Neutron P-wave superfluids in neutron stars and magnetars

Shigehiro YASUI

\in Sasaki Lab \subset WPI-SKCM ${ }^{2} \subset$ Hiroshima U.

Collaborators:
Muneto NITTA \in Keio U. $\cap\left(\right.$ WPI-SKCM ${ }^{2} \subset$ Hiroshima U.)
Daisuke INOTANI \in Keio U.
Takeshi MIZUSHIMA \in Osaka U.
Chandrasekhar CHATTERJEE \in Keio U. \rightarrow private company

World Premier International Research Center Initiative/WPI at Hiroshima University

\checkmark Cross-pollinates mathematical knot theory and chirality knowledge across disciplines and scales \checkmark Creation of designable artificial knotlike particles that exhibit highly unusual and technologically useful properties

Hadron \& nuclear physics group
PI: Chihiro SASAKI (HU, Uni. of Wroclaw)
PI: Kenta SHIGAKI (HU)
coPI: Chino NONAKA (HU)
coPI: Muneto NITTA (HU, Keio Uni.)

Contents

1. Introduction: what's neutron stars and superfluids?
2. Neutron ${ }^{3} P_{2}$ superfluids: view from nuclear physics
3. Example: Topological defects in neutron stars
4. Summary

Contents

1. Introduction: what's neutron stars and superfluids?
2. Neutron ${ }^{3} P_{2}$ superfluids: view from nuclear physics
3. Example: Topological defects in neutron stars
4. Summary

1. Introduction

Neutron stars

-Radius: ~10km

- Mass: $1.4-2 \mathrm{M}_{\text {Sun }}$
-Density: $10^{12} \mathrm{~kg} / \mathrm{cm}^{3}$

Ilustration: Shutterstock

- Gravity: 10^{11} x Earth gravity
-Rotation period: 30-1/100 sec.
- Magnetic field: $10^{13}-10^{15} \mathrm{G}$ (0.5 G on Earth)
- Neutrino radiation
- Gravitation waves

1. Introduction

Magnetar

Neutron star with strong magnetic fields

Name ${ }^{\text {b }}$	$P(s)$	$\begin{gathered} B^{\mathrm{c}} \\ \left(10^{14} \mathrm{G}\right) \end{gathered}$	$\begin{aligned} & \text { Age }^{\mathrm{d}} \\ & (\mathrm{kyr}) \end{aligned}$	$\begin{gathered} E^{\mathrm{e}} \\ 10^{33} \mathrm{erg} \mathrm{~s}^{-1} \\ \hline \end{gathered}$	$D^{\text {f }}$ (kpc)	$\begin{gathered} L_{X} \mathrm{~g} \\ 10^{33} \mathrm{erg} \mathrm{~s}^{-1} \end{gathered}$	Band ${ }^{\text {h }}$
CXOU J010043.1-721134	8.02	3.9	6.8	1.4	62.4	65	-
4U 0142+61	8.69	1.3	68	0.12	3.6	105	OIR/H
SGR 0418+5729	9.08	0.06	36,000	0.00021	~ 2	0.00096	-
SGR 0501+4516	5.76	1.9	15	- 1.2	\sim	0.81	R/H
SGR 0526-66	8.05	5.6				189	-
1E 1048.1-5937	6	3.9				49	OIR
		4.1		2,30	8.	0.2	H
	2. 07	3.2		21	4.	1.3	R/H
PSR J1622-4950	4.33	2.7			~ 9	0.4	R
	2.59	2.2			11	3.6	-
16	10.6	0.66			3.9	0.45	-
1RXS J170849.0-400910	11.01	4.7			3.8	42	O?/H
CXOU J171405.7-381031	3.82	5.0			~ 13	56	-
SGR J1745-2900	3.76	2.3			8.3	<0.11	R/H
SGR 1806-20	7.55	20	0.24	45	8.7	163	OIR/H
XTE J1810-197	5.54	2.1	11	1.8	3.5	0.043	OIR/R
Swift J1822.3-1606	8.44	0.14	6,300	0.0014	1.6	>0.0004	-
SGR 1833-0832	- 7.56	1.6	34	0.32	-	-	-
Sxift, 11834.9-0846	2.48	1.	9	-	4.2	<0.0084	-
1 E	11.79	7.	,	0.94	-. 5	84	-
(PS J18 -02 8)	0.327		103	810	. 0	19	
3XMM $\mathrm{J} 185246.6+003317$	11.56	<0.41	>1,300	<0.0036	~ 7	<0.006	
SGR 1900+14	5.20	7.0	0.9	26	12.5	90	H
SGR 1935+2154	5.24	2.2				-	-
1E 2259+586	60	0.99	23	. 05	3.2	17	OIR/H
SGR 0755-2933			-	-		-	-
SGR 1801-23		-	-	-		-	-
SGR 1808-20	-	-	-	-	-	-	-
AX 71818.8-1559	-	-	-	-	-	-	-
AX 71845.0-0258	6.97	-	-	-	-	2.9	-
SGR 2013+34	-	-	-	-	-	-	-

1. Introduction

outer crust 0.3-0.5 km

 ions, electronsinner crust 1-2 km

electrons, neutrons, nuclei

neutron-proton Fermi liquid few \% electron Fermi gas

inner core $0-3 \mathrm{~km}$ quark gluon plasma?
(7) ${ }^{(1)}$

1. Introduction

Inside of neutron stars?

outer crust $0.3-0.5 \mathrm{~km}$

 ions, electronsinner crust 1-2 km

Neutron matter: P-wave superfluids
 (1)

0.5-2.0 $\rho_{0} \quad$ electrons, neutrons, nuclei

neutron-proton Fermi liquid few \% electron Fermi gas

inner core $0-3 \mathrm{~km}$ quark gluon plasma?
(7) ${ }^{(3)}$

1. Introduction

Neutron (fermion) \rightarrow Superfluid

Note: Electrically charged fermion \rightarrow superconductor (electric current)
1937: ${ }^{4} \mathrm{He}$ atom (boson) superfluids (experiment)
1957 : Bardeen-Cooper-Schrieffer (BCS) theory
1972: ${ }^{3} \mathrm{He}$ atom (fermion) superfluids (experiment) spin triplet-P-wave Cooper pair (spin-fluctuation interaction?)
1995: Ru atom (boson) superfluids (experiment)
2003: ${ }^{40} \mathrm{~K}$ atom Bose-Einstein condensate (experiment)

