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Heavy Ion Collissions (HIC)
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Figure 1
(a) Space-time picture of a heavy ion collision, where the color indicates the temperature of the plasma formed. Dynamics takes place as
a function of proper time (blue curves), which is why plasma forms later at higher rapidities. (b) Snapshots of a central 2.76 TeV PbPb
collision at different times (different horizontal slices of the space-time picture on the left) with hadrons (blue and gray spheres) as well as
quark–gluon plasma (red ) (see http://web.mit.edu/mithig/movies/LHCanmation.mov). In both panels, at a given time the hottest
regions can be found at high rapidity close to the outgoing remnants of the nuclei, and the red lines indicate the approximate
longitudinal location of particles with rapidity y = 0, y = 1, and y = 6. Panel a adapted from Reference 7. Panel b adapted from
Reference 8.

order half the speed of light. As the discs recede from one another and the QGP produced between
them is expanding and cooling, new QGP is continually forming in the wake of each receding disc;
see Figure 1. This happens because the quarks and gluons produced at high rapidity are moving
at almost the speed of light in one of the beam directions, meaning that when enough time has
passed in their frame for them to form QGP a long time has passed in the lab frame, around 330
fm/c for rapidity y = 6.5. Throughout this QGP production process, each disc gradually loses
energy as partons with higher and higher rapidity separate from it and form QGP. In contrast,
the occasional high-pT particles seen in some collisions are produced by large-angle scattering at
very early times, when the incident nuclei collide.

The process ends once QGP has formed at the rapidities where most of the baryon number
from the incident nuclei ends up, which is expected to be about two units of rapidity less than that of
the incident nuclei, based upon measurements made in low-energy proton–nucleus ( pA) collisions
(9). So, the discs lose about 85% of their energy while varying amounts of QGP form at varying
rapidities over a range that extends between y = −6.5 and y = 6.5 in collisions at the LHC. A
good way to visualize the QGP production process described above is to consider the production
of each volume element of QGP in its own local rest frame, where the two colliding nuclei have
an asymmetric rapidity and energy, and then boost this volume of QGP back to the lab frame.

After production, each elemental volume of QGP expands in all directions. Looked at overall,
the droplet of fluid flows hydrodynamically, as its initial high pressure drives fluid motion, expan-
sion, and consequent cooling. This picture holds until the energy density at a given location in the
fluid drops below that within an individual hadron, at which point the fluid falls apart into a mist
of hadrons that scatter off one another a few times and then stream away freely. This mechanism
of particle production, via an intermediate epoch during which a hydrodynamic fluid forms and
expands, is quite different from the current understanding of particle production in elementary
collisions in which only a few new particles are created.
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a) Space-time picture of a HIC, color indicates 
T of the plasma formed

b) Snapshots of a central 2.76 TeV Pb+Pb collison. Blue and grey are 
hadrons, red is the quark-gluon plasma 
http://web.mit.edu/mithig/movies/LHCanmation.mov 

Busza, Rajagopal, van der Schee, Annu. Rev. Nucl. Part. Sci. 2018. 68:339-76
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Magnetic fields in HIC

Very intense magnetic 
fields at initial times

ELECTROMAGNETIC FIELD EVOLUTION IN . . . PHYSICAL REVIEW C 83, 054911 (2011)

AuAu, √SNN = 200 GeV,  b=10 fm,  t=0.01 fm/c
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AuAu, √SNN = 200 GeV,  b=10 fm,  t=0.2 fm/c
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AuAu, √SNN = 200 GeV,  b=10 fm,  t=0.5 fm/c
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FIG. 3. (Color online) Time dependence of the spatial distribution of the magnetic field By at times t created in Au + Au (
√

s = 200 GeV)
collisions with the impact parameter b = 10 fm. The location of spectator protons is shown by dots in the (x-z) plane. The level By = 0 and
the projection of its location on the (x-z) plane are shown by the solid lines.

our case is about 0.15 fm/c. For peripheral collisions this
time is even shorter.

Globally, the spatial distribution of the magnetic field
is evidently inhomogeneous and Lorentz-contracted along
the z axis. At the compression stage there is a single
maximum which in the expansion stage is split into two
parts associated with the spectators. In the transverse di-
rection, the bulk magnetic field is limited by two minima
coming from the torqued structure of the single-charge field
(see Fig. 1).

