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Neutron stars

•Surface:  Fe, P=0  
•Outer crust: Neutron rich nuclei embedded in electron sea
• Inner crust: Above neutron drip density, nucleons form geometrical 
structures (non-spherical: pasta phases) embedded in neutron and 
electron background gas. 

• Core: Uniform matter, in the centre exotic matter may exist.  

•Constituted by catalized cold stellar matter
•Central densities can reach several
•Strongly asymmetric matter, very neutron-rich
•Onion-like structured objects with:

56
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R~10 km; M~1.5 M⊙

check eg N. K. Glendenning, Compact Stars: Nuclear Physics, 
Particle Physics, and General Relativity (Springer, 2000)
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L. Scurto CGSFP2023               04/07/23 4

Introduction

Credits: ESO/L. Calçada

Neutron Stars are astrophysical objects of extreme interest in the new multimessenger era 
of astronomy

✦Magnetic Fields up to                    on the surface, 

✦Central densities up to several times        , 

✦ Strongly asymmetric matter (                 )

≈ 1015G

ρ0

ρp ≪ ρn



Where do these heavy clusters form?
in http://essayweb.net/astronomy/blackhole.shtml

NS mergers

scenarios where these clusters are important:
supernovae, NS mergers, (crust of) neutron stars

in https://www.ligo.org/detections/GW170817.php 
Credit: Soares-Santos et al. and DES Collab
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Why are these clusters important?

• They influence supernova properties: the clusters can 
modify the neutrino transport, affecting the cooling of 
the proto-neutron star and/or binary and accreting 
systems. 

•They may be essential to describe the glitch 
mechanism. (sudden change in star’s rotation)

•Magnetars (neutron stars with very strong magnetic 
fields,         at the surface) may have an inner crust 
even more complex, as we will see.
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No effect on Mmax, but effect on the radius! 

a) effect of pasta: b) effect of different inner crust EoS

 with L close to core EoS:

The error on the determination of the radius is negligible 
for all masses.
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For 1.4M⊙ stars, the RMF models that passed the experimental and observational 
constrains predict R=13.6 ± 0.3 km, with a crust thickness of ∆R=1.36 ± 0.06km.

• They do have an effect in R (which then will be reflected in other 
properties such as the tidal deformability):



EoS and Constraints

Solution: Need Constraints (Experiments, Observations, 
Microscopic calculations)

Many EoS models in literature, like e.g. 
phenomenological models, whose 
parameters are fitted to nuclei properties, 
such as RMF, or Skyrme.


check CompOSE: 
https://compose.obspm.fr/
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Fig. 2. The mass-radius relation for all the RMF unified EoS (thick lines) considered in this work. The thin lines correspond to
a construction where a BPS-Polytropic fitted crust EoS is used (see text for details). The top (bottom) gray region indicates the
heavier (lighter) NS in the GW170817 event for a parametrized EoS where a lower limit on the maximum mass of 1.97M� was
imposed [89], with a 90% (solid contour) and 50% (dashed contour) confidence interval. The constraints from the millisecond
pulsar PSR J0030+0451 NICER x-ray data (two blue regions) [3] and PSR J0740+6620 [88] (gray hatched region) are also
represented. The 21 SHF EoS are represented by the salmon band.

SHF EoSs satisfy the overlap regions of GW and NICER
constraints for the low-mass NS, though, on the other
hand, half of the band does not fullfill the NICER con-
straints for the high-mass NS. This is because the SHF
EoS have a tendency to give lower radius compared to
RMF.

In Table 2, we show a few NS properties obtained from
our eight sets of unified RMF EoSs, namely the core-crust
transition density, nt, the NS maximum mass Mmax, and
the central square of the speed of sound for the maxi-
mum mass NS, c2s. The R1.4, Rcore

1.4 , Rcrust
1.4 and ⇤1.4 are

the total radius, the radius for core, the crust thickness
and the tidal deformability for a 1.4 M� NS respectively.
The RBPS+Poly

