Effective hadronic models applied to compact stars

Mariana Dutra^{1,2} + collaborators: Brett V. Carlson¹, Odilon Lourenço^{1,2}, and Jérôme Margueron²

¹ Instituto Tecnológico de Aeronáutica, ITA - SP - Brazil
 ² Institute of Physics of the 2 Infinities, iP2i - Lyon - France

Set, 27th 2023

- Motivation
- Combined analysis of the modelling reproducing low energy nuclear data
- Impact of the groups on the symmetry energy and its slope correlation
- Neutron star global properties
- Conclusions

PHYSICAL REVIEW C 107, 035805 (2023)

Low-energy nuclear physics and global neutron star properties

Brett V. Carlson¹, Mariana Dutra^{1,2}, Odilon Lourenço^{1,2}, and Jérôme Margueron² ¹Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, São Paulo, Brazil ²Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France

Motivation

- ^D The understanding of observational data:
 - * gravitational waves (emitted from binary NSs)
 - * x-ray emissions (from milli-second pulsars)
 - require for the most part the understanding of the NS core.

NS core
$$n_{\rm sat} \approx 2.7 \times 10^{14}$$

ata: nary NSs) oulsars) derstanding d

g cm⁻³

Neutron star (NS) layers

Credit: NASA's Goddard Space Flight Center / Conceptual Image Lab

- The understanding of observational data:
 - * gravitational waves (emitted from binary NSs)
 - * x-ray emissions (from milli-second pulsars)
 - require for the most part the understanding of the NS core.

To what extent do global properties of NSs require accurate experimental nuclear data as complementary constraints?

Neutron star (NS) layers

Credit: NASA's Goddard Space Flight Center / Conceptual Image Lab

Is the extrapolation of nuclear physics models to higher densities predominantly controlled by nuclear physics data at saturation density?

Motivation

Motivation

- Motivation Ø
- Combined analysis of the modelling reproducing low energy nuclear data
- Impact of the groups on the symmetry energy and its slope correlation
- Neutron star global properties
- Conclusions

PHYSICAL REVIEW C 107, 035805 (2023)

Low-energy nuclear physics and global neutron star properties

Brett V. Carlson⁽⁶⁾,¹ Mariana Dutra⁽⁶⁾,^{1,2} Odilon Lourenço⁽⁶⁾,^{1,2} and Jérôme Margueron⁽⁶⁾ ¹Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, São Paulo, Brazil ²Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France

To what extend low-energy nuclear data constrain NS?

To what extend low-energy nuclear data constrain NS?

- 415 nuclear physics models
 - Skyrme
 - * Relativistic Mean-Filed (RMF)
 - with nonlinear couplings (RMF-NL)
 - with density dependence coupling (RMF-DD)
- We assess the capacity of these models according to their ability to reproduce low-energy nuclear physics data.
 - * binding energies, charge radii, giant monopole energy + constraint in symmetry energy.

• Nuclear experimental data

Ζ	N	Nucleus	B (MeV)	7	λI	Nucleus	$E_{\rm GMR}^{\rm exp.}$ (MeV)
8	8	16 O	-127.6193(-)		1 V	INUCICUS	$\sqrt{m_1/m_{-1}}$
14	20	³⁴ Si	-283.4289(140)	82	126	²⁰⁸ Pb	13.50(10)
20	20	⁴⁰ Ca	-342.0521(-)				
20	28	⁴⁸ Ca	-416.0009(1)	[U. (Garg e	et al., PPNF	P 101, 55 (2018)]
20	32	⁵² Ca	-438.3279(7)	_			
20	34	⁵⁴ Ca	-445.3642(500)				
28	20	$^{48}Ni^{\#}$	-348.7275(5000)				
28	28	⁵⁶ Ni	-483.9956(4)				
28	50	$^{78}\mathrm{Ni}^{\#}$	-641.5470(6000)				
40	50	90 Zr	-783.8972(1)				
50	50	100 Sn	-825.2944(3000)				
50	82	132 Sn	-1102.8430(20)				
82	126	²⁰⁸ Pb	-1636.4301(11)				