1. Introduction

Neutron (fermion) \rightarrow Superfluid

Note: Electrically charged fermion \rightarrow superconductor (electric curront) ${ }^{4} \mathrm{He}$ superfluid
1937: ${ }^{4} \mathrm{He}$ atom (boson) superfluids (experim
1957 : Bardeen-Cooper-Schrieffer (BCS) ther
1972: ${ }^{3} \mathrm{He}$ atom (fermion) superfluids (experiment)
spin triplet-P-wave Cooper pair (spin-fluctuation interaction?)
1995: Ru atom (boson) superfluids (experiment)
2003: ${ }^{40} \mathrm{~K}$ atom Bose-Einstein condensate (experiment)

1. Introduction

Neutron (fermion) \rightarrow Superfluid

Note: Electrically charged fermion \rightarrow superconductor (electric curront) ${ }^{4} \mathrm{He}$ superfluid
1937: ${ }^{4} \mathrm{He}$ atom (boson) superfluids (experim
1957: Bardeen-Cooper-Schrieffer (BCS) ther
1960 Migdal: Neutron matter superfluids $\left({ }^{1} \mathrm{~S}_{0}\right)$ 1972: ${ }^{3} \mathrm{He}$ atom (fermion) superfluids (expern ant) spin triplet-P-wave Cooper pair (spin-fluc
1995: Ru atom (boson) superfluids (experim 2003: ${ }^{40} \mathrm{~K}$ atom Bose-Einstein condensate (e

1. Introduction

Neutron (fermion) \rightarrow Superfluid

Note : Electrically charged fermion \rightarrow superconductor (electric curront)

1937: ${ }^{4} \mathrm{He}$ atom (boson) superfluids (experim
1957 : Bardeen-Cooper-Schrieffer (BCS) ther

1960 Migdal: Neutron matter superfluids $\left({ }^{1} S_{0}\right)$

1972: ${ }^{3} \mathrm{He}$ atom (fermion) superfluids (ex $\mathrm{erm}^{n} \mathrm{n}^{2}$) spin triplet-P-wave Cooper pin-fluc 1966 Wolf: 1995: Ru atom th serim

1968 Tabakin: LS force can realize neutron ${ }^{3} \mathrm{P}_{2}$ superfluids!

F. Tabakin, Phys. Rev. 174, 1208 (1968).
M. Hoffberg, A. E. Glassgold, R. W. Richardson, M. Ruderman, Phys. Rev. Lett. 24, 775 (1970).
R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970).
T. Takatsuka, R. Tamagaki, Prog. Theor. Phys. 46, 114 (1971).
T. Takatsuka, Prog. Theor. Phys. 47, 1062 (1972).
T. Fujita, T. Tsuneto, Prog. Theor. Phys. 48, 766 (1972).
R. W. Richardson, Phys. Rev. D 5, 1883 (1972).

Contents

Finished!

1. Introduction: what's neutron stars and superfluids?
2. Neutron ${ }^{3} P_{2}$ superfluids: view from nuclear physics
3. Example: Topological defects in neutron stars
4. Summary

Contents

1. Introduction: what's neutron stars and superfluids? Next!
2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids: view from nuclear physics
3. Example: Topological defects in neutron stars
4. Summary
5. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)
neutron-neutron interaction
Attraction and repulsion in various scattering channels (exp.)
Takatsuka, Tamagaki, PTP Suppl. 112, 27 (1993)

6. Neutron ${ }^{3} P_{2}$ superfluids (nuclear physics)
neutron-neutron interaction
Attraction and repulsion in various scattering channels (exp.)
Takatsuka, Tamagaki, PTP Suppl. 112, 27 (1993)

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

neutron-neutron interaction

Attraction and repulsion in various scattering channels (exp.)

Takatsuka, Tamagaki, PTP Suppl. 112, 27 (1993)

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

${ }^{3} \mathrm{P}_{2}$: Most attractive channels between two neutrons at high density

Tensor-type condensate symmetric \& traceless ($\mathrm{J}=2$)

Tolerance to strong magnetic fields? Neutron ${ }^{3} P_{2}$ superfluids \rightarrow Rapid neutrino cooling? Topological stars?

2. Neutron ${ }^{3} P_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson, Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson,
Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...

${ }^{3} \mathrm{P}_{2}$

spin 1/2
neutron

Order parameter (neutron pair condensate)

$$
A(t, \boldsymbol{x})=A_{0}
$$

symmetric \& traceless amplitude ($2 \mathrm{~J}+1 \rightarrow \#$ d.o.f. 5)
$s_{x} \quad s_{y}$
0 neutron

P-wave

Cooper pair

$$
\left(q_{x}, q_{y}, q_{z}\right)
$$

O(2) cylinder円柱

UN: uniaxial nematic
($r=-1 / 2$)

$D_{2}-B N$: D_{2} biaxial nematic
$(-1<r<-1 / 2)$

$D_{4}-B N: D_{4}$ biaxial nematic

$$
(r=-1)
$$

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson, Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...
 neutron

S_{Z}

 neutron
P-wave

Cooper pair
Order parameter
(neutron pair condensate)
$A(t, \partial C)=A 0$
symmetric \& traceless amplitude
$(2 J+1 \rightarrow \#$ d.o.f. 5$)$
\times momentum
$\left(q_{x}, q_{y}, q_{z}\right)$

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson,
Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...

${ }^{3} \mathrm{P}_{2}$

spin $1 / 2 \quad$ spin 1 neutron

internal parameter $-1 \leq r \leq-1 / 2$

인

$D_{2}-B N$: D_{2} biaxial nematic
$D_{4}-B N: D_{4}$ biaxial nematic

$(r=-1 / 2)$	$(-1<r<-1 / 2)$		$(r=-1)$				
Phase	H	G / H	π_{0}	π_{1}	π_{2}	π_{3}	π_{4}
UN	$\mathrm{O}(2)$	$\mathrm{U}(1) \times[\mathrm{SO}(3) / \mathrm{O}(2)]$	0	$\mathbb{Z} \oplus \mathbb{Z}_{2}$	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_{2}

2. Neutron ${ }^{3} P_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson, Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...
 neutron

P-wave

 neutronCooper pair

Order parameter

 (neutron pair condensate)

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Tabakin (1968), Hoffenberg, Glassgold, Richardson,
Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...

