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[ Introduction ]

The effect of intense external magnetic fields on light mesons both at zero
and finite T/p has been studied in the framework of a variety of approaches to
low-energy QCD. They include the NJL-like models, quark meson models,
¥PT, QCD sum rules, etc.

In addition, several results for the ™ and p meson masses have been
obtained from LQCD calculations.

Most of the model calculations ignored the possible mixings induced by the
presence of the magnetic fields. Recently, our group has started to
Investigate the role of those mixings with the NJL model. In two previous
works (Carlomagno et al, Phys.Rev.D 106 (2022) 074002, Phys.Rev.D 108
(2023) 1, 016012) we have analyzed the possible T and p mixings.

However, as well-known, even at B=0 the axial vector mesons mix with the
pseudocalar ones. We extend our previous analysis by incorporating the axial
meson degrees of freedom.



[ Generalized NJL model at finite B ]

We start from the Lagrangian of the NJL model for 2 flavors in the presence
of an external e.m. field
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We consider a constant and uniform magnetic field along the z-axis

— To write A, |A“(x)=B/2(0,~x*,x',0) SG
B=BX, common | 44(x)=B (0,-x%,0,0) LGl
gauges are A*(x) = B (0,0, x},0) LG2

We bosonize the fermionic theory, introducing oy (x),m,(x), pp*(x), ap* and
integrating out the fermion fields. The bosonized Euclidean action reads
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We proceed by expanding the bosonized action in powers of the fluctuations
§o,(x), 6mp(x), 8pj (x), Sa;, (x) around the corresponding mean field (MF)
values. We assume that only t,0, = diag(a,,,0,4) 1S non-vanishing. Thus we

write

D, =diag(D""* D) +5D, .

where iD}y " =5 (x=x)(iB-M,)

with

M, =m_+0o;
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The effective actionis Sy, = Sios T 5mme ...

At MF level we have
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MF quark propagatolr in presence of mag. field




For MF quark MF 1
propagator we use SX’X,

= exp:iCDf (X, x’)] SMFf(x—x)

Schwinger phase (SP)
©,(x,x)=Q, [ d&, A ()

Gauge dependent

Translational and gauge invariant part

SMES (x — x') = jeip(x"x’) 55
p

In proper time
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To regularize the MF-action we sum and subtract the B=0 contribution. The
B-dependent piece turns out to be finite. The B=0 one is reqgularized
Introducing cutoff A (Magnetic Field Independent Regularization — MFIR)

The MF effective masses M;

equations

are obtained from the coupled set of gap
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Gauge independent

=0 ( SP cancel in calculation

of condensates)




MESON MASSES IN NJL AT FINITE MAGNETIC FIELD

At quadratic level the neutral meso

n contribution is

U
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The inverse meson

propagator G, (x, x") is G (%X 2
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The charged meson contribution is (for Q=+e , similar for Q=-¢e )

Squad,+

pos =%Id4x d*x' Y. SM(X)" Gy (X, X) SM'(X) M =n" p*H a*t
M,M’

The inverse meson propagator G, (x,x') is
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M
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Same polarization function as before

For neutral f=f'=u ord
For positive charged f=u, f'=d




We concentrate on the calculation a generic polarization function

i 0= N.tfistt P ] | where [ 527 —anpl i ][5
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Replacing we get

i (X, x) = e ‘X’X')J'e”(”') Coin (V) [ where |6} (V) = N, ItrD[S~;+V,2FM'S~;_'V,2FM]
Dy (%, X) = @ (X, X) + @ (X, X) Gauge invariant part
Meson SP (finite for charged, (only gauge and translational part
of propagator appear)

zero for neutral)

In what follows we consider the particular case M=M’=1r . Similar for other
cases but Lorentz structure more complicated. We introduce functions

Fo(x,q) and define the “transform” of ¢/1'(x,x")

cgl(q_@'): j []:Q(x@)] Ci?(CU,SU') Fo(z'.q")
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Which are the functions 7,(x,q) ? They appear in the expansion of the
fields in the presence of B

Neural (0= ) 2E a(@e " +he. ], q=(a".9"0".9°)
Charged % (%) _ZI j [a(@) F(x,q) +hc.], qa=",%x.9°
=0 X (2 ) 2E 4 \
/
Gauge dependent ngiju déiiﬁgznt
Ritus-like function
quantum n.
Replacing ¢/’ (x,x") interms of &' (v) =elT' (v}, v{) (due rot. x! —x2 and

boost x°-x3) we get

where

Gauge
invariant !