[G. Audi et al., CPC 41, 030001 (2017)]

Ζ	N	nucleus	$R_{\rm ch}({\rm fm})$
8	8	¹⁶ O	2.6991(52)
20	20	⁴⁰ Ca	3.4776(19)
20	28	⁴⁸ Ca	3.4771(20)
40	50	⁹⁰ Zr	4.2694(10)
50	82	132 Sn	4.7093(76)
82	126	²⁰⁸ Pb	5.5012(13)

[I. Angeli et al., ADNDT 99, 57 (2013)]

- Combined Analysis
- G_i : global assessment \longrightarrow all nuclei contribute equally to the variance

$$\sigma_B^2 = \frac{1}{N_B} \sum_{i} \left[\frac{B_i(\exp) - B_i(\text{model})}{\delta_B} \right]^2$$

$$\sigma_{R_{ch}}^2 = \frac{1}{N_{R_{ch}}} \sum_{i} \left[\frac{R_{ch,i}(\exp) - R_{ch,i}(\text{model})}{\delta_{R_{ch}}(A_i)} \right]^2$$

$$\sigma_{\rm ISGMR}^2 = \frac{1}{N_{\rm ISGMR}} \sum_{i} \left[\frac{E_{\rm ISGMR,i}(\exp) - E_{\rm ISGMR,i}(\text{model})}{\delta_{\rm ISGMR}} \right]^2$$

<i>i</i> =	B	R_{ch}	Eisgmr
N_i	13	6	1
δ_i	2.0 (MeV)	$0.1A^{-1/3}$ (fm)	0.7 (MeV

7)	

Combined Analysis

$$\sigma_{B,S}^2 = \frac{1}{N_{B,S}} \sum_{i \in S} \left[\frac{B_i(\exp) - B_i(\operatorname{model})}{\delta_B} \right]^2$$
$$\sigma_{R_{ch},S}^2 = \frac{1}{N_{R_{ch},S}} \sum_{i \in S} \left[\frac{R_{ch,i}(\exp) - R_{ch,i}(\operatorname{model})}{\delta_{R_{ch}}(A_i)} \right]^2$$

D_i : detailed approach \longrightarrow the variances (B and R_{ch}) of the symmetric N = Z and asymmetric $N \neq Z$ nuclei are accumulated separately. The E_{ISGMR} remains the same.

(B, S): ¹⁶O, ⁴⁰Ca, ⁵⁶Ni, ¹⁰⁰Sn

 $(R_{ch}, S): {}^{16}O, {}^{40}Ca$

Combined Analysis

 D_i : detailed approach \longrightarrow the variances (B and R_{ch}) of the symmetric N = Z and asymmetric $N \neq Z$ nuclei are accumulated separately. The E_{ISGMR} remains the same.

$$\sigma_{B,A}^2 = \frac{1}{N_{B,A}} \sum_{i \in A} \left[\frac{B_i(\exp) - B_i(\text{model})}{\delta_B} \right]^2$$
$$\sigma_{R_{ch},A}^2 = \frac{1}{N_{R_{ch},A}} \sum_{i \in A} \left[\frac{R_{ch,i}(\exp) - R_{ch,i}(\text{model})}{\delta_{R_{ch}}(A_i)} \right]^2$$

(B, A): ³⁴Si, ⁴⁸Ca, ⁵²Ca, ⁵⁴Ca, ⁴⁸Ni, ⁷⁸Ni, ⁹⁰Zr, ¹³²Sn, ²⁰⁸Ph.

 $[e^{1}]^{2}$ (*R_{ch}*, *A*): ⁴⁸Ca, ⁹⁰Zr, ¹³²Sn, ²⁰⁸Pb

Combined Analysis

i	=	B	R _{ch}		
C	N_i		2		
3	δ_i	2.0 (MeV)	$0.1A^{-1/3}$ (fm)		
Λ	N_i	9	4		
A	δ_i	2.0 (MeV)	$0.1A^{-1/3}$ (fm)		

Combined Analysis

(i)
$$L = A$$
 if $\sigma < 1$,
(ii) $L = B$ if $1 < \sigma < 2$,
(iii) $L = C$ if $2 < \sigma < 3$,
(iv) $L = D$ if $\sigma > 3$.

