Strong magnetic fields and the inner crust of neutron stars

Helena Pais

Dep. Fundamental Physics, University of Salamanca, Spain

In collaboration with PhD student L.Scurto (Univ. Coimbra, Portugal), and F. Gulminelli (LPC-Caen, France), C. Providência (Univ. Coimbra, Portugal), J. Fang (Qufu Normal Univ., China)

Strongly interacting matter in extreme magnetic fields ECT*, Trento, Italy, September 27 2023

Acknowledgments:

Neutron stars

check eg N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer, 2000)

R~10 km; M~1.5 M⊙

- •Constituted by catalized cold stellar matter •Central densities can reach several ρ_0 •Strongly asymmetric matter, very neutron-rich •Onion-like structured objects with:
- Surface: ⁵⁶Fe, P=0
- Outer crust: Neutron rich nuclei embedded in electron sea
- Inner crust: Above neutron drip density, nucleons form geometrical structures (non-spherical: pasta phases) embedded in neutron and electron background gas.
- Core: Uniform matter, in the centre exotic matter may exist.

Where do these heavy clusters form?

in <u>https://www.ligo.org/detections/GW170817.php</u>

in http://essayweb.net/astronomy/blackhole.shtml

Credit: Soares-Santos et al. and DES Collab EVOLUTION OF STARS Planetary Nebula GW170817 GW170817 Small Star **Red Giant** DECam observation DECam observation White Dwarf (0.5-1.5 days post merger) (>14 days post merger) Neutron Star Supernova **Red Supergiant** Large Star Stellar Cloud with NS mergers Protostars Blac MAGES NOT TO SCALE

scenarios where these clusters are important: supernovae, NS mergers, (crust of) neutron stars

Why are these clusters important?

- They influence supernova properties: the clusters can modify the neutrino transport, affecting the cooling of the proto-neutron star and/or binary and accreting systems.
- •They may be essential to describe the glitch mechanism. (sudden change in star's rotation)

•Magnetars (neutron stars with very strong magnetic fields, $\approx 10^{15}G$ at the surface) may have an inner crust even more complex, as we will see.

• They do have an effect in R (which then will be reflected in other properties such as the tidal deformability):

a) effect of pasta:

b) effect of different inner crust EoS

For 1.4M \odot stars, the RMF models that passed the experimental and observational constrains predict R=13.6 ± 0.3 km, with a crust thickness of ΔR =1.36 ± 0.06km.

such as **RMF**, or **Skyrme**.

check CompOSE: https://compose.obspm.fr/

Solution: Need Constraints (Experiments, Observations, Microscopic calculations)

•Online catalogue: http://www.physics.mcgill.ca/~pulsar/magnetar/main.html.

Neutrons stars with very strong magnetic fields (B)
At the surface, B up to 10¹⁴ ~ 10¹⁵ G
Long spin periods, 2 ~ 20 s.
About 30 objects observed.

Artist's impression of the magnetar in star cluster Westerlund 1. (Image credit: ESO/L. Calçada)

In this talk:

- •Inner crust EoS under strong B within a RMF framework
- Compute crust via CP, CLD, and dynamical spinodal approaches
- •Results (B-field cause extension of inner crust)

Theoretical Framework

$$\begin{split} & \text{Non-linear Walecka Model} \\ & \text{mesons: mediation of nuclear force} \\ & \mathcal{L} = \sum_{i=p,n} \mathcal{L}_i + \mathcal{L}_e + \mathcal{L}_\sigma + \mathcal{L}_\omega + \mathcal{L}_\rho + \mathcal{L}_{\omega\rho} + \mathcal{L}_A \\ & \text{electromagnetic} \\ & \text{nucleons electrons} \\ & \text{non-linear mixing coupling} \\ & \text{with } M^* = M - g_s \phi, \\ & \text{non-linear mixing coupling term:} \\ & \text{responsible for density dependence of} \\ & \text{Esym} \\ & \text{L}_{\omega\rho} = g_{\omega\rho}g_{\rho}^2g_{v}^2V_{\mu}V^{\mu}\mathbf{b}_{\nu}\cdot\mathbf{b}^{\nu} \\ & \text{L}_{A} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \\ & \text$$

0.60

0.60

NL3

NL $3\omega\rho$

16.24

16.24

0.148

0.148

-9

10

We always consider $A^{\mu}=(0,0,Bx,0)$ and we define $B^{*}=B/B^{c}_{e}$, with $B^{c}_{e}=4.414\times 10^{13}\,{\rm G}$

• The vector densities are given by

with

$$\nu_{\max}^{e} = \frac{E_{F}^{e2} - m_{e}^{2}}{2|q_{e}|B} ,$$

$$\nu_{\max}^{p} = \frac{E_{F}^{p2} - M^{*2}}{2q_{p}B} .$$

the maximum number of Landau levels, for which the square of the Fermi momentum of the particle is still positive.