For neutral mesons

hyo(0:q',0) = 27)' 6" (g - ¢') 27)" 6" (g - v)

T

r Dig— O ' I
And m(q, ) (272') o (q Q)C,m(qlqu) with Cff (qL,qH)=CZ(Qi7Q‘2|H

Diagonal in “Fourier” space

For charged mesons

with
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Even for £ = 0 (Lowest LL) we cannot set v, =0. Zero—point motion




The same can be shown for all other cases. Thus,

Neutral mesons: G, (x,x") becomes diagonal (i.e. GMM’(CIJ_’CIH)) when
transformed to “Fourier” space

Charged meson: G, (x,x") becomes diagonal (i.e. G, (¥, g;)) when
transformed to “Ritus” space

When vector or axial vectors are involved the Minkowski structure gets
complicated. For example,

Neutral p

_ J00) uv (0) L uv 0) u v 0) u v 0) (4 v J7NY%
Gp”pv (qL’qH) - dpp,l 77|| + dpp,? ot dpp,3 q|| q|| + dpp/l 4,9, + dpp,5 (qL q|| + q|| qL)

dg;) k(qi,qﬂ?) are PT integrals which depend on B and quark masses

Charged p
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0 Be Be / 3
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The Gy, involving vector/axial vector mesons have to be contracted with
polarization vectors. A convenient choice for these vectors is
B} 1 . |
¢ = [0 (B0.0s) -7 (01:0) .
21, m,, q, =q tuiq
€(§,2) = ~1 (q3,O,O,E) m, = m’+q
Neutral m, 1 ) m, =m’+q /2
P 5\, 4.9 p
eo(q,3)——\/§mm q_(E,0,0,q ) 5 (Ole)er (0,1, Z,O):| E=\/m2+qi+q§
21
B} 1
E(I)U(Q7L) = E<E,Q1,Q2,Q3)
Atrest /(0,1 =(01 z‘,o)/\/E €(0,2)=(0,0,0,1)  €¢(0,3) :(0,1,—i,0)/\/5 e/(0,L) = (1,0,0,0)
€'(l,¢’,1) = ;[FL(E,0,0, ¢*) +m”(0,1,i5,0)] 0> -1
\/5’/771’/7?,
1
“(0,°,2) = —(¢*,0,0,E (>0
Charged e (ha2) m, (q )
1 T 11
e“(l,¢°,3) = ————|II_(E,0,0,p* )+ ———(0,1,is5,0) + m; (0,1,—is,0 0 >1
T | P (B0097)+ == (0 0is0) e, (02-35.0)
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The inverse propagator turns out to be of the form G, ,+ where

Neutral mesons

NN =0y, T, Ppr » Po1s Pb2s Po3s @y s 8pqs Qo Q3

with b=0,3

Charged mesons

N’N!=G+,1-[+,pL+ ,p1+,p2+’p3+’aL+’a1+,a2+ a3+

20 states

10 states

The matrix elements Gyy

have to regularized. We use MFIR (sum

regularized “B=0" contribution and subtract unregularized “B=0" on).

Masses m are found by looking for solutions of

Neutral mesons

Charged mesons

=0

detG(q,.q,)

detG(/,q,)

q°=E,q°=0

=0| E=Jm+@+1B,




The matrix G separates in blocks. We note that system should be invariant

under parity P and a rotation R in = around the 3-axis (direction of B). We call
the combined operation X;=R;(m) P. Applying this transformation to the

different states we see

1
M@ >= gl IM(Z,0)> where gl - {_1

M
M

=0, Py P11 P Ay
:72.1,021a|_1a11a3

¥ acting on g changes g3 by -g3

States with different ¢ cannot mix !