1.4 in the table is the radius for a 1.4 M�
NS calculated with BPS+Poly fitted crust as discussed
above. For our RMF EoSs, the crust thickness is, on av-
erage ⇠ 1.3 km. These two di↵erent crust treatments, the
unified and the BPS+Poly, give a di↵erence of ⇠ ±4% for
the radius of 1.4M� NS, this di↵erence increasing with
lower-mass NS. As already seen in Fig. 2, the models
NL3!⇢L55 and FSU2 present the largest di↵erence, due to

their high incompressibility and slope of the symmetry en-
ergy. However, this will have little e↵ect on the dimension-
less tidal deformability, since this quantity is insensitive
to the crust because the Love number k2 compensates the
changes of the radii in di↵erent crust constructions. The
dimensionless tidal deformability of 1.4M� NS obtained
for NL3!⇢L55 and FSU2 is greater than 800, being disfa-
vored by the GW170817 constraint. This will be discussed
in detail in the next figures. All these models, being rela-
tivistic, are causal, as one can see from the square of the
speed of sound for the center of NS maximum mass, also
given in the Table.

In Fig. 3, we show the dimensionless tidal deformabil-
ity parameters ⇤1 and ⇤2 for the 2 objects involved in the
BNS event from GW170817, with masses m1 and m2. The
curves correspond to the EoS considered in this work, and
were obtained by varying m1 in the range 1.365 < m1 <
1.6 M�, and m2 was calculated by keeping the chirp mass
fixed at Mchirp = 1.186 M�, as observed in the GW170817
event. The orange solid (dashed) line represents the 90%
(50%) confidence interval from a marginalized posterior
for the tidal deformabilities of the two binary components

GW170817

PSR J0030+0451 from NICER

PSR J0740+6620
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Fig. 1. The equation of state, i.e. the pressure as function of the energy density (left) and as a function of the density (right),
for the 8 models considered in this work. The bottom panels concentrate in the low-density part of the star, whereas the top
panels show the full density range, up to ⇠ 8n0.

moment Qij of a neutron star due to the strong tidal grav-
itational field Eij of the companion star. This quadrupole
deformation in leading order in perturbation is given as
[66–70],

Qij = ��Eij . (12)

The parameter � is related to the dimensionless tidal Love
number k2 as k2 = 3

2G�R�5, with R being the radius
of the neutron star. This parameter k2 can be calculated
from the following expression:

k2 =
8C5

5
(1� 2C)2 [2 + 2C (yR � 1)� yR]⇥ (13)

⇢
2C (6� 3yR + 3C(5yR � 8))

+4C3
⇥
13� 11yR + C(3yR � 2) + 2C2(1 + yR)

⇤

+ 3(1� 2C)2 [2� yR + 2C(yR � 1)] log (1� 2C)

��1

,

where C (⌘ m/R) is the dimensionless compactness pa-
rameter of the star with mass m. The quantity yR (⌘
y(R)) can be obtained by solving the following di↵erential
equation

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (14)

with

F (r) =
r � 4⇡r3 (✏(r)� p(r))

r � 2m(r)
, (15)

Q(r) =
4⇡r

⇣
5✏(r) + 9p(r) + ✏(r)+p(r)

@p(r)/@✏(r) �
6

4⇡r2

⌘

r � 2m(r)

� 4


m(r) + 4⇡r3p(r)

r2 (1� 2m(r)/r)

�2
. (16)

For a given EoS, Eq.(14) can be integrated together
with the Tolman-Oppenheimer-Volko↵ equations [71] with
the boundary conditions y(0) = 2, p(0)=pc and m(0)=0,
where y(0), pc and m(0) are the dimensionless quantity,
pressure and mass at the center of the NS, respectively.
One can then define the dimensionless tidal deformabil-
ity, ⇤ = 2

3k2C
�5. The tidal deformabilities of the neutron

stars in the BNS system can be combined, and the follow-
ing weighted average, i.e. the e↵ective tidal deformability,
⇤̃, can be calculated

⇤̃ =
16

13

(12q + 1)⇤1 + (12 + q)q4⇤2

(1 + q)5
, (17)

TOV
EoS M(R)
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Magnetars
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Artist's impression of the magnetar in star cluster Westerlund 1. (Image credit: ESO/L. Calçada)

•Neutrons stars with very strong 
magnetic fields (B)

•At the surface, B up to 
•Long spin periods, 2    20 s.  
•About 30 objects observed.

Strong magnetic fields and the inner crust of neutron stars

Helena Pais

Department of Fundamental Physics, University of Salamanca, 37008 Salamanca, Spain.