• And the bulk energy density by $\, \mathcal{E} = \mathcal{E}_f + \mathcal{E}_p + \mathcal{E}_n \,,\,\,$ with

$$\begin{split} \mathcal{E}_{f} = & \frac{m_{\omega}^{2}}{2} V_{0}^{2} + \frac{\xi g_{v}^{4}}{8} V_{0}^{4} + \frac{m_{\rho}^{2}}{2} b_{0}^{2} + \frac{m_{\sigma}^{2}}{2} \phi_{0}^{2} + \frac{\kappa}{6} \phi_{0}^{3} \\ & + \frac{\lambda}{24} \phi_{0}^{4} + 3\lambda_{\omega\rho} g_{\rho}^{2} g_{\omega}^{2} V_{0}^{2} b_{0}^{2} \,, \\ \\ \mathcal{E}_{n} = & \frac{1}{4\pi^{2}} \left[k_{F}^{n} E_{F}^{n3} - \frac{1}{2} M^{*} \left(M^{*} k_{F}^{n} E_{F}^{n} \\ & + M^{*3} \ln \left| \frac{k_{F}^{n} + E_{F}^{n}}{M^{*}} \right| \right) \right], \end{split}$$

$$\mathcal{E}_p = \frac{q_p B}{4\pi^2} \sum_{\nu=0}^{\nu_{\max}} g_s \left[k_{F,\nu}^p E_F^p + \left(M^{*2} + 2\nu q_p B \right) \right.$$
$$\left. \cdot \ln \left| \frac{k_{F,\nu}^p + E_F^p}{\sqrt{M^{*2} + 2\nu q_p B}} \right| \right].$$

The pasta phases

- Competition between Coulomb and nuclear forces leads to frustrated system
- ●Geometrical structures, the **pasta phases**, evolve with density until they melt → **crust-core transition**
- •Criterium: pasta free energy must be lower than the correspondent hm state

QMD calculations:

G. Watanabe et al, PRL 103, 121101, 2009

C. J. Horowitz et al, PRC 70, 065806, 2004

Pais and Stone, PRL 109, 151101, 2012

Pasta phases - calculation (I)

Coexistence Phase (CP) approximation:

- Separated regions of higher (pasta phases) and lower density (background nucleon gas). $\mu_{\mu}^{I} = \mu_{\mu}^{II}$
- Gibbs equilibrium conditions:

$$\mu_p^I = \mu_p^{II}$$
$$\mu_n^I = \mu_n^{II}$$
$$P^I = P^{II}$$

- Finite size effects are taken into account by a surface and a Coulomb terms in the energy density, after the coexisting phases are achieved.
- The total energy density and proton fraction of the system are given by

$$\mathcal{E} = f\mathcal{E}^{I} + (1 - f)\mathcal{E}^{II} + \mathcal{E}_{Coul} + \mathcal{E}_{surf} + \mathcal{E}_{e}$$

$$\rho_{p} = \rho_{e} = f\rho_{p}^{I} + (1 - f)\rho_{p}^{II}$$

• By minimizing the surface the Coulomb energies w.r.t size of cluster:

$$\varepsilon_{\rm surf} = 2\varepsilon_{\rm Coul}$$

Pasta phases – calculation (III)

Compressible Liquid Drop (CLD) approximation:

The total free energy density is minimized, including the surface and Coulomb terms.

The equilibrium conditions become:

$$\begin{aligned} \mu_n^I &= \mu_n^{II}, \\ \mu_p^I &= \mu_p^{II} - \frac{\epsilon_{surf}}{f(1-f)(\rho_p^I - \rho_p^{II})}, \\ P^I &= P^{II} - \frac{2\varepsilon_{Coul}}{(\rho_p^I - \rho_p^{II})} \left(\frac{\rho_p^I}{f} + \frac{\rho_p^{II}}{(1-f)}\right) + \varepsilon_{Coul} \left(\frac{3}{\alpha}\frac{\partial\alpha}{\partial f} + \frac{1}{\Phi}\frac{\partial\Phi}{\partial f}\right) \end{aligned}$$

How to calculate transition density?

Results: Influence of a strong external magnetic field – magnetars

- magnetars

field – magnetars

Bhainesriaeustaneroceusemplee.complex.

sinden tex renders to of relargeitions densities.

The strong external B makes the inner crust more complex.

The crust-core transition extends to a larger range of densities.

FIG. 1. (Color online) The extended crust region. The densities ρ_1 and ρ_2 define the boundaries of this region.

The crust-core transition - effect of strong external B - spinodal calculation

- The strong external B makes the inner crust more complex.
- New bands associated with the filling of the Landau levels.
- The stronger the B, the greater the spinodal section, and the smaller and wider the number of bands — decrease of the number of Landau levels when B increases.
- The crust-core transition extends to a range of densities.