The possibility of attaining extremely high magnetic fields
in heavy-ion collisions was pointed out 30 years ago [41],
but there have been only two real attempts to estimate the
magnetic field for relativistic heavy-ion collisions [21,26].
In Ref. [21] the colliding ions were treated as infinitely thin
layers (pancake-like), and the results in the center of a Au-Au
collision eBy(0, 0, z) could be presented in a semianalytical
form. In Fig. 4 these estimates are confronted with our results.
It is clearly seen that the magnetic field in our transport model
for b = 10 fm is lower than the estimate from Ref. [21] for both
b =12 and 8 fm. This difference originates mainly from the fact
that to simulate rapidity degradation of pancake-like nuclei, a
heuristic function was assumed with making no difference
between surviving baryons and new created particles [21],

whereas in our case the dynamical hadron-string model is used
for both primary and subsequent interactions while keeping
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FIG. 4. (Color online) Time dependence of the |eB| field in the
center of the nuclear overlap region for Au + Au (

√
s = 200 GeV)

collisions from the HSD calculations. The dotted and dot-dashed
curves are from Ref. [21] at the impact parameters b = 8 and 12 fm,
respectively.

054911-5

V. VORONYUK et al. PHYSICAL REVIEW C 83, 054911 (2011)

 0

 1

 2

 3

 4

 5

-0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

e 
B

y(
x,

0,
0)

/m
π2

t [fm/c]

AuAu, √SNN = 200 GeV,  b=10 fm

x=0 fm
x=1 fm
x=2 fm
x=3 fm

FIG. 5. (Color online) Magnetic field evolution at the point x for
y = 0.

electric and baryonic charges and energy-momentum conser-
vation [36]. The approximation of Ref. [21] is reasonable for
first collisions but gets progressively worse with interaction
time as seen in Fig. 4. The difference in the shape of the
time dependence of the magnetic field for early times is
due to neglecting the finite size of the colliding nuclei in
Ref. [21].

Also, in our treatment, the self-interaction is excluded for
charges within the Lorentz-contracted hadron volume. Our
consideration treats more accurately the retardation effect
discussed above which constrains the contributions to the given
point from some charges. It is especially important for the field
contribution from participants.

It is of interest to note that in our transport model, the
spectator contribution to the magnetic field is practically
vanishing at t ≈1 fm/c (see Fig. 4). In subsequent times
the magnetic field eBy is formed essentially due to produced
participants with roughly equal number of negative and
positive charges which approximately compensate each other.
The visible effect in our approach is by an order of magnitude
lower than that in the estimate [21], which demonstrates the
essential role of the retardation in this interaction phase.

Furthermore, the magnetic field distribution in Ref. [26] is
calculated within the UrQMD model and the back reaction of
the field on particle propagation is disregarded. Nevertheless,
our results are quite close to those of Ref. [26].

In Fig. 5, the magnetic field evolution eBy(x, y = 0, z) is
shown as a function of the transverse coordinate x. Practically,
the difference between results for x = 0, 1, 2 fm is less than
20% except the boundary of the overlap region corresponding
to x ≈ b/2 ∼ 5 fm. One thus may conclude that the magnetic
field is rather homogeneous in the transverse direction.

The magnetic field component By(x = 0, y, z) along the
largest axis y of the “almond” (see Fig. 2) is presented in
Fig. 6 for different times. The similarity of all curves for y ∼<
4 demonstrates a high homogeneity of the created field By . It
is of interest that this field stays almost constant during !t ∼
0.1 fm/c.
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FIG. 6. (Color online) Time evolution of the magnetic field at the
point y for the central overlap point x = 0.

B. Energy density and its correlation with By

Along with a high magnetic field, the presence of a
quark-gluon phase is a necessary condition for a manifestation
of the chiral magnetic effect according to Refs. [15,19–23].
The phase structure of excited matter is essentially defined
by the energy density (cf. Ref. [42]). One can expect that for
energy densities ε ∼>1 Gev/fm3 the system is in a deconfined
phase. The evolution of the energy density of created particles
is presented in Fig. 7. Here the maximal energy density (in
the center of the colliding system) is ε > 50 GeV/fm3 at
the moment of maximal overlap of the nuclei. When the
system expands, it takes a sausage-like shape (or dumb-bell
shape if the energy density values are taken into consideration
additionally) and the energy density drops fast. But even at time
t ∼ 0.5 fm/c (last panel in Fig. 7), the local energy density is
seen to be above an effective threshold of a quark-gluon phase
transition ε ∼> 1 GeV/fm3. Different levels of the magnetic
field strength are plotted in the same figure. It is clearly seen
that the location of the maximum energy density correlates
with that for the magnetic field.