${ }^{3} \mathrm{P}_{2}$

spin 1/2 neutron

$$
A(t, \boldsymbol{x})=A_{0}
$$

$\underset{\text { symmetric \& traceless amplitude }}{A(t, \boldsymbol{x})}$ ($2 \mathrm{~J}+1 \rightarrow$ \# d.o.f. 5)

O(2)
cylinder
円柱

UN: uniaxial nematic
spin 1/2 neutron

P-wave

$$
\operatorname{spin}\left(s_{x}, s_{y}, s_{z}\right)
$$

$$
\times \text { momentum }
$$

$$
\left(q_{x}, q_{y}, q_{z}\right)
$$

$$
(r=-1 / 2)
$$
 $(-1<r<-1 / 2)$
 $D_{2}-B N: D_{2}$ biaxial nematic

 $(r=-1 / 2)$

 $(r=-1 / 2)$
 Neutron Star = Topological Star (!?)

internal parameter $-1 \leq r \leq-1 / 2$

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Hamiltonian $\mathcal{H}=\int d \boldsymbol{r} \psi_{a}^{\dagger}(\boldsymbol{r}) \xi_{a b}(-i \boldsymbol{\nabla}) \psi_{b}(\boldsymbol{r})$
 Fermion theory

$$
\begin{aligned}
& +\frac{1}{2} \int d \boldsymbol{r}_{1} \int d \boldsymbol{r}_{2} V_{a, b}^{c, d}\left(\boldsymbol{r}_{12}\right) \psi_{a}^{\dagger}\left(\boldsymbol{r}_{1}\right) \psi_{b}^{\dagger}\left(\boldsymbol{r}_{2}\right) \psi_{c}\left(\boldsymbol{r}_{2}\right) \psi_{d}\left(\boldsymbol{r}_{1}\right) \\
& \xi(\boldsymbol{k})=\xi_{0}(\boldsymbol{k})-\frac{1}{2} \gamma_{\mathrm{n}}^{\mathrm{L} \cdot \mathrm{~S} \text { potential } \cdot \boldsymbol{B}} \text { spin-magnetic field coupling }
\end{aligned}
$$

Bogoliubov-de Gennes (BdG) theory

F. Tabakin, Single Phys. Rev. 174, 1208 (1968) M. Hoffberg, A. E. Glassgold, R. W. Richardson, M. Ruderman

Fermion
R. Tamagaki, Progress of Theoretical Physics 44, 905 (1970)
T. Takatsuka, R. Tamagaki, Progress of Theoretical Physics 46, 114 (1971) T. Takatsuka, R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993)
M. Baldo, J. Cugnon, A. Lejeune, U. Lombardo, Nucl. Phys. A536, 349 (1992)
O. Elgaroy, L. Engvik, M. Hjorth-Jensen, E. Osnes, Nucl. Phys. A607, 425 (1996)
V. A. Khodel, V. V. Khodel, J. W. Clark, Phys. Rev. Lett. 81, 3828 (1998) COO Or OUII M. Baldo, O. Elgaroey, L. Engvik, M. Hjorth- Jensen, H. J. Schulze, Phys. Rev. C58, 1921 (1998) V. V. Khodel, V. A. Khodel, J. W. Clark, Nucl. Phys. A679, 827 (2001) M. V. Zverev, J. W. Clark, V. A. Khodel, Nucl. Phys. A720, 20 (2003)
S. Maurizio, J. W. Holt, P. Finelli, Phys. Rev. C90, 044003 (2014)
S. K. Bogner, R. J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)
S. Srinivas and S. Ramanan, Phys. Rev. C94, 064303 (2016)
T. Mizushima, K. Masuda, M. Nitta, Phys. Rev. C93, 035804 (2016)
T. Mizushima, K. Masuda, M. Nitta, Phys. Rev. B95, 140503 (R) ()2017
T. Mizushima, S. Yasui, M. Nitta, Phys. Rev. Research2, 013194 (2020)
T. Mizushima, S. Yasui, D. Inotani, M. Nitta, Phy. Rev. C104, 045803 (2021)

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Bogoliubov-de Gennes (BdG) theory

 (fermion pair)

Magnetar

Normal neutron star

Temperature

2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics) Ginzburg-Landau (GL) theory
 (A: tensor-type order parameter, B: magnetic field)

Tabakin (1968), Hoffenberg, Glassgold, Richardson, Ruderman (1970), Tamagaki (1970), Takatsuka, Tamagaki (1971), Takatsuka (1972), ...

$f=A^{2}+A^{4}+A^{6}+A^{8}+B^{2} A^{2}+B^{4} A^{2}+B^{2} A^{4}+\ldots$

$f[A]=K^{(0)}\left(\nabla_{x i} A^{b a *} \nabla_{x i} A^{a b}+\nabla_{x i} A^{i a *} \nabla_{x j} A^{a j}+\nabla_{x i} A^{j a *} \nabla_{x j} A^{a i}\right) \quad \mathbf{A}^{2} \rightarrow$ kinetic term

$$
+\gamma^{(0)}\left(-3\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} A^{* 2}\right)+4\left(\operatorname{tr} A^{*} A\right)^{3}+6\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{* 2} A^{2}\right)+12\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{*} A A^{*} A\right) \quad \mathbf{A}^{6} \rightarrow \mathrm{SO}(5)\right. \text { symmetry breaking }
$$

$$
\left.-6\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A^{3}\right)-6\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} A^{* 3} A\right)-12\left(\operatorname{tr} A^{* 3} A^{3}\right)+12\left(\operatorname{tr} A^{* 2} A^{2} A^{*} A\right)+8\left(\operatorname{tr} A^{*} A A^{*} A A^{*} A\right)\right)
$$

$$
+\delta^{(0)}\left(\left(\operatorname{tr} A^{* 2}\right)^{2}\left(\operatorname{tr} A^{2}\right)^{2}+2\left(\operatorname{tr} A^{* 2}\right)^{2}\left(\operatorname{tr} A^{4}\right)-8\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A A^{*} A\right)\left(\operatorname{tr} A^{2}\right)-8\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A\right)^{2}\left(\operatorname{tr} A^{2}\right) \mathbf{A}^{8}\right.
$$