The crust-core transition - effect of strong external B - spinodal calculation

Pasta in beta-equilibrium matter – effect of strong external B – CP calculation

- There are several disconnected pasta regions that appear above the B=O region. Effect caused by Landau quantisation induced by B field.
- The stronger the B, the smaller the number of regions, and the wider the density range that they cover.
- If AMM is considered, more and narrower disconnected regions occur, because the spin polarisation degeneracy is removed.

Confirmation of previous results:

PRC 94, 062801(R) 2016 PRC 95, 045802 2017

Pasta in beta-equilibrium matter - effect of strong external B -

For mgner

GPopeal culation

3 % 10³ (respectivelye4 % 10¹⁶ (respectively) (respe

whichgelsonsonauus for zero negr netle figle, may reive friste oto discha

bubbles in the star

Manues of the

correspondent transition pressure, P2

higher values for *△lcrust/l*

Pasta in beta-equilibrium matter - effect of strong external B - CLD calculation

Scurto et al, PRC 107, 045806 (2023)

- For NL3, the crust-core transition density (orange lines) gets shifted to higher values wrt to the B=O case (green lines).
- This extra region, that appears due to the B field, is in line with previous studies using the dynamical spinodal (light blue

Fig.2 Baryon density of liquid (blue) and gas (red) phase for the NL3 model.

Pasta in beta-equilibrium matter – effect of strong external B – CLD calculation

 However, for NL3wr, the behaviour seems to be opposite: with increasing B, the crust-core transition decreases, and this extra regions does not appear:

0.02

0.04

ρ (fm⁻³)

Scurto et al, PRC 107, 045806 (2023)

NL3wp

0.1

0.08

23

0.12

Pasta in beta-equilibrium matter – effect of strong external B – CLD calculation

• The Esym behaviour favours larger proton fractions for NL3wr, and smaller B-field effects, since the number of Landau levels will be larger, favouring a smaller crust, when compared to NL3.

Pasta in beta-equilibrium matter – effect of strong external B – CLD calculation

Scurto et al, PRC 107, 045806 (2023)

			$M_1(M_{\odot})$	$M_2(M_{\odot})$	$R_T(km)$	$\Delta R_1(km)$	$\Delta R_2(km)$
$M_T = 1.4 M_{\odot}$	NL3	B = 0	0.0588	0.0	14.685	1.4270	0.0
		$B^* = 5 \times 10^3$	0.0597	0.0258	14.908	1.6532	0.1541
		$B^* = 10^4$	0.0574	0.0414	15.025	1.7427	0.3148
		B=0	0.0457	0.0	13.747	1.3665	0.0
	$\mathrm{NL}3\omega ho$	$B^* = 5 \times 10^3$	0.0526	0.0	13.871	1.5431	0.0
		$B^* = 10^4$	0.0526	0.0	13.991	1.6556	0.0
$M_T = 2.0 M_{\odot}$		B = 0	0.0394	0.0	14.777	0.8691	0.0
	NL3	$B^* = 5 \times 10^3$	0.0400	0.0132	14.914	1.0064	0.0932
		$B^* = 10^4$	0.0385	0.0288	14.989	1.0617	0.1973
	$NL3\omega\rho$	B=0	0.0326	0.0	14.079	0.8632	0.0
		$B^* = 5 \times 10^3$	0.0384	0.0	14.161	0.9769	0.0
		$B^* = 10^4$	0.0383	0.0	14.234	1.0437	0.0

- The mass and radius of the extended crust (region 2) increases with B.
- For the higher B-field, the mass of the extended region becomes comparable with M1.

Pasta in beta-equilibrium matter - effect of strong external B - CLD calculation

- The difference between E/A (homogenous matter) and E/A (crust):
- Red: Clusters favoured
- Blue: HM favoured
- The transition to HM occurs when this difference is zero, E/A(HM)>E/A(crust)
- The two approaches tend to give similar results, however
- CP and CLD are not self-consistent (surface tension is parametrised from a fit to TF), therefore pasta curve intersects HM curve.
- In a consistent calculation (eg TF) the pasta curve merges continuously with HM curve.
- Surface tension influences the transition density

Open questions:

Will the crust be even more complex, wider? Need to know surface tension with B

Conclusions

- •An extended region of clusters appears due to the presence of the magnetic field. This extra region seems to depend on the behaviour of the symmetry energy in the crustal EoS.
- The mass and radius of this extended crust seems to be comparable in size with the one of the B=O crust.
- The surface tension is a crucial property and needs to be explored in the presence of strong magnetic fields.

- Heavy clusters are relevant and should be explicitly included in the NS EoS (and also CCSN simulations and NS mergers).
- Strong external B fields make inner crust more complex, and this may have consequences in the glitch mechanism.

Thank yo