The variation of the energy density distribution with the
transverse coordinate x is shown in Fig. 8. Here the plotted
values of ε correspond to averages within the Lorentz-
contracted cylinder with |z| < 5/γ fm and radius R = 1 fm
centered at point x. One can see that the energy density changes
more strongly in x than the magnetic field (note the logarithmic
scale in Fig. 8). In particular, the maximal ε decreases by
a factor ∼20 when one proceeds from x = 0 to x = 3 fm;
and close to the spectator-participant boundary (at x ≈ 3 fm),
the energy density very quickly (within roughly ∼ 0.3 fm/c)
drops below the effective threshold for deconfinement, ε ∼
1 Gev/fm3.

One should note that the energy density should be calculated
in the rest system. The choice of a symmetric position of the
cylinder volume with respect to the z = 0 plane essentially
leads to an approximately vanishing total momentum of
particles inside this volume. The time averaged γ factor of
particles in this cylinder in the c.m. system is 〈γ 〉 ∼ 1.1. Note,
however, that the created particles are not in local equilibrium!
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Figure 6
(a) A peripheral heavy ion collision produces an approximately elliptical collision region (red shading). A gas of weakly interacting
particles would give a more or less isotropic distribution of final particles (red ), whereas a fluid would give rise to an anisotropic
distribution (blue), due to the difference in pressure gradients in the transverse directions. (b) In Reference 108, a hydrodynamic model
with several temperature-dependent parameterizations of η/s is compared with ALICE measurements of the anisotropy, as obtained by
the integrated Fourier coefficients vn (n = 2–4 from top to bottom), for charged particles with transverse momenta pT between 0.2 and
5.0 GeV in √sNN = 2.76-TeV collisions as a function of the centrality class (0% being head-on collisions) (107). For more off-central
collisions there is an increasing and large v2, giving a hint of the importance of hydrodynamic evolution. (c) This panel shows
event-by-event distributions of the v2 distribution for off-central collisions from Reference 107 compared with ATLAS measurements
(109). The results shown in panels b and c are two among many recent comparisons between increasingly precise measurements of the
anisotropy and increasingly sophisticated hydrodynamic calculations.

To quantify the measurement of the azimuthal momentum anisotropy, we perform a Fourier
transformation on the angular distribution of (charged) hadrons in the final state of the collision
(115), which results in the anisotropic flow coefficients v̄n, defined from

dN̄
dϕ

= N̄
2π

(

1 + 2
∞∑

n=1

v̄n cos[n(ϕ − $̄n)]

)

, 1.

where ϕ is the angle in the transverse plane, $̄n are the event plane angles (the first angle where
the nth harmonic component has its maximum multiplicity), and N̄ is the average number of
particles of interest per event. All these observables can in principle be measured as a function of
rapidity, centrality, and pT and, around midrapidity (in collider experiments), also differentially
for different particle species. The second to fourth harmonics are shown as a function of centrality
in Figure 6b, as extracted from the two-particle correlator with particles separated by a large gap
in rapidity.4 We return to the hydrodynamic curves below.

As anticipated, the system before hadronization indeed requires a full hydrodynamic simula-
tion in order to generate the sizable anisotropies found. Hydrodynamics is a gradient expansion,
assuming that a fluid is everywhere close to thermal equilibrium but allowing for small gradients
in both temperature and velocity field. In ideal (zeroth-order) hydrodynamics, these gradients
are ignored, which by assumption yields an isotropic plasma in the plasma’s local rest frame. For

4There are several ways to measure the vn found in Equation 1, most notably via measuring correlations among four, six, eight,
or more particles or via analyzing particles separated in rapidity. Both techniques are designed to exclude jet-like correlations
between nearby particles that come from the same jet shower or nearly back-to-back correlations from pairs of jets. We do not
review the (by now quite sophisticated) methods for extracting the vn (116). We also do not review the dependence of the vn
on pT or on hadron species (60), even though their dependence on particle momentum and mass provides important evidence
in support of their origin from a single hydrodynamic fluid with a common flow velocity, or their distribution around their
average value in each centrality class, which also supports a consistent picture (e.g., 63, 117, 118).
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248 D.E. Kharzeev et al. / Nuclear Physics A 803 (2008) 227–253

Fig. A.1. Magnetic field at the center of a gold–gold collision, for different impact parameters. Here the center of mass
energy is 62 GeV per nucleon pair (Y0 = 4.2).