$-32\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{*} A^{3}\right)-32\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A A^{*} A^{3}\right)-16\left(\operatorname{tr} A^{* 2}\right)\left(\operatorname{tr} A^{*} A^{2} A^{*} A^{2}\right) \quad$ - Tricritical point
$+2\left(\operatorname{tr} A^{* 4}\right)\left(\operatorname{tr} A^{2}\right)^{2}+4\left(\operatorname{tr} A^{* 4}\right)\left(\operatorname{tr} A^{4}\right)-32\left(\operatorname{tr} A^{* 3} A\right)\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{2}\right)$

- Global stability

Cooper pair (boson-like)
$-64\left(\operatorname{tr} A^{* 3} A\right)\left(\operatorname{tr} A^{*} A^{3}\right)-32\left(\operatorname{tr} A^{* 3} A A^{*} A\right)\left(\operatorname{tr} A^{2}\right)-64\left(\operatorname{tr} A^{* 3} A^{2} A^{*} A^{2}\right)-64\left(\operatorname{tr} A^{* 3} A^{3}\right)\left(\operatorname{tr} A^{*} A\right)$ $-64\left(\operatorname{tr} A^{* 2} A A^{* 2} A^{3}\right)-64\left(\operatorname{tr} A^{* 2} A A^{*} A^{2}\right)\left(\operatorname{tr} A^{*} A\right)+16\left(\operatorname{tr} A^{* 2} A^{2}\right)^{2}+32\left(\operatorname{tr} A^{* 2} A^{2}\right)\left(\operatorname{tr} A^{*} A\right)^{2}$ $+32\left(\operatorname{tr} A^{* 2} A^{2}\right)\left(\operatorname{tr} A^{*} A A^{*} A\right)+64\left(\operatorname{tr} A^{* 2} A^{2} A^{* 2} A^{2}\right)-16\left(\operatorname{tr} A^{* 2} A A^{* 2} A\right)\left(\operatorname{tr} A^{2}\right)+8\left(\operatorname{tr} A^{*} A\right)^{4}$ $+48\left(\operatorname{tr} A^{*} A\right)^{2}\left(\operatorname{tr} A^{*} A A^{*} A\right)+192\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{*} A A^{* 2} A^{2}\right)+64\left(\operatorname{tr} A^{*} A\right)\left(\operatorname{tr} A^{*} A A^{*} A A^{*} A\right)$ $-128\left(\operatorname{tr} A^{*} A A^{* 3} A^{3}\right)+64\left(\operatorname{tr} A^{*} A A^{* 2} A A^{*} A^{2}\right)+24\left(\operatorname{tr} A^{*} A A^{*} A\right)^{2}+128\left(\operatorname{tr} A^{*} A A^{*} A A^{* 2} A^{2}\right)$ $\left.+48\left(\operatorname{tr} A^{*} A A^{*} A A^{*} A A^{*} A\right)\right)$
$\mathbf{B}^{2} \mathbf{A}^{2} \rightarrow$ L.O. $+\beta^{(2)} \boldsymbol{B}^{t} A^{*} A \boldsymbol{B}+\beta^{(4)}|\boldsymbol{B}|^{2} \boldsymbol{B}^{t} A^{*} A \boldsymbol{B} \quad \boldsymbol{B}^{4} \mathbf{A}^{2} \rightarrow$ Magnetic field higher order $+\gamma^{(2)}\left(-2|\boldsymbol{B}|^{2}\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} A^{* 2}\right)-4|\boldsymbol{B}|^{2}\left(\operatorname{tr} A^{*} A\right)^{2}+4|\boldsymbol{B}|^{2}\left(\operatorname{tr} A^{*} A A^{*} A\right)+8|\boldsymbol{B}|^{2}\left(\operatorname{tr} A^{* 2} A^{2}\right) \quad \boldsymbol{B}^{2} \mathbf{A}^{4} \rightarrow\right.$ Magnetic field higher order $+\boldsymbol{B}^{t} A^{2} \boldsymbol{B}\left(\operatorname{tr} A^{* 2}\right)-8 \boldsymbol{B}^{t} A^{*} \boldsymbol{A} \boldsymbol{B}\left(\operatorname{tr} A^{*} A\right)+\boldsymbol{B}^{t} A^{* 2} \boldsymbol{B}\left(\operatorname{tr} A^{2}\right)+2 \boldsymbol{B}^{t} A A^{* 2} A \boldsymbol{B}$ $\left.+2 \boldsymbol{B}^{t} \boldsymbol{A}^{*} A^{2} A^{*} \boldsymbol{B}-8 \boldsymbol{B}^{t} A^{*} A A^{*} A \boldsymbol{B}-8 \boldsymbol{B}^{t} A^{* 2} A^{2} \boldsymbol{B}\right)$
2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids (nuclear physics)

Ginzburg-Landau (GL) theory
(A: tensor-type order parameter, B: magnetic field)

magnetic field	zero	weak	strong
bulk phase	UN	$\mathrm{D}_{2}-\mathrm{BN}$	D_{4} - BN

S. Yasui, C. Chatterjee, M. Kobayashi, and M. Nitta, Phys. Rev. C100, 025204 (20行)
T. Mizushima, S. Yasui and M. Nitta, Phys. Rev. Research 2, 013194 (2020)

Contents

1. Introduction: what's neutron stars and superfluids? Finished!
2. Neutron ${ }^{3} \mathrm{P}_{2}$ superfluids: view from nuclear physics
3. Example: Topological defects in neutron stars
4. Summary

Contents

1. Introduction: what's neutron stars and superfluids?
2. Neutron ${ }^{3} P_{2}$ superfluids: view from nuclear physics

Next!
3. Example: Topological defects in neutron stars
4. Summary

3. Topo-defects in neutron stars

Various phases in neutron stars and magnetars

Half-integer vortex
Y. Masaki, T. Mizushima, M. Nitta, PRB105, L220503 (2022)

Domain walls
S. Yasui, M. Nitta, PRC101, 015207 (2020)
W_{2}^{13} in bulk $D_{4}-\mathrm{BN}$ phase $(\mathrm{t}=0.9, \mathrm{~b}=0.2)$

