

Initial state and nPDF experimental considerations

2023 CMS Heavy Ion Workshop

Jiayin Sun INFN Cagliari

- Parton densities are modified in nuclei
 - Shadowing: depletion of the effective number of gluons in low-*x*.
 - Antishadowing, EMC effects...
 - Poorly constrained from previous data

arXiv:1612.05741

Initial state effects

- Large number of small-*x* gluons, leading to a very dense saturated wave function known as the Color Glass Condensate (CGC)
 - Saturation scale $Q_s^2 \propto A^{1/3}$ (Lorentz contraction)
 - Expected in small x and small Q^2 region
- Initial state energy loss

Experimental approach

- Studied using pA collisions/ γA collisions
- Probes:
 - Dijets
 - W/Z, Drell-Yan
 - Direct photons
 - Heavy flavor
 - Light hadrons
 - VM in Ultra-Peripheral AA Collisions
- Observables:
 - R_{pPb} , R_{FB} , production cross-section, angular correlations...

Recent measurements

- Incomplete summary, LHC focused
- UPC results: dedicated talks on Tuesday
- New JLab precision data in EMC regionincluded in nCTEQ15HiX [arXiv:2012.11566]
- RHIC pion data constrain the gluon density down to $x \sim 10^{-3}$
- Recent LHC data provide constraints down to $x \sim 7 \times 10^{-6}$

Probes	ALICE	ATLAS	CMS	LHCb
Dijets		5 TeV	5 TeV	
W,Z,DY	W&Z @ 8.16TeV		W, Z&DY 8.16 TeV	Z 5, 8.16 TeV
Direct photon	$12 < p_{\rm T}^{\gamma} < 80 {\rm ~GeV}/c$	$20 < E_{\rm T}^{\gamma} < 500 { m ~GeV}/c$		
Heavy flavor	D mesons midrapidity			D, B mesons Fwd/bwd rapidity
Light flavor	$-1.3 < \eta < 0.3$		$ \eta < 1$	Charged hadrons, neutral pions, Forward rapidity

Dijet production in 5 TeV *p***Pb collisions**

- Dijet pseudorapidity distribution in *p*Pb collisions provides strong constraints on the gluon nPDFs
- Shadowing:
 - $\eta_{dijet} > 1.5$
- Antishadowing
 - $-0.5 < \eta_{dijet} < 1.5$
- EMC effects
 - $\eta_{dijet} < -0.5$
- Data included in EPPS21 and nNNPDF3.0
 - Significant reduction of uncertainty

PRL121(2018)062002

Dijet correlations and yields in 5 TeV pPb collisions

- Probe gluon saturation in nuclear gluon densities with dijet azimuthal angular distribution at forward rapidities, proposed by CGC
- Back-to-back dijets probe gluon fields in the lead nucleus at low momentum
- No significant broadening of azimuthal angular correlations
- Conditional yields in *p*Pb in forward region suppressed by $\sim 20\%$

1.6

1.2

PRC100(2019)034903

CT14

Ratio to (

W production in 8.16TeV pPb collisions

- Deviation from CT14 PDF
- Data favor calculations including nPDF effects
- Reduction of uncertainties of the quark and antiquark nPDFs in $10^{-1} < x < 10^{-3}$

reaches large |y| region ($x \sim 10^{-4}$ at forward region)

- ALICE data continue with the trend of CMS data
- Suppression at large rapidity
- Support shadowing of the nuclear PDFs
- Extend into EMC region

Z production in 8.16 TeV pPb collisions

- Forward region: consistent with calculations with PDFs and nPDFs
- Backward region: data higher than theoretical calculations
- R_{pPb} : forward data more precise than nPDF calculations

arXiv:2205.10213

- Consistent with pQCD calculations incorporating
 - free-nucleon PDF
 - nuclear-modified PDFs

JHEP2009(2020)076

Drell-Yan and Z production in 8.16 TeV pPb collisions

- Wide dimuon mass range
- $R_{\rm FB}$ of Z mass window more precise than nPDFs

• Drell-Yan produced predominantly via a quark – antiquark pair annihilation

JHEP 05 (2021) 182

Direct photon production in 8.16 TeV pPb collisions

shadowing and antishadowing

Small nuclear effects At larger $E_{\rm T}^{\gamma}$ the larger decreases the photon yield

LHCb D^0 production in 5 TeV *p*Pb collisions

LHCb D^0 production in 8.16 TeV pPb collisions

- Forward:
 - Suppression consistent with 5TeV D^0 result
 - Consistent with nPDF and CGC

- Backward:
 - Data lower than nPDF at high $p_{\rm T}$
 - Room for additional effects in the backward rapidity

LHCb D^0 production in 8.16 TeV pPb collisions

- Experimental proxies for x and Q^2
- Forms a continuous trend over wide *x* coverage
- Lower than nPDF at large x_{exp} and large Q_{exp}^2

arXiv:2205.03936

- $B^+ R_{pPb}$ forward: suppression down to ~0.7
- Backward: consistent with 1
- Consistent with nonprompt J/ψ and nPDFs

LHCb B mesons in 8.16TeV pPb collisions

Phys. Rev. D99 052011 (2019)

- Midrapidity
- Suppression for $p_T < 2$ GeV/c down to ~ 0.6
- Closer to 1 at higher $p_{\rm T}$
- Consistent with saturation models and nPDF

Prompt charged particles in *p*Pb and *pp* collisions at 5 TeV

> Continuous trend of R_{pPb} with x_{exp} at different Q_{exp}^2 across forward, middle and backward rapidity regions

$$Q_{exp}^2 \equiv m^2 + p_{\rm T}^2$$

$$x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{nn}}} e^{-\eta}$$

- More precise than nPDF calculations
- Consistent with charged hadrons

π^0 production in (very) forward rapidity

Forward di- π^0 azimuthal correlations in *pp/pA* collisions

- CGC predicts broadened away side peak and suppressed yields in pA collisions.
- Gaussian widths of the peak remain the same
- Observed a clear suppression of back-to-back yields
- Linear dependence of the suppression as a function of $A^{1/3}$

Conclusion and outlook

- Considerable progress: recent LHC precision data provide strong constraints to nPDF down to $x \sim 10^{-6} 10^{-5}$. Previously RHIC data can constrain nPDF to $x \sim 10^{-3}$
- Significant suppression confirmed in forward rapidity, suppression particularly strong in lower Q^2
- Tensions with nPDFs observed (LHCb data in backward rapidity, ALICE W data...)
- Still looking for signs of gluon saturation
- LHC Run3/4 prospects:
 - New *p*Pb run with increased statistics: more valuable measurement can become possible:
 - B hadrons, direct photon in forward rapidity, Drell-Yan

• New pO run: knowledge of nPDF in medium size nucleus crucial in understanding initial state physics

Backup

ALICE W in 8.16TeV pPb

arXiv:2204.10640

21

UPC

• arXiv:2303.16984

ALI-PREL-536133

UPC

ALICE

NLO CGC calculation by implementing threshold resummation

UPDATE: recent NLO CGC calculation can reproduce LHCb forward data

PhysRevLett.128.202302(2022)

24

LHCb π^0

arXiv:2204.10608

PHENIX φ meson in small systems PhysRevC.106.014908