Hence we only have to take into account the contribution of the participants which were origi-
nally there. It is know that these participants stay traveling along the beam axis according to the
following normalized distribution

f (Y ) = a

2 sinh(aY0)
eaY , −Y0 ! Y ! Y0. (A.7)

Experimental data shows that a ≈ 1/2, consistent with the baryon junction stopping mechanism
(see [63] and references therein).

The contribution of the participants to the magnetic field is hence given by

e #B±
p (τ,η, #x⊥) = ±ZαEM

∫
d2 #x′

⊥

Y0∫

−Y0

dY f (Y ) sinh(Y ∓ η)ρ±(#x′
⊥)θ∓(#x′

⊥)

× (#x′
⊥ − #x⊥) × #ez

[(#x′
⊥ − #x⊥)2 + τ 2 sinh(Y ∓ η)2]3/2 . (A.8)

We have evaluated the magnetic field numerically at the origin (η = 0, #x⊥ = 0) in which case
it is pointing in the y-direction. We took colliding gold ions (Z = 79, R = 7 fm) with different
beam rapidities (Y = 4.19 and Y = 5.36). The results are displayed in Figs. A.1 and A.2. Clearly
enormous magnetic fields are created in non-central heavy ion collisions.

For our purposes it is useful to have some analytic expression of the magnetic field. We can
find reasonable approximations for τ " 2R/ sinh(Y0). First we will consider the spectators, then
we will discuss an approximation for the participants. We will perform both approximations at
the origin (#x⊥ = 0 and η = 0). In that case the magnetic field is pointing in the y-direction,
e #B = eB#ey . Especially for large impact parameters the magnetic field at the origin will be a
good estimate for the magnetic field at the surface of the interacting region, since the magnetic
field in the overlap region is to a good degree homogeneous in the transverse plane.

Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)

Very intense magnetic 
fields at initial times in the 
collision

Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin, Phys. Rev. C 83, 054911 (2011)
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Motivation

The effect of a constant “classical” magnetic field background has
been studied since the seminal work of Schwinger (Phys. Rev. 82,
664 (1951))
In most theoretical studies, the background magnetic field is
idealized as static and uniform
In non-central HIC scenarios, strong magnetic fields emerge in
comparatively small regions of space, with spatial anisotropies
and fluctuations
We here propose a statistical model to study the effects of such
fluctuations
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Inhomogeneus magnetic fields: Statistical model

QED gauge fields Aµ(x), involving three physically different
contributions

Aµ(x) → Aµ(x) + AµBG(x) + δAµBG(x)

Here, ”BG” stands for classical background in contrast with photons
Aµ(x). We shall assume the following statistical properties for the BG
fluctuation

δAj
BG(x)δA

k
BG(x

′) = ∆Bδj,kδ
(3)(x − x′)

δAµBG(x) = 0
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Phenomenological scenario for the magnetic
fluctuations

Very strong magnetic fields B = ∇× ABG are generated locally
within a small spatial region L ∼

√
σ

On average ⟨B⟩ = ê3 B, but smaller transverse components δBx
and δBy exist such that field fluctuations are estimated on the
order of (δB)2 ∼ (δBx)

2 + (δBy )
2.

Therefore, by dimensional analysis

∆B ∼ (δB)2 L5 ∼ (δB)2 σ5/2
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Further estimations

The fraction f of the geometrical cross-section σgeom, defined by a
circle with a radius of r1 + r2 = 2R in a maximum peripheral
collision, and the cross-section σb for a peripheral collision with
impact parameter b

f =
σb

σgeom
=

(
Npart

2N

)2/3

The nuclear radius rA = r0N1/3, where N is the number of
nucleons per ion and r0 ∼ 1.25 fm.
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From the previous expressions

∆B ∼ π5/2 (δB)2 r5
0 N5/3

(
Npart

2N

)5/3

In peripheral heavy-ion collisions, the magnetic fluctuations in the
transverse plane |e δB| ∼ m2

π/4
For an Au+Au collision with N = 197, and if Npart/N = 1/2,

∆ ≡ e2∆B ∼ 2.6MeV−1

For less central collisions with Npart/N = 1/8

∆ ∼ 0.26 MeV−1
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Functional distribution of the magnetic fluctuations

The statistical properties for the magnetic fluctuations are reproduced
by a Gaussian functional distribution

dP
[
δAµBG

]
= Ne−

∫
d3x

[δAµBG(x)]
2

2∆B D
[
δAµBG(x)

]
The ensemble-average of over such fluctuations is defined by

O(x ;ABG) =

∫
dP[δAµBG]O(x ;ABG + δABG)
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Connected 2k-point correlations

As usual, the physical properties are characterized by connected
2k-point correlation functions

G(x1, . . . , x2k ;ABG) = ⟨Tψ(x1) . . . ψ̄(x2k )⟩c

=

(
−i

δ

δJ̄(x1)

)
. . .