Soliton excitation

C. Chatterjee, M. Haberichter, M. Nitta, PRC96, 055807 (2017)

Vortex networks

G. Marmoni, S. Yasui, M. Nitta,
arXiv:2010/09032 [astro-ph.HE]

Topo-defects on surface
S. Yasui, C. Chatterjee, M. Nitta, PRC101, 025204 (2020)

${ }^{1} \mathrm{~S}_{0}-{ }^{3} \mathrm{P}_{2}$ mixing phase
S. Yasui, D. Inotani, M. Nitta,

PRC101, 055806 (2020)

3. Topo-defects in neutron stars

Various phases in neutron stars and magnetars

Half-integer vortex
Y. Masaki, T. Mizushima, M. Nitta, PRB105, L220503 (2022)

S. Yasui, M. Nitta, PRC101, 015207 (2020) W_{2}^{13} in bulk $D_{4}-\mathrm{BN}$ phase ($\mathrm{t}=0.9, \mathrm{~b}=0.2$)

Soliton excitation

C. Chatterjee, M. Haberichter, M. Nitta,

Vortex networks

G. Marmoni, S. Yasui, M. Nitta,
arXiv:2010/09032 [astro-ph.HE]

Topo-defects on surface S. Yasui, C. Chatterjee, M. Nitta, PRC101, 025204 (2020)

${ }^{1} \mathrm{~S}_{0}-{ }^{3} \mathrm{P}_{2}$ mixing phase
S. Yasui, D. Inotani, M. Nitta,

PRC101, 055806 (2020)

3. Topo-defects in neutron stars

boundlary condilition

3. Topo-defects in neutron stars

Ex.: D4-BN phase case

Center: UN phase 3. Topo-defects in neutron stars

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

UN phase ($\mathrm{t}=0.9, \mathrm{~b}=0$)
$\left(S^{1} \times S^{1}\right) / Z_{2}$

Center: UN phase 3. Topo-defects in neutron stars

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$$
\left(S^{1} \times S^{1}\right) / Z_{2}
$$

Tensor field projected on surface

Defect=Vortex

Center: UN phase 3 . Topo-defects in neutron stars

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

Defect=Vortex $\left(S^{1} \times S^{1}\right) / Z_{2}$
latitude
0.5
$\begin{array}{ccc}0.0 & 1 & 2 \\ & \\ & \\ \text { longitude } \varphi\end{array}$

Center: D_{2}-BN phase. Topo-defects in neutron stars

Tensor field projected on surface Defect=Vortex

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$D_{2}-\mathrm{BN}$ phase $(\mathrm{t}=0.9, \mathrm{~b}=0.15)$
$\left(S^{1} \times S^{1}\right) / Z_{2}$
0.5
0.4
0.3
0.2
0.1

0
latitude θ
1.0

$0.0 \frac{1}{0}$| longitude φ |
| :---: |

Center: D_{2}-BN phase Topo-defects in neutron stars
Weak magnetic field .

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

Tensor field projected on surface
Defect=Vortex $\left(S^{1} \times S^{1}\right) / Z_{2}$

$$
D_{2}-\mathrm{BN} \text { phas } \quad 0.9, \mathrm{~b}=0.15
$$

Center: D_{2}-BN phase Topo-defects in neutron stars
Weak magnetic field .

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$D_{2}-\mathrm{BN}$ phac $\left.\quad 0.9, \mathrm{~b}=0.15\right)$ 3.0
2.0
2.0
latitude θ

0.5
0.4
0.3
0.2
0.1

0
$\left(S^{1} \times S^{1}\right) / Z_{2}$

Center: D_{4}-BN phase Topo-defects in neutron stars

Tensor field projected on surface

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$D_{4}-\mathrm{BN}$ phase ($\mathrm{t}=0.9, \mathrm{~b}=0.2$)

Defect=Vortex $\left(S^{1} \times S^{1}\right) / Z_{2}$

Center: D_{4}-BN phase Topo-defects in neutron stars

Strong

magnetic field
Tensor field projected on surface

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$D_{4}-\mathrm{BN}$ pha $\left.=0.9, \mathrm{~b}=0.2\right)$

Center: D_{4}-BN phase Topo-defects in neutron stars

Strong

 magnetic fieldTensor field projected on surface

$$
\boldsymbol{A}_{n} \equiv A \boldsymbol{n}
$$

$D_{4}-\mathrm{BN}$ pha $\left.=0.9, \mathrm{~b}=0.2\right)$ $3.0(\theta, \varphi)$

Defect=Vortex $\left(S^{1} \times S^{1}\right) / Z_{2}$

- 6 ogical charge

 +2

3. Topo-defects in neutron stars

Poincaré-Hopf theorem (hairy ball theorem)

M: manifold (directed), v: vector field
zero point of v (index= ± 1)

Euler characteristic X=2 (sphere)

3. Topo-defects in neutron stars

Poincaré-Hopf theorem (hairy ball theorem)

M: manifold (directed), v: vector field

$\operatorname{index}_{p} v=\chi(M)$
Euler characteristic X=2 (sphere)

Center: UN phase \quad. Center: \mathbf{D}_{2}-BN phase \quad Center: $\mathbf{D}_{4}-\mathbf{B N}$ phase .

Index:

3. Topo-defects in neutron stars

Poincaré-Hopf theorem (hairy ball theorem)

M: manifold (directed), v: vector field

$\operatorname{index}_{p} v=\chi(M)$

Euler characteristic X=2 (sphere)

Center: UN phase . Center: \mathbf{D}_{2}-BN phase ${ }^{\circ}$ Center: $\mathbf{D}_{4}-\mathbf{B N}$ phase

Creation of vortex pairs

3. Topo-defects in neutron stars

What's there in neutron ${ }^{3} \mathrm{P}_{2}$ superfluids on neutron star?

Bulk + Boundary \rightarrow
 (Center) $\left(S^{1} \times S^{1}\right) / Z_{2}$

3. Topo-defects in neutron stars

What's there in neutron ${ }^{3} \mathrm{P}_{2}$ superfluids on neutron star?