Heavy (pasta phases) nuclei exist in nature, not only in core-collapse supernova matter and neutron

star (NS) mergers, where temperatures of the order of 50 to 100 MeV may be attained, but also in the

NS inner crust, that is under di↵erent conditions of temperature, density and asymmetry. These clusters

result from the competition between the strong and Coulomb forces. The appearance of these clusters can

modify the neutrino transport, and, therefore, consequences on the dynamical evolution of supernovae

and on the cooling of proto-neutron stars are expected.

Magnetars, mainly Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs), belong to

a kind of neutron stars with very strong magnetic fields at the surface, up to 10
14 ⇠ 10

15
G, and quite

long spin periods, of the order of 2 ⇠ 20 s. Nowadays, about thirty of such objects have been observed.

Moreover, magnetars are good candidates to be a source of continuous gravitational wave emission, and

we expect that in the future it will be possible to detect this type of gravitational waves.

In this talk, we are going to consider nuclear matter in the NS inner crust under the presence of strong

magnetic fields within the framework of relativistic mean-field (RMF) models, computing its structure

and composition using a coexistence and compressible liquid drop approximations, and we will show

that these strong fields cause an extension of the NS inner crust, with the occurrence of disconnected

non-homogeneous matter regions above the one existing for a null magnetic field. We will also see that

the extension of the inner crust due to the presence of the magnetic field depends on the behaviour of the

symmetry energy in the crustal EoS. The existence of these extra non-homogeneous matter geometries

could have a direct e↵ect on the explanation of the magnetic field evolution inside NS.

Strong magnetic fields and the inner crust of neutron stars

Helena Pais

Department of Fundamental Physics, University of Salamanca, 37008 Salamanca, Spain.

Heavy (pasta phases) nuclei exist in nature, not only in core-collapse supernova matter and neutron

star (NS) mergers, where temperatures of the order of 50 to 100 MeV may be attained, but also in the

NS inner crust, that is under di↵erent conditions of temperature, density and asymmetry. These clusters

result from the competition between the strong and Coulomb forces. The appearance of these clusters can

modify the neutrino transport, and, therefore, consequences on the dynamical evolution of supernovae

and on the cooling of proto-neutron stars are expected.

Magnetars, mainly Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs), belong to

a kind of neutron stars with very strong magnetic fields at the surface, up to 10
14 ⇠ 10

15
G, and quite

long spin periods, of the order of 2 ⇠ 20 s. Nowadays, about thirty of such objects have been observed.

Moreover, magnetars are good candidates to be a source of continuous gravitational wave emission, and

we expect that in the future it will be possible to detect this type of gravitational waves.

In this talk, we are going to consider nuclear matter in the NS inner crust under the presence of strong

magnetic fields within the framework of relativistic mean-field (RMF) models, computing its structure

and composition using a coexistence and compressible liquid drop approximations, and we will show

that these strong fields cause an extension of the NS inner crust, with the occurrence of disconnected

non-homogeneous matter regions above the one existing for a null magnetic field. We will also see that

the extension of the inner crust due to the presence of the magnetic field depends on the behaviour of the

symmetry energy in the crustal EoS. The existence of these extra non-homogeneous matter geometries

could have a direct e↵ect on the explanation of the magnetic field evolution inside NS.

•Inner crust EoS under strong B within a RMF framework
•Compute crust via CP, CLD, and dynamical spinodal approaches 
•Results (B-field cause extension of inner crust)

In this talk:

http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html. •Online catalogue:



Theoretical Framework



Non-linear Walecka Model

nucleons electrons
non-linear mixing coupling

Li =  ̄i [�µiD
µ �M⇤] i

Le =  ̄e [�µ (i@
µ + eAµ)�me] e

L� =
1

2

✓
@µ�@

µ��m2
s�

2 � 1

3
�3 � 1

12
��4

◆

L! = �1

4
⌦µ⌫⌦

µ⌫ +
1

2
m2

vVµV
µ +

1

4!
⇠g4v(VµV

µ)2

L⇢ = �1

4
Bµ⌫ ·Bµ⌫ +

1

2
m2

⇢bµ · bµnon-linear mixing coupling term: 
responsible for density dependence of 

Esym

mesons: mediation of nuclear force

mesons

2

results with a parametrized TF calculation, where the
surface energy and the nucleon distribution are calcu-
lated differently, and they have reached the conclusion
that the parametrized approximation is a reasonable one.
We also compare our results with a 3D finite tempera-
ture Skyrme-Hartree-Fock calculation [8, 24], where four
different Skyrme interactions have been used, and where
subtle variations in the low and high density transitions
into and out of the pasta phase were found.
The paper is organized as follows. In section II, we

briefly review the formalism used and in section III, the
results are discussed. Finally, in section IV, some con-
clusions are drawn.