(
i

δ

δJ(x2k )

)
lnZ [J̄, J;ABG]

∣∣
J=J̄=0

We are interested in the ensemble-average of such correlation
functions over the magnetic background fluctuations with respect to its
mean value AµBG + δAµBG
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Connected 2k-point correlations

The ensemble-average of such functions over the magnetic
background fluctuations with respect to its mean value AµBG + δAµBG

G(x1, . . . , x2k ;ABG) =

(
−i

δ

δJ̄(x1)

)
. . .

(
i

δ

δJ(x2k )

)
lnZ [J̄, J;ABG]

∣∣∣
J=J̄=0

clearly depends on the corresponding average of the logarithm of the
generating functional

lnZ [J̄, J;ABG] ̸= lnZ [J̄, J;ABG]
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The Replica Method

The basic idea in the Replica Method is to apply the identity [Mèzard
and Parisi, (1991); Kardar, Parisi and Zhang, (1986)]

lnZ [ABG] = lim
n→0

Z n[ABG]− 1
n

Initially developed in the context of spin-glasses, and latter applied in
quantum field theory for disordered condensed matter systems.
In this context, n-replicas of the original system are defined

ψ(x) → ψa(x) 1 ≤ a ≤ n

Enrique Muñoz (PUC Physics) QED in Noisy Magnetic Fields September 26, 2023 12 / 30



The Lagrangian
Physical Review D 107, 096014 (2023)

The Lagrangian for this model is a superposition of two terms

L = LFBG + LNBG

Fermions immersed in the average BG

LFBG = ψ̄
(
i/∂ − e /ABG − e /A − m

)
ψ − 1

4
FµνFµν

Fermions interacting with the classical background noise (NBG),
represented by the spatial fluctuations δAµBG(x)

LNBG = ψ̄
(
−eδ /ABG

)
ψ

Enrique Muñoz (PUC Physics) QED in Noisy Magnetic Fields September 26, 2023 13 / 30



The ensemble-averaged functional
Physical Review D 107, 096014 (2023)

We perform the statistical average over classical BG fluctuations under
the Gaussian functional measure dP[δAµBG],

Z n[ABG] =

∫ n∏
a=1

D[ψ̄a, ψa]

∫
D
[
δAµBG

]
e−

∫
d3x

[δAµBG(x)]
2

2∆B

×ei
∫

d4x
∑n

a=1(LFBG[ψ̄
a,ψa]+LNBG[ψ̄

a,ψa])

=

∫ n∏
a=1

D[ψ̄a, ψa]eiS̄[ψ̄a,ψa;ABG]
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The ensemble-averaged action
Physical Review D 107, 096014 (2023)

The statistical average leads to an effective fermion-fermion interaction
proportional to the magnitude of the BG magnetic fluctuations
self-correlation ∆B

S̄
[
ψ̄a, ψa;ABG

]
=

∫
d4x

(∑
a

ψ̄a (i/∂ − e /ABG − e /A − m
)
ψa − 1

4
FµνFµν

)

+i
e2∆B

2

∫
d4x

∫
d4y

∑
a,b

3∑
j=1

ψ̄a(x)γ jψa(x)ψ̄b(y)γjψ
b(y)δ3(x − y)

︸ ︷︷ ︸
Effective Fermion−Fermion interaction

In what follows, we shall neglect photons Aµ = 0 and will focus on the
fermions in the classical BG magnetic field B = ê3B

AµBG =
B
2
(0,−x2, x1,0)
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The Schwinger propagator

The propagator for the average BG magnetic field B = ∇× ABG

SF (x , x ′) = eiΦABG
(x ,x ′)

∫
d4k
(2π)4 e−ik ·(x−x ′)SF (k)