Poincaré-Hopf theorem
 Bulk + Boundary \rightarrow Vortex
 (Center)
 $\left(\mathrm{S}^{1} \times \mathrm{S}^{1}\right) / \mathrm{Z}_{2}$
 on surface $\#(+)-\#(-)=2$

3. Topo-defects in neutron stars

What's there in neutron ${ }^{3} \mathrm{P}_{2}$ superfluids on neutron star?

Poincaré-Hopf theorem
 Bulk + Boundary \rightarrow Vortex
 (Center)
 $\left(\mathrm{S}^{1} \times \mathrm{S}^{1}\right) / \mathrm{Z}_{2}$
 on surface
 \#(+) - \#(-) = 2

Analogous to boojums (defects) in ${ }^{3} \mathrm{He}$ superfluids and liquid crystals
Cf. N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979)
M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. S. R. Jampani, J. P. F. Lagerwall,

Surface Defects:
(c)

(f)

(g)

3. Topo-defects in neutron stars

What's there in neutron ${ }^{3} \mathrm{P}_{2}$ superfluids on neutron star?

Surface Defects:
(c)

(f)

Analogous to boojums (defects) in ${ }^{3} \mathrm{He}$ superfluids and liquid crystals
Cf. N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979)
M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. S. R. Jampani, J. P. F. Lagerwall, Journal of Physics: Condensed Matter 29, 133003 (2017)

Poincaré-Hopf theorem applied to nuclear and astrophysics!

4. Summary

(1) Neutron ${ }^{3} P_{2}$ superfluids in neutron stars have various phases, such as $U N, D_{2}-\mathrm{BN}$, and $\mathrm{D}_{4}-\mathrm{BN}$.
(2) Structures existing in neutron ${ }^{3} \mathrm{P}_{2}$ superfluids:

- Topological defects on surface
- Quasistable domain wall
- Quantum vortices (glitches)
$-{ }^{1} S_{0}-{ }^{3} P_{2}$ coexistence phase
- Mixed biaxial nematic (MBN) phase
- Ferromagnetic (FM) phase
(3) Neutron star $=$ topological star (!?)
(4) We should explore topology in neutron stars!

Appendix

Phase diagram?
 - Thermodynamic properties

- Transport coefficients (cooling process)
- Other New phases
- Hyperon matter

Topological objects?
- Fractionally quantized vortices

- Boojum
M. Cipriani, W. Vinci and M. Nitta, Phys. Rev. D 86, 121704 (2012)
G. Alford, G. Baym, F. Fukushima, T. Hatsuda, M. Tachibana, Phys. Rev. D99, 036004 (2019)
C. Chatterjee, M. Nitta, S. Yasui, Phys. Rev. D99, 034001 (2019)
A. Cherman, S. Sen, L. G. Yaffe, Phys, Rev, D100, 034015 (2019)
G. Maromorini, S. Yasui, M. Nitta, arXiv:2010.09032 [astro-ph.HE]

臨界指数の評価

BdG

GL

red，blue．．．Landau parameter $G_{0}^{(n)}=-0.7,-0.4$

ドメインウォール

Surface energy density（summary picture in next page．．．）

bulk UN phase	$\mathrm{W}^{2}(\mathrm{UN})$			$\mathrm{W}^{1}(\mathrm{UN})$			W^{3}（UN）		
angle	$-1 / 6 \leq(\phi \bmod \pi) / \pi<1 / 6$			$1 / 6 \leq(\phi \bmod \pi) / \pi<1 / 2$			$1 / 2 \leq(\phi \bmod \pi) / \pi<5 / 6$		
direction	W_{1}^{2}	W_{2}^{2}	W_{3}^{2}	W_{1}^{1}	W_{2}^{1}	W_{3}^{1}	W_{1}^{3}	W_{2}^{3}	W_{3}^{3}
$\sigma\left[\mathrm{keV} / \mathrm{fm}^{2}\right]$	0.0154	0.0199	0.0154	0.0199	0.0154	0.0154	0.0154	0.0154	40.0199
bulk D_{2}－ BN phase	$\mathrm{W}^{2}\left(\mathrm{D}_{2} \mathrm{BN}\right)$			$\mathrm{W}^{13}\left(\mathrm{D}_{2} \mathrm{BN}\right)$					
angle	$-0.129 \leq(\phi \bmod \pi) / \pi<0.129$			$0.129 \leq(\phi \bmod \pi) / \pi<0.870$					
direction	W_{1}^{2}	W_{2}^{2}	W_{3}^{2}	W_{1}^{13}		W_{2}^{13}		W_{3}^{13}	
$\sigma\left[\mathrm{keV} / \mathrm{fm}^{2}\right]$	0.0082	0.0107	0.0082	0.0722		0.0616		0.0722	
bulk D_{4}－BN phase	－			$\mathrm{W}^{13}\left(\mathrm{D}_{4} \mathrm{BN}\right)$					
angle	－			$0 \leq(\phi \bmod \pi) / \pi<1$					
direction	－			W_{1}^{13}		W_{2}^{13}		W_{3}^{13}	
$\sigma\left[\mathrm{keV} / \mathrm{fm}^{2}\right]$	－			0.1533		0.1353		0.1533	

ドメインウォール

bulk UN phase zero magnetic field
bulk $\mathrm{D}_{2} \mathrm{BN}$ phase
weak magnetic field
bulk $\mathrm{D}_{4} \mathrm{BN}$ phase strong magnetic field

x_{1} or x_{3} direction （horizontal axis）

$$
W_{1}^{2} \operatorname{or}_{W_{3}^{2}}^{2} \quad W_{1}^{2} \text { or } W_{3}^{2}
$$

$0.0154 \mathrm{keV} / \mathrm{fm}^{2}$
$0.0082 \mathrm{keV} / \mathrm{fm}^{2}$

Neutron star

3.1 Domain wall

Domain wall: One-dimensional nonuniform solution connecting two different ground states (g.s.)

