-Saxon + MC-Glauber + (model like Trento) \rightarrow dynamics
 - Currently state-of-the-art ...
- 4. Profile influences many observables
 - Interplay with bulk viscosity, Trento model etc
 - Likely need a full global analysis

The neutron skin - emulator

- 1. Plan is to vary *a* for neutrons and see if HIC can constrain it
 - *a* determines the neutron radius (approx. linear for RMS radius)
- 2. First step: what does the emulator say?
 - Using a precise global analysis (26 parameters, 3000 design points)

- Main change: cross section
 Measures 'size' of nucleus
- Both multiplicity and mean pT change
 Mainly for peripheral ('skin effect')
- 3. Small changes for other observables

The neutron skin - posterior

- 1. Three parameters are most sensitive to the neutron skin:
 - The nucleon width and the Trento parameters *p* and *q* 0
 - Small correlation with width (cross section is highly sensitive to *w*) 0
 - Very strong anticorrelation with *p*; centrality dependence is crucial 0

0.47

0.32

0.16

-0.19

-0.39

-0.57

 Δr_{np} [fm]

9

0

The neutron skin – final result

- **1**. Transform to neutron radius minus proton radius
- 2. Final result consistent but smaller than PREX II
- 3. Uncertainty is about 20% smaller than PREX II
- 4. Cross section is crucially important, but also centrality dependence
 - Important to vary Trento parameters in particular

Not competitive with weighted averages (from 14 different methods), but adds unique experimental determination of neutron skin

The shape of nuclei

Benjamin Bally, James Daniel Brandenburg, Giuliano Giacalone, Ulrich Heinz, Shengli Huang, Jiangoyng Jia, Dean Lee, Yen-Jie Lee, Wei Li, Constantin Loizides, Matthew Luzum, Govert Nijs, Jacquelyn Noronha-Hostler, Mateusz Ploskon, WS, Bjoern Schenke, Chun Shen, Vittorio Somà, Anthony Timmins, Zhangbu Xu and You Zhou Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart (2022)

Wilke van der Schee, CERN/Utrecht

Original motivation was to study Chiral Magnetic Effect (CME, not found...)

- Turns out that the background is significant, can be studied with **hydro** only
- Note that *Trajectum* is not fitted to RHIC energies, no absolute agreement
- Requires many events, percent level accuracy

STAR, Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ by the STAR Collaboration at RHIC (sept 2021) Govert Nijs and WS, Inferring nuclear structure from heavy isobar collisions using Trajectum (2021)

Extremely ultracentral collisions

Going to 0.01% centrality (we sample from 250M Trento events)

- Excellent match v2, v3 and pt fluct somewhat overpostdicted
- Extremely ultracentral is ideal regime to probe nuclear structure (also: better hydro!)

Unique physics

- Collisions at almost zero/constant impact parameter
- Constant volume, no impact parameter fluctuations, but temperature fluctuations

Significant reduction in uncertainty when taking ratio with 0-5% centrality class

- Stronger for temperature (depends on uncertain hydro starting time)
- Somewhat curious impact parameter uncertainty that is not reduced

Characteristic rise in mean transverse momentum

- Collective effect: thermalization, relation with temperature and entropy
- Somewhat curious dip around 2%, not understood

Fernando G. Gardim, Giuliano Giacalone and Jean-Yves Ollitrault, The mean transverse momentum of ultracentral heavy-ion collisions: A new probe of hydrodynamics (2019)

Characteristic decrease in pT fluctuations

- Below ~1% centrality the impact parameter doesn't vary anymore
- Subtle but physically important `bend'.

Full LHC exploitation : Oxygen run and SND

Special O-O and p-O run

- Physics motivations: study of emergence of collective effects in small systems; measurements relevant for cosmic rays (extensive air shower modelling), etc.
 Experiments requested ~ nb⁻¹ for each of OO and pO. ~ 1 week (including commissioning), most likely in 2024
 No impediment from accelerators but radiological impact of high-intensity oxygen beam requires
- impact of high-intensity oxygen beam requires
 mitigation measures and additional beams stoppers
 to be able to access Booster when LEIR operates.
 Needed resources allocated in this MTP

Bonus slide

Several systems with MAP settings (systematic analysis with ratios for some to appear)

¹⁶Oxygen and ²⁰Neon nuclear structure

Do we understand and/or need to understand the shape of O and Ne?