Combined Analysis

(i)
$$L = A$$
 if $\sigma < 1$,
(ii) $L = B$ if $1 < \sigma < 2$,
(iii) $L = C$ if $2 < \sigma < 3$,
(iv) $L = D$ if $\sigma > 3$.

SLy4: BBA, BB:BB:A

Combined Analysis

(i)
$$L = A$$
 if $\sigma < 1$,
(ii) $L = B$ if $1 < \sigma < 2$,
(iii) $L = C$ if $2 < \sigma < 3$,
(iv) $L = D$ if $\sigma > 3$.

	G ₀ / D ₀	G ₁ / D ₁	G ₂ / D ₂	G ₃ / D ₃	G4 / D4
L	*	A to C	A or B	A or B	A or B
types of data	all	all	bind energy	bind energy and charge radii	bind energy, charge radii, and GMR energy

* discarded interactions with: (i) negative values of the sound speed above n_{sat} or (ii) negative value of the pressure in stellar matter

SLy4: BBA, BB:BB:A

Combined Analysis

(i)
$$L = A$$
 if $\sigma < 1$,
(ii) $L = B$ if $1 < \sigma < 2$,
(iii) $L = C$ if $2 < \sigma < 3$,
(iv) $L = D$ if $\sigma > 3$.

Total

	G ₀ / D ₀	G_1 / D_1	G ₂ / D ₂	G ₃ / D ₃	G4 / D4
L	*	A to C	A or B	A or B	A or B
types of data	all	all	bind energy	bind energy and charge radii	bind energy, charge radii, and GMR energy

* discarded interactions with: (i) negative values of the sound speed above n_{sat} or (ii) negative value of the pressure in stellar matter

SLy4: BBA, BB:BB:A

D_0/G_0	D_1	\mathbf{G}_1	D_2	G_2	D_3	G ₃	D_4	G_4
374	81	90	66	74	61	74	45	54

- Motivation Ø
- Combined analysis of the modelling reproducing low energy nuclear data Q
- Impact of the groups on the symmetry energy and its slope correlation

PHYSICAL REVIEW C 107, 035805 (2023)

Low-energy nuclear physics and global neutron star properties

Brett V. Carlson¹, Mariana Dutra^{1,2}, Odilon Lourenço^{1,2}, and Jérôme Margueron² ¹Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, São Paulo, Brazil ²Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France

$$E_{\text{sym},2}(n) = \frac{1}{2} \frac{\partial^2 e(n,\delta)}{\partial \delta^2} \bigg|_{\delta=0}$$

$$e_{\text{sym},2}(n) = E_{\text{sym},2} + L_{\text{sym},2}x + \frac{1}{2}K_{\text{sym},2}x^2 + \frac{1}{6}Q_{\text{sym},2}x^3 + \dots,$$

with $x = (n - n_{\text{sat}})/3n_{\text{sat}}$ and $\delta = (n_n - n_p)/n$.

 $L_{\text{sym},2}(n) = 3n_0 \frac{\partial E_{\text{sym},2}(n)}{-}$ дп

- Motivation Ø
- Combined analysis of the modelling reproducing low energy nuclear data Q
- Impact of the groups on the symmetry energy and its slope correlation Q
- Neutron star global properties
- Conclusions

PHYSICAL REVIEW C 107, 035805 (2023)

Low-energy nuclear physics and global neutron star properties

Brett V. Carlson¹, Mariana Dutra^{1,2}, Odilon Lourenço^{1,2}, and Jérôme Margueron² ¹Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, São Paulo, Brazil ²Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France

Main properties:

 $M \approx 1.2 - 2.1 M_{\odot}$

Average density $\approx 10^{15} \,\mathrm{g \, cm^{-3}}$ $R \approx 10 - 14 \,\mathrm{km}$ $B \approx 10^{12} - 10^{15} \,\mathrm{G}$

- Aftermath of a core-collapse supernovae,
- Isolated or in binary,
- Could be a pulsar: from radio to/or γ -rays,
- X-ray emission from accretion disk,
- Fast spinning.