3.1 Domain wall

${ }^{3} \mathrm{P}_{2}$ order parameter (spin \times angular momentum)

$$
\left.\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text { Solution ansatz } \\
\text { (only diagonal) }
\end{array}
\end{array} A \propto \operatorname{diag}\left(f_{1}, f_{2}, f_{3}\right)
\end{array} \begin{array}{c}
f_{1}+f_{2}+f_{3}=0 \\
\text { traceless condition }
\end{array}\right] \begin{aligned}
& \cos \phi \\
& f_{1}=\left(\frac{\sin \phi}{\sqrt{6}}\right) f_{0},
\end{aligned} f_{2}=\sqrt{\frac{2}{3}}(\sin \phi) f_{0}, \quad f_{3}=\left(-\frac{\cos \phi}{\sqrt{2}}-\frac{\sin \phi}{\sqrt{6}}\right) f_{0} .
$$

3.1 Domain wall

${ }^{3} \mathrm{P}_{2}$ order parameter (spin \times angular momentum)

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { Solution ansatz } \\
\text { (only diagonal) }
\end{array}
\end{array} A \propto \operatorname{diag}\left(f_{1}, f_{2}, f_{3}\right) \quad \begin{array}{c}
f_{1}+f_{2}+f_{3}=0 \\
\text { traceless condition }
\end{array} \\
f_{1}=\left(\frac{\cos \phi}{\sqrt{2}}-\frac{\sin \phi}{\sqrt{6}}\right) f_{0}, \quad f_{2}=\sqrt{\frac{2}{3}}(\sin \phi) f_{0}, \quad f_{3}=\left(-\frac{\cos \phi}{\sqrt{2}}-\frac{\sin \phi}{\sqrt{6}}\right) f_{0}
\end{gathered}
$$

Free energy (ϕ dependence)

Normal neutron star

3.1 Domain wall

${ }^{3} \mathrm{P}_{2}$ order parameter (spin \times angular momentum)

$$
\left.f_{1}=\left(\frac{\cos \phi}{\sqrt{2}}-\frac{\begin{array}{c}
\text { Solution ansatz } \\
\text { (only diagonal) }
\end{array}}{\sqrt{6}}\right) f_{0}, \quad A \propto \operatorname{diag}\left(f_{1}, f_{2}, f_{3}\right) \quad \begin{array}{c}
f_{1}+f_{2}+f_{3}=0 \\
\text { traceless condition }
\end{array}\right\}
$$

Order parameter: $\left(f_{1}, f_{2}, f_{3}\right)$ vector Magnetic

Normal $\frac{1}{2}$ neútron star

Magnetar

3.1 Domain wall

3.1 Domain wall

Domain wall formed by order parameter: $\left(f_{1}, f_{2}, f_{3}\right)$ vector

D_{2} - BN phase

weak magnetic field

D_{4}-BN phase (Magnetar)
Strong magnetic

$$
\begin{aligned}
& W_{1}^{13} \text { in bulk } D_{4}-\mathrm{BN} \text { phase }(\mathrm{t}=0.9, \mathrm{~b}=0.2) \\
& \tilde{\mathrm{x}}_{3}-5
\end{aligned}
$$

$$
W_{2}^{13} \text { in bulk } D_{2}-\mathrm{BN} \text { phase }(\mathrm{t}=0.9, \mathrm{~b}=0.1)
$$

$$
\begin{array}{cc}
\tilde{x}_{3} & -5 \\
0 &
\end{array}
$$

$$
W_{2}^{13} \text { in bulk } D_{4}-\mathrm{BN} \text { phase }(\mathrm{t}=0.9, \mathrm{~b}=0.2)
$$

$$
W_{3}^{13} \text { in bulk } D_{2}-\mathrm{BN} \text { phase }(\mathrm{t}=0.9, \mathrm{~b}=0.1)
$$

3.1 Domain wall

Released energy~ $10^{45} \mathbf{~ e r g !}$

3.3 Ferromagnetic phase

Revisiting ${ }^{3} \mathrm{P}_{2}$ phase diagram by Ginzburg-Landau theory
Cf. V. Z. Vulovic, J. A. Sauls, PRD29, 2705 (1984)

Taken from . Mizushima, K. Masuda, M. Nitta, Phys. Rev. B95, 140503(R) (2017)

Cooper pair

$\beta_{1}, \beta_{2}, \beta_{3}:$
Coefficients in GL theory

Important for magnetars!

So far we have discussed UN/BN phases. Does ferromagnetic phase exist?

3.3 Ferromagnetic phase

What does cause spin polarization?

(1) Strong coupling
J. A. Sauls, J. W. Serene, PRD17, 1524 (1978),
V. Z. Vulovic, J. A. Sauls, PRD29, 2705 (1984),
D. N. Voskresensky, PRD101, 056011 (2020)

(2) Violation of particle-hole symmetry

T. Mizushima, D. Inotani, S. Yasui, M. Nitta , PRC104, 045803 (2021)

Fermi momentum (p_{F}) $\rightarrow \infty$

Plane
Fermi surface

Fermi momentum $\left(\mathrm{p}_{\mathrm{F}}\right)$: finite

3.3 Ferromagnetic phase

What does cause spin polarization?

Fermi surface curvature can induce spin polarization.

3.3 Ferromagnetic phase

 ${ }^{3} \mathrm{P}_{2}$ order parameter (spin \times momentum)| Phase | O.P. [see Eq. (28)] | H | $R=G / H$ | $\pi_{1}(R)$ | \# ${ }_{\text {NG }}$ | \# $\mathrm{qNG}^{\text {[66] }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uniaxial nematic | $r=-1 / 2, \kappa=0$ | $D_{\infty} \simeq \mathrm{O}(2)$ | $\mathrm{U}(1) \times \mathbb{R} P^{2}$ | $\mathbb{Z} \oplus \mathbb{Z}_{2}[43,67]$ | 3 | 2 |
| Biaxial nematic | $r \in(-1,-1 / 2), \kappa=0$ | D_{2} | $\mathrm{U}(1) \times \mathrm{SO}(3) / D_{2}$ | $\mathbb{Z} \oplus \mathbb{Q}[43,67]$ | 4 | 1 |
| | $r=-1, \kappa=0$ | D_{4} | $[\mathrm{U}(1) \times \mathrm{SO}(3)] / D_{4}$ | $\mathbb{Z} \times{ }_{h} D_{4}^{*}[43,44,65]$ | 4 | 1 |
| Cyclic | $r=e^{i 2 \pi / 3}, \kappa=0$ | T | $[\mathrm{U}(1) \times \mathrm{SO}(3)] / T$ | $\mathbb{Z} \times_{h} T^{*}[65,68-70]$ | 3 | - |
| Magnetized biaxial nematic | $r \in(-1,-1 / 2), \kappa \in(0,1)$ | 0 | $\mathrm{SO}(3) \times \mathrm{U}(1)$ | $\mathbb{Z}_{2} \oplus \mathbb{Z}$ | 4 | - |
| | $r=-1, \kappa \in(0,1)$ | C_{4} | $[\mathrm{U}(1) \times \mathrm{SO}(3)] / \mathbb{Z}_{4}$ | $\mathbb{Z} \times{ }_{h} C_{4}^{*}$ | 4 | - |
| Ferromagnetic | $r=-1, \kappa=1$ | $\mathrm{U}(1)_{J_{z}+2 \Phi}$ | $\mathrm{SO}(3)_{J_{z}-2 \Phi} / \mathbb{Z}_{2}$ | $\mathbb{Z}_{4}[69,71]$ | 3 | - |
| | Eq. (26) | $\mathrm{U}(1){ }_{J_{z}+\Phi}$ | $\mathrm{SO}(3))_{J_{z}-\Phi} / \mathbb{Z}_{2}$ | $\mathbb{Z}_{4}[69,71]$ | 3 | - |