II. FORMALISM

We consider a system of baryons, with mass M inter-
acting with and through an isoscalar-scalar field φ with
mass ms, an isoscalar-vector field V µ with mass mv and
an isovector-vector field bµ with mass mρ. When de-
scribing npe matter we also include a system of electrons
with mass me. Protons and electrons interact through
the electromagnetic field Aµ. The Lagrangian density
reads:

L =
∑

i=p,n

Li + Le + Lσ + Lω + Lρ + Lγ ,

where the nucleon Lagrangian reads

Li = ψ̄i [γµiD
µ −M∗]ψi, (1)

with

iDµ = i∂µ − gvV
µ −

gρ
2
τ · bµ − e

1 + τ3
2

Aµ, (2)

M∗ = M − gsφ (3)

and the electron Lagrangian is given by

Le = ψ̄e [γµ (i∂
µ + eAµ)−me]ψe. (4)

The isoscalar part is associated with the scalar sigma
(σ) field φ, and the vector omega (ω) field Vµ, whereas
the isospin dependence comes from the isovector-vector
rho (ρ) field biµ (where µ stands for the four dimensional
space-time indices and i the three-dimensional isospin
direction index). The associated Lagrangians are:

Lσ =
1

2

(

∂µφ∂
µφ−m2

sφ
2 −

1

3
κφ3 −

1

12
λφ4

)

Lω = −
1

4
ΩµνΩ

µν +
1

2
m2

vVµV
µ +

1

4!
ξg4v(VµV

µ)2

Lρ = −
1

4
Bµν ·Bµν +

1

2
m2

ρbµ · bµ

Lγ = −
1

4
FµνF

µν

where Ωµν = ∂µVν −∂νVµ, Bµν = ∂µbν −∂νbµ− gρ(bµ×
bν) and Fµν = ∂µAν − ∂νAµ.

The model comprises the following parameters: three
coupling constants gs, gv and gρ of the mesons to the nu-
cleons, the bare nucleon mass M , the electron mass me,
the masses of the mesons, the electromagnetic coupling
constant e =

√

4π/137 and the self-interacting coupling
constants κ, λ and ξ. In this Lagrangian density, τ is the
isospin operator.

We use the FSU parametrization [25], expected to de-
scribe well the crust [9], even if it does not describe a
2 M" neutron star. This parametrization also includes
a nonlinear ωρ coupling term, which affects the density
dependence of the symmetry energy. This term is given
by:

Lωρ = Λvg
2
vg

2
ρbµ · bµ VµV

µ. (5)

The state that minimizes the energy of asymmet-
ric nuclear matter is characterized by the distribution
functions, f0k±, of particles (+) and antiparticles (−)
k = p, n, e, given by:

f0j± =
1

1 + e(ε0j∓νj)/T
, j = p, n (6)

with

ε0j =
√

p2 +M∗2, νj = µj − gvV
(0)
0 −

gρ
2
τjb

(0)
0 (7)

and

f0e± =
1

1 + e(ε0e∓µe)/T
, (8)

with

ε0e =
√

p2 +m2
e, (9)

where µk is the chemical potential of particle k = p, n, e.

In the mean field approximation, the thermodynamic
quantities of interest are given in terms of the meson
fields, which are replaced by their constant expectation
values. For homogeneous neutral nuclear matter, the en-
ergy density, the entropy density, the free energy density,
and the pressure are given, respectively, by [26–28]:

9
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B/A (MeV) ⇢0 (fm�3) M⇤/M K (MeV) Esym (MeV) L (MeV)
NL3 16.24 0.148 0.60 270 37.34 118

NL3!⇢ 16.24 0.148 0.60 270 31.66 55

TABLE I: Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3!⇢ [57, 58] models.
From left to right: binding energy per baryon, saturation density, normalized nucleon e↵