- Naively it seems so: large uncertainty 0
- Interesting by itself: combination of 4 or 5 alpha particles 0
- Work in progress: state-of-the-art Projected Generator Coordinate Method 0 (PGCM) results:

Mikael Frosini, Thomas Duguet, Jean-Paul Ebran, Benjamin Bally, Tobias Mongelli, Tomás R. Rodríguez, Robert Roth, Vittorio Somà Multi-reference many-body perturbation theory for nuclei II -- Ab initio study of neon isotopes via PGCM and IM-NCSM calculations (2021)

Systematic uncertainty could be a problem

What about the systematics?

- Barely significant difference between Oxygen and Neon elliptic flow within systematics
- **The ratio**, however, is accurate at percent level (!). Sweet spot at ~25% centrality
- But does it help us? Is the ratio what we need for nuclear structure?

Mikael Frosini, Thomas Duguet, Jean-Paul Ebran, Benjamin Bally, Tobias Mongelli, Tomás R. Rodríguez, Robert Roth, Vittorio Somà Multi-reference many-body perturbation theory for nuclei II -- Ab initio study of neon isotopes via PGCM and IM-NCSM calculations (2021)

Systematic uncertainty potentially a problem

 v_2 {2} (much) smaller when applying a $\Delta \eta$ cut

- More of a theoretical worry than an experimental one 0 (at least for CMS and ATLAS)
- Also straightforward (but expensive...) to solve theoretically 0
- Ratios quite robust, at least for central collisions 0

MAP settings

Resonance decays are potentially a problem

$v_2\{2\}$ (much) smaller when applying a $\Delta\eta$ cut

- More of a theoretical worry than an experimental one (at least for CMS and ATLAS)
- Also straightforward (but expensive...) to solve theoretically
- Ratios quite robust, at least for central collisions

Also subtleties how to impose d_{\min} ...

MAP settings

Discussion

Exciting progress using global analyses

- Heavy ion collisions towards percent level precision
- Still interesting measurement potential: extremely ultracentral
- Nuclear structure becoming relevant and interesting

Oxygen collisions to be performed at the LHC summer 2024!

Back-up

Nuclear structure and heavy ion collisions

Isobar collisions raise several questions:

- Are HIC sensitive to nuclear structure? Yes, but at percent level accuracy
- Are HIC understood at percent level? Historically likely not...

A more systematic approach

- Vary several approaches to nuclear structure
- Vary parameter settings within current posterior distribution
- Do we need an (isobar) ratio to make progress?

Oxygen (and Neon?) at CERN

- Independently interesting: the smallest droplet of QGP, cosmic rays (p-O collisions)
- Oxygen (Neon) specifically interesting: can we see 4 (5) clusters of alpha-particles?
- Neon Lead beam gas collisions foreseen at LHCb fixed target mode

Oxygen nuclear structure

- 1. Comparing two state-of-the-art microscopics with old profile (MAP run with 100M events per run)
 - 3pF: 3 parameter Wood-Saxon Fermi fit from 1976 with d_{min}
 - VMC: Variational Monte Carlo to sample wave function with advanced nucleon interaction
 - NLEFT: Nuclear Lattice Effective Field Theory, ground state with `pin holes' (no repulsive interaction implemented)
- 2. Elliptic flow does not distinguish VMC/3pF
 - Other observables can (e.g. mean transverse momentum)
- 3. Significant differences for central collisions

Giuliano Giacalone, Dean Lee, Govert Nijs and WS, to appear

D. Lonardoni, A. Lovato, Steven C. Pieper and R.B. Wiringa, Variational calculation of the ground state of closed-shell nuclei up to A=40 (2017)

Oxygen nuclear structure

Are results robust when varying parameter?

• Not really... nuclear structure similar to fluctuations

Oxygen nuclear structure

Can we do this more systematically?