Magnetized biaxial nematic (MBN) \square Ferromagnetic (FM)

$$
\mathcal{A}_{\mu i}^{\mathrm{KM}}=\Delta\left(\begin{array}{ccc}
1 & \pm i & 0 \\
\pm i & -1 & 0 \\
0 & 0 & 0
\end{array}\right)_{\mu i}
$$

(off-diagonal)
${ }^{3} \mathrm{P}_{2}$ Cooper pair spin polarization $\left\langle S_{\text {pair }}^{z}\right\rangle=2 \kappa(1-r) \Delta^{2} / 3$

3.3 Ferromagnetic phase

Ginzburg-Landau theory

Magnetized biaxial-nematic (MBN)/Ferromagnetic (FM)

Glossary of basic terms

Spin (s) Intrinsic degrees of freedom in a particle. Spin 0 particle has only one component. Spin $1 / 2$ particle has two components, $+\frac{1}{2}$ and $-\frac{1}{2}$, each of which is called up (\uparrow) and down (\downarrow) components. Spin 1 particle has three components, $+1,0,-1$.

Fermion A particle with half-integer spin, e.g., $1 / 2$. One fermion can occupy one state only, and hence two fermions cannot occupy the same state. This is called the Pauli exclusion principle.

Boson A particle with integer spin, e.g., 0 or 1. (Infinitely) many boson can occupy one state. There is no exclusion rule for bosons.

Total spin (S) A sum of the spins of n particles: $\vec{S}=\vec{s}_{1}+\vec{s}_{2}+\cdots+\vec{s}_{n}$. In case of $n=2$, for example, we consider a pair of fermions, each of which fermion has spin $s_{1}=s_{2}=1 / 2$. In this case, we have either $S=0$ or $S=1$, each of which is called a singlet state and a triplet state.

Angular momentum (L) A discretized angular momentum in quantum mechanics: $L=0,1,2, \ldots$ whose wave functions are given by harmonic spherical functions $Y_{L L_{z}}(\theta, \varphi)$ with $L_{z}=-L,-L+$ $1, \ldots, L-1, L$ for polar coordinate (θ, φ) in three dimensional space. $L=0,1,2, \ldots$ are called S-wave, P-wave, D-wave, ...

Total angular momentum (J) A sum of the angular momentum (L) and the total spin $(S): \vec{J}=\vec{L}+\vec{S}$. For example, if $L=1$ and $S=1$, then $J=0,1,2$. The state with J, L and S is denoted by ${ }^{2 S+1} L_{J}$ where L are conventionally denoted by $L=S, P, D, \ldots$ instead of $L=0,1,2, \ldots$.

Proton (p) A composite fermion composed of three quarks ($\mathrm{u}, \mathrm{u}, \mathrm{d}$). The spin of a proton is $1 / 2$. A proton has an electric charge (+1), and a finite magnetic moment.

Neutron (n) A composite fermion composed of three quarks ($\mathrm{u}, \mathrm{d}, \mathrm{d}$). The spin of a neutron is $1 / 2$. A neutron has no electric charge, but has a finite magnetic moment.

Glossary of basic terms (continued)

Nucleon (N) Generic name indicating either proton and neutron, or both, often denoted by $N=\binom{p}{n}$.
Deuteron (d) A bound state formed by a proton and a neutron. The total spin is $S=1$, and the angular momentum is $L=0$ (S-wave). Their combination (channel) is denoted by ${ }^{1} S_{0}$.

Nuclear force (potential) An interaction between two (or more) nucleons. The nuclear force can be attractive or repulsive, depending on the spin and angular momentum between two (and more) nucleons. It can make a bound state of nucleons, called an atomic nucleus.

LS force (potential) A nuclear force acting at higher energy scattering between two nucleons. It is proportional to the inner product of the angular momentum (L) and the total spin $(S), \propto \vec{L} \cdot \vec{S}$. Either attraction or repulsion is dependent on the channels: attractive for $J=2$ and repulsive for $J=0$ and 1. The high-energy scattering of neutrons gives an attraction in ${ }^{3} P_{2}$ channel with $L=1$ (P-wave) and $S=1$ (triplet).

Bardeen-Cooper-Schrieffer (BCS) theory One of the most basic theory for superconductivity and superfluidity. A pair of fermion (the Cooper pair) near the Fermi surface makes a bosonic-state, and cause the quantum transition analogous to the Bose-Einstein condensate. As a result, a gap appears in the energy-momentum dispersion relations of the fermions. The original phase transformation, i.e., U(1) symmetry, is broken in the ground state due to the gap formation. This is one of the well-known examples of the spontaneous symmetry breaking.

Bogoliubov-de-Gennes (BdG) theory General theory for superconductivity and superfluidity, which includes the nonuniform wave-functions of fermions and be applicable to vortices for example.

Ginzburg-Landau (GL) theory A pair of fermions behave like a boson. The GL theory is obtained from the BdG theory by taking the fermionic degrees of freedom into account (integrating-out) in terms of the bosonic degrees of freedom.