[H. Heiselberg, arXiv:astro-ph/0201465 (2002)]

	D_0/G_0	D_1	G_1	D_2	G_2	D ₃	G ₃	D_4	G_4	D _{4sym}
Total	374	81	90	66	74	61	74	45	54	22
$M_{\rm TOV} \geqslant 1.6 M_{\odot}$	312	77	85	65	72	61	72	45	52	22
$M_{\rm TOV} \geqslant 2.0 M_{\odot}$	198	49	53	44	49	41	49	25	29	12

	D_0/G_0	D_1	G_1	D_2	G_2	D ₃	G ₃	D_4	G_4	D _{4sym}
Total	374	81	90	66	74	61	74	45	54	22
$M_{\rm TOV} \geqslant 1.6 M_{\odot}$	312	77	85	65	72	61	72	45	52	22
$M_{\rm TOV} \geqslant 2.0 M_{\odot}$	198	49	53	44	49	41	49	25	29	12

Tidal deformability

	D_0/G_0	D_1	G_1	D_2	G_2	D ₃	G ₃	D_4	G_4	D _{4sy}
Total $M_{\rm TOV} \ge 1.6 M_{\odot}$ $M_{\rm TOV} \ge 2.0 M_{\odot}$	374 312 198	81 77 49	90 85 53	66 65 44	74 72 49	61 61 41	74 72 49	45 45 25	54 52 29	22 22 12
	$\frac{\Delta \Lambda}{2}$	1.6 I _O)	(c				1.4 M (N	σ 1.6 Γ _Ο)	(d	

/m

- Motivation Ø
- Combined analysis of the modelling reproducing low energy nuclear data Q
- Impact of the groups on the symmetry energy and its slope correlation Q
- Neutron star global properties Ø
- Conclusions

PHYSICAL REVIEW C 107, 035805 (2023)

Low-energy nuclear physics and global neutron star properties

Brett V. Carlson¹, Mariana Dutra^{1,2}, Odilon Lourenço^{1,2}, and Jérôme Margueron² ¹Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA, 12228-900 São José dos Campos, São Paulo, Brazil ²Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622 Villeurbanne, France

Conclusions

- ✓ The group D_{4sym} that further reduces the uncertainty in the symmetry energy. We find $E_{\text{sym},2} = 31.8 \pm 0.7 \text{ MeV}$ and $L_{\text{sym},2} = 58.1 \pm 0.9 \text{ MeV}$.
- Setter low energy nuclear properties may not improve predictions for NS global properties.
- \checkmark The 1.4 M_{\odot} NS radius lies between 12 and 14 km for the "better" nuclear interactions.
- ✓ We plan to perform a complementary analysis including data from heavy-ion collision exploring densities above n_{sat} , the saturation density of nuclear matter.

ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Thank you!

Backup slides

$$\left\langle R_{ch}^{\rm emp} \right\rangle^2 \approx \left\langle R_p^2 \right\rangle + 0.64 \ {\rm fm}^2$$

tonian,

$$E_{\rm ISGMR} = \sqrt{\frac{m_1}{m_{-1}}},$$

$$m_1 = 2A \frac{\hbar^2}{m_N} \langle r^2 \rangle,$$

$$m_{-1} = -\frac{1}{2} \left[\frac{\partial}{\partial \lambda} \langle \lambda | \hat{Q} | \lambda \rangle \right]_{\lambda=0},$$

where $|\lambda\rangle$ is the ground-state energy of the constrained Hamil-

$$\hat{H}_{\text{constr.}} = \hat{H} + \lambda \hat{Q}.$$
 (11)

 $\hat{Q} = \sum_{i=1}^{A} r_i^2$ isoscalar monopole transition operator.

 σ_E