- Parameters such as viscosities are highly correlated
- Take random sample of `probable' parameter settings
- Compute one standard deviation systematic uncertainty

Systematic uncertainty comparable to differences due to nuclear structure

The PbPb cross section and the centrality normalisation

Events (arb. units) 0. •

10⁻⁵

10⁻⁶

10⁻⁷

ALICE Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

f = 0.801, µ = 29.3, k = 1.6

NBD-Glauber fit $P_{\mu,k} \times [f N_{part} + (1-f)N_{coll}$

Data

40-50%

20-60%

30-40%

Cross section follows from

- Luminosity (van der Meer scan, dominates uncertainty)
- The number of collisions
- First measured in April 2022 (!)

ALICE can accurately measure collisions in 0-90% region

90-100% is estimated from NBD Glauber fit

Trajectum defines 100% by having at least one nucleon-nucleon interaction

- Now also a parameter, perhaps as a check, or to address experimental uncertainty
- We take a Gaussian prior of width 1%

Centrality normalisation trivially correlates **all** observables by shifting classes

- Probably best to marginalise over in MCMC Bayesian analysis
- Means ALICE should quote this uncertainty separately
- Important even for some central observables $(v_2{2})$

0.058

10⁻³

10-4

30-90%

500

1000

96 98 100 102 104

The nucleon width and the total PbPb hadronic cross section What is easier to measure the width than by simply measuring the size?

Thickness function nucleon

Thickness function Pb

Energy density function Pb

Isobar collisions at STAR

Five different cases simulated:

nucleus	R_p [fm]	$\sigma_p [{ m fm}]$	R_n [fm]	σ_n [fm]	eta_2	eta_3	$\sigma_{\rm AA}$ [b]	
$^{96}_{44}{ m Ru}(1)$	5.085	0.46	5.085	0.46	0.158	0	4.628	1.
$^{96}_{40}{ m Zr}(1)$	5.02	0.46	5.02	0.46	0.08	0	4.540	
$^{96}_{44}{ m Ru}(2)$	5.085	0.46	5.085	0.46	0.053	0	4.605	2.
$^{96}_{40}{ m Zr}(2)$	5.02	0.46	5.02	0.46	0.217	0	4.579	
$^{96}_{44}{ m Ru}(3)$	5.06	0.493	5.075	0.505	0	0	4.734	3.
$^{96}_{40}{ m Zr}(3)$	4.915	0.521	5.015	0.574	0	0	4.860	
$^{96}_{44}$ Ru(4)	5.053	0.48	5.073	0.49	0.16	0	4.701	4.
$^{96}_{40}{ m Zr}(4)$	4.912	0.508	5.007	0.564	0.16	0	4.829	
$^{96}_{44}$ Ru(5)	5.053	0.48	5.073	0.49	0.154	0	4.699	5.
$^{96}_{40}$ Zr(5)	4.912	0.508	5.007	0.564	0.062	0.202	4.871	5.

- e-A scattering experiments(STAR case 1)
- 2. Theory (finite-range liquid drop model, STAR 2)
- 3. DFT with neutron skin (spherical) [1]
- 4. DFT with neutron skin (deformed, $\beta_2 = 0.16$) [1]
- 5. As 4, but with β_2 from electric transition probability and β_3 from comparing AMPT with STAR [2]

Bonus: mean p_T and v_2 or v_3 correlations

A Bayesian MAP check: unfitted data:

- Triple differential observables:
- Correlation p_T and v_n

Anticipated by (simpler) Trento analysis:

Giuliano Giacalone, Bjorn Schenke and Chun Shen, Constraining the nucleon size with relativistic nuclear collisions (2021)

ALICE, Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations (2021)

Isobar collisions at STAR Varying the magnetic field

Idea: similar nuclei (same # of baryons), different charge

- Ruthenium generates a 10% larger magnetic field
- Ideal set-up to suppress background and detect Chiral Magnetic Effect (CME)
- Very precise blinded analysis by STAR:

Unfortunately (?), no CME detected

For each case we run 0.5M collisions except for case 5 (5M), 14M in total.