[SF(k)]a,b = −iδa,b

∫ ∞

0

dτ
cos(eBτ)

eiτ
(

k2
∥−k2

⊥
tan(eBτ)

eBτ
−m2+iϵ

)

×
{[

cos(eBτ) + γ1γ2 sin(eBτ)
]
(m + /k∥) +

/k⊥
cos(eBτ)

}
The metric tensor is splitted into two subspaces gµν = gµν∥ + gµν⊥ ,
such that

/k = /k⊥ + /k∥

k2 = k2
∥ − k2

⊥
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An alternative representation
Physical Review D 107, 096014 (2023)

The propagator can be expressed (exactly) in terms of a single
”master” integral and its derivatives

[SF(k)]a,b = −iδa,b

[(
m + /k∥

)
A1 + γ1γ2

(
m + /k∥

)
A2 +A3/k⊥

]

A1(k ,B) =

∫ ∞

0
dτeiτ

(
k2
∥−m2+iϵ

)
−i

k2
⊥

eB tan(eBτ)

A2(k ,B) =

∫ ∞

0
dτ tan(eBτ)eiτ

(
k2
∥−tB(τ)k2

⊥−m2+iϵ
)
= ieB

∂A1

∂(k2
⊥)

A3(k ,B) =

∫ ∞

0

dτ
cos2(eBτ)

eiτ
(

k2
∥−tB(τ)k2

⊥−m2+iϵ
)

= A1 + (ieB)2 ∂2A1

∂(k2
⊥)

2
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The inverse propagator
Physical Review D 107, 096014 (2023)

Clearly as B → 0, we have

lim
B→0

A1(k ,B) = lim
B→0

A3(k ,B) =
i

k2 − m2 + iϵ
lim

B→0
A2(k ,B) = 0

The inverse propagator

Ŝ−1
F (k) =

i
D(k)

[(
m − /k∥

)
A1 − γ1γ2

(
m − /k∥

)
A2 −A3/k⊥

]
D(k) = A2

3k2
⊥ −

(
A2

1 −A2
2

)(
k2
∥ − m2

)
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Feynman Diagrams for perturbation theory
Physical Review D 107, 096014 (2023)

Selfenergy Skeleton Diagram

Dyson equation for the dressed propagator

Ŝ−1
∆ (k) = Ŝ−1

F (k)− Σ̂∆(k)
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The selfenergy at first-order in ∆B

Physical Review D 107, 096014 (2023)

The self-energy diagram at first-order in ∆ = e2∆B

Analytical expression

Σ̂∆(q) = (i∆)

∫
d3p
(2π)3γ

j ŜF (p + q;p0 = 0)γj

= i(i∆)

(2π)3
[3(γ0q0−m)Ã1(q0)−γ1γ2(iπeB)(m−q0γ

0)Ã2(q0)]

Ã1(q0) ≡ ∫
d3pA1(q0,p3;p⊥)

Ã2(q0) ≡ ∫ +∞
−∞ dp3A1(q0,p3;p⊥=0)
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The (inverse) dressed propagator
Physical Review D 107, 096014 (2023)

After Dyson’s equation

Ŝ−1
∆ (k) = Ŝ−1

F (k)− Σ̂∆

From the ”free” propagator in the average BG field

Ŝ−1
F (q)= i

D(q)

[(
m−/q∥

)
A1(q)−γ1γ2

(
m−/q∥

)
A2(q)−iA3(q)/q⊥

]
The (inverse) dressed propagator is given by

Ŝ−1
∆ (q)= iz

D(q)

[(
m−/̃q∥

)
A1(q)−z3γ

1γ2
(

m−/̃q∥

)
A2(q)−iA3(q)/̃q⊥

]

Here, we defined the momenta q̃µ = (q0, z−1q), with an effective
refractive index v ′/c = z−1 due to the magnetic fluctuations.
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Renormalization factors
Physical Review D 107, 096014 (2023)

Wavefunction renormalization factor and refractive index

z = 1 +
3i∆
(2π)3

Ã1(q0)

A1(q)
D(q)

v ′

c
= z−1

Charge renormalization factor

z3 =
1 − iπ(i∆)(eB)

(2π)3
Ã2(q0)
A2(q)

D(q)

1 + 3i∆
(2π)3

Ã1(q0)
A1(q)

D(q)

Dressed propagator

S∆(q)=−iz−1 D(q)
D̃(q)