Charged
mesons

G=G, ® G, {

G, —»>mpa.,a,a

G(+) — 0, P, Py Psy

For £ = —1 only red
For £ = 0 red + blue

Neutral
mesons

(G(—,O) Ty P&y <
G >,

G_ )&,

G(+,0) —> 041 Pp 1S
Gy = Pos

0,3 Gty ™ Pos

We set ¢ = 0 to determine m that S, is a good quantum number. Further separation

Channel of
lowest "




[ Results ]

We use PT regularization for B=0 with the values of g, a, gy = gvo = 840, A
and m, fixed to reproduce the B=0 values of f,=92.4 MeV, m,=139 MeV,
mp m,= 775 MeV, m..=548 MeV together with M=400 MeV. We get

mg,=1.05 GeV with T, =0.5 GeV

Magnetlic catalysis Aif — ( AZE N AZ% )/ 2
" 3 ¢ _2m, _
N s S Zg =5 (@00 (@00 | +1
18 v S = (135x86)"2MeV
< 6 . <0;q; > BT_aSbl\gls: /8m

0.4 -

<, Qs >00=(—227 MeV)’

0.2 -

= LQCD ]
D017
00 02 04 06 08 10

o8 (65 9(B) /g =, +(1-x;) exp| =, (eB)’ |




Comparison of mass of lowest S,=0 state with LQCD results

| | ' | |
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o
I
o
I 06+ -
~~ ~ -
—~~ i
m e,
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— LQCD
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R Quenched Wilson
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Spin-isospin composition of the “n"

eB[GeV?] C(mo) C(ms) C(po,2) C(ps,2) C(ap,) C(as,)
0 0 0.9977 0 0 0 -0.0666
1 0.1414 0.9865 0.0574 i 0.01045 i -0.0124 -0.0578
Spin-flavor composition of the “r"
eB[GeV?] C(my,) C(my) C(pu2) C(paz2) Cla,,) Clagy)
0 0.7055 -0.7055 0 0 -0.0471 0.0471
1 0.7975 -0.5976 0.0480 1 0.03321 -0.0496 0.03211




CHARGED MESON SECTOR

PointLike
2
— B=0
5 E = (m ) —eB
A p p
e
)
+O_ !
= PointLike <~ ™, :
0.3 mpa - g cte -
0.2 Laco ko weas mpa-g(B) ]
{ | A Balietal'18 L e p
0.1+ m Hidakaetal'13 i
] * Andreichickov et al '17
0.0 - T ! T T :| T T T
0.0 0.2 0.4 0.6 0.8 1.0

eB [GeV?]

Our result differs from previous SU2 NJL calculations (Liu et al '15; Cao '19)
which find E,+ = 0 at a certain eB = 0.4 GeV? . They set p meson at rest (g =0)

and neglect Schwinger Phase.




E_(B)2-E_.(0)? [GeV?]

1.0 5 A |PointLike
0.8 -
0.6 -
0.4 -
0z LQCD
4 Dingetal '21 |
* Andreichikov et al '17
0.0 T T T T T T T T
0.0 0.2 0.4 0.6 0.8 a[lg]

eB [GeV?]

Inclusion of axials brings results closer to LQCD




[ Summary and Conclusions ]

We consider the mixings induced by B on the masses of some light
mesons in an extended NJL model with scalar, pseudoscalar, vector and
axial vector interactions.

We obtain expressions for all polarization functions for unequal fermion
masses in both neutral and charged case. Gauge independent.

Symmetries separate inverse propagator matrix in blocks.
The effect of the mixing on mass of that state (the pion”) is non-negligible.
Inclusion of vector and axial vector meson improve agreement with LQCD.

Effect of B-dependent couplings on neutral meson masses rather small

The mass of lowest p* decreases at low B but stabilizes at a non-zero
value. Different from other NJL calculations which do not treat properly SP

Effect of mpa mixing on mass of lowest charged pion” non-negligible. Gets
NJL results closer to those of LQCD.