Theory: only change centrality bounds $dN_{ch}/d\eta$, centr. Ru / centr. Zr $\sqrt{s_{\rm NN}} = 0.2 \, {\rm TeV}$ 1 04 Trajectum 1.02 1.00 Ru (case 5) 0.98 20 30 40 50 60 70 10 "centrality" [%] v_2 {2}, centr. Ru / centr. Zr 1.010 $\sqrt{s_{\rm NN}} = 0.2 \, {\rm TeV}$ Trajectum 1.005 1.000 0.995 Ru (case 5) Zr (case 5) 0 990 20 30 40 50 60 70 0 10 "centrality" [%]

Isobar collisions at STAR - Multiplicity

Precision and non-conventional definition of centrality

Subtlety in STAR data: "centrality label" is different for Ru and Zr

STAR Isobar blind analysis, $\sqrt{s_{NN}} = 200 \text{ GeV}$

30 20 10

40

Centrality (%)

Ru+Ru

Ru+Ru / Zr+Zr

Ratio

0

Efficiency uncorrected tracks (|n|<0.5)

300

250

200 150

100

50

1.12

1.1

1.08 1.06

1.04

1.02

0.9

80 70

60 50

- Especially important for multiplicity (~7% effect)
- Hardly significant for other observables (<0.5% for v₂)

Centrality		Ru+Ru		Zr+Zr			
label $(\%)$	Centrality(%)	$N_{ m trk}^{ m offline}$	$\langle N_{\rm trk}^{\rm offline} \rangle$	Centrality($\%$)	$N_{ m trk}^{ m offline}$	$\langle N_{\rm trk}^{\rm offline} \rangle$	offlir
0 - 5	$0\!-\!5.01$	258500.	289.32	0 - 5.00	256500.	287.36	
5 - 10	5.01 – 9.94	216258.	236.30	5.00 - 9.99	213256.	233.79	\sim
10 - 20	9.94 - 19.96	151216.	181.76	9.99 - 20.08	147213.	178.19	
20 - 30	19.96 - 30.08	103151.	125.84	20.08 - 29.95	100147.	122.35	
30 - 40	30.08 - 39.89	$69.{-}103.$	85.22	29.95 - 40.16	$65.{-100}.$	81.62	
40 - 50	39.89 - 49.86	4469.	55.91	40.16 - 50.07	4165.	52.41	
50 - 60	49.86 - 60.29	2644.	34.58	50.07 - 59.72	2541.	32.66	
60 - 70	60.29 - 70.04	1526.	20.34	59.72 - 70.00	1425.	19.34	tio
70 - 80	70.04 - 79.93	$8.{-15}.$	11.47	70.00-80.88	$7.{-14}.$	10.48	Ва
20 - 50	19.96 - 49.86	44151.	89.50	20.08 - 50.07	41147.	85.68	

STAR, Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC (sept 2021)

Isobar collisions at STAR - Multiplicity

Better to directly look at (raw) data

- Experimental subtlety: crucial to correct for detector efficiency
- *Trajectum* subtlety: norm not fitted to RHIC energy: multiply mult by 1.21
- Experiment misses (many) very peripheral collisions: multiply P(N) by 1.31 to correct for this (not for ratio)
- Ratio experiment: normalise both and divide Subtle: experiment unreliable for $N_{trk} < 50$ Ratio theory: integrate **Ru+Zr experiment and Ru+Zr theory** for N_{trk} > 50 and require ratio to match Exp-theory comparison only depends on $N_{trk} > 50$

Only case 3, 4 and 5 match well over entire range (neutron-skin)

Ru+Ru/Zr+Zr

Glauber Case-3

43/28

200 N^{offline} 300

400

Data

100

0.95

0.9

correction

Initial state predictors

Full posterior distributions

LEIR

Exciting: oxygen-oxygen special run in 2024!

- Predictions for oxygen at RHIC (run already performed) and LHC 1.
 - Perhaps surprisingly narrow predictions, only fitted on PbPb data 0

Jasmine Brewer, Aleksas Mazeliauskas and WS: <u>/cern.ch/ooatlhc</u> or ht Govert Nijs and WS, Predictions and postdictions for relativistic lead and oxygen collisions with Trajectum (2021)

Correlation between v_2 and mean p_T

Vary some model parameters (for VMC only)