[(
m+/̃q∥

)
A1(q)+z3γ

1γ2
(

m+/̃q∥

)
A2(q)+A3(q)/̃q⊥

]
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Different magnetic field regimes
Physical Review D 107, 096014 (2023)

Very weak field limit eB/m2 ≪ 1

A1(k ,B)−A1(k ,0) =
−2i (eB)2 k2

⊥

[k2 − m2 + iϵ]4
+ O((eB)4)

Intermediate field intensity: Landau levels (x = k2
⊥/eB)

A1(k) = i
e−x

D∥

1 +
∞∑

n=1

(−1)n [L0
n(2x)− L0

n−1(2x)
]

1 − 2n eB
D∥


Ultra-intense field eB/m2 ≫ 1 (LLL)

A1(k) = i
e−k2

⊥/eB

k2
∥ − m2
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Asymptotic results
Physical Review D 107, 096014 (2023)

Very weak field limit eB/m2 ≪ 1

z = 1 + O(B4)

z3 = 1 + O(B4)

Ultra-intense field eB/m2 ≫ 1 (LLL)

z = 1 +
3
4
∆(eB)e−q2

⊥/eB

π
√

q2
0 − m2

z3 =
1 + ∆(eB)e−q2

⊥/(eB)

4π
√

q2
0−m2

1 + 3
4
∆(eB)e−q2

⊥/(eB)

π
√

q2
0−m2

lim
eB/m2→∞

z3 = 1/3
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Results
Physical Review D 107, 096014 (2023)
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Clearly z → 1 and z3 → 1 as q0/m ≫ 1: The quasi-particle renormalization due to magnetic
fluctuations tends to be negligible at high energies, but it can be quite significant at low energy
scales.
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Results
Physical Review D 107, 096014 (2023)
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A similar dependence on the fluctuation renormalization is observed in the refraction index v ′/c.
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Vertex corrections at O(∆2)

Diagrams contributing to the 4-point vertex

(a) (b)

(c)

Γ̂(a) =
∫ d3q

(2π)3
γ i SF(p−q)γ j⊗γi SF(p′−q)γj

Γ̂(b) =
∫ d3q

(2π)3
γ i SF(p−q)γ j⊗γi SF(p′+q)γj

Γ̂(c) =
∫ d3q

(2π)3
γ i SF(p+q)γ j⊗γi SF(p′−q)γj
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Vertex corrections
Physical Review D 107, 096014 (2023)

Γ̂ = 2Γ̂(a) + 2Γ̂(b) + 4Γ̂(c) = ∆̃(ψ̄γ iψ)(ψ̄γ iψ)

Renormalized ∆̃

∆̃=∆+2∆2
(
J (−,−)

2 +J (−,+)
2 +2J (+,−)

2 +(1−∂2
x )(1−∂2

y )J
(−,−)
3

+(1−∂2
x )(1−∂2

y )J
(−,+)
3 +2(1−∂2

x )(1−∂2
y )J

(+,−)
3

)
In terms of the integrals

J (λ,σ)
1 (p,p′) =

∫ d3q
(2π)3

A1(p+λq)A1(p′+σq)

J (λ,σ)
2 (p,p′) =

∫ d3q
(2π)3

q2
∥A1(p+λq)A1(p′+σq)

J (λ,σ)
3 (p,p′) =

∫ d3q
(2π)3

q2
⊥A1(p+λq)A1(p′+σq)
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Vertex renormalization
Physical Review D 107, 096014 (2023)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
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Conclusions and Prospects

We studied the effects of white noise spatial fluctuations in an otherwise uniform
background magnetic field, over the QED fermion propagator

At first order in ∆, the propagator retains its free form, thus representing renormalized
quasi-particles with the same mass m′ = m, but propagating in a ”dispersive medium” with
an index of refraction v ′/c = z−1, and effective charge e′ = z3e, where z and z3 depend
on the average field and its noise

Low energy components in the propagator (long-wavelength) are more sensitive to the
spatial distribution of the magnetic fluctuations, and hence experience a higher degree of
decoherence, thus reducing v ′/c = z−1. In contrast, the high-energy Fourier modes are
less sensitive to magnetic fluctuations.

If m∆ ≪ 1 (i.e. for m ≪ 0.4 MeV), one may in principle neglect the magnetic fluctuation
effects. However, if m∆ ∼ 1 (i.e. for m ∼ 0.4 MeV or larger), those effects may become
significant.

Non-perturbative scenario: to be discussed in the next talk by M. Loewe
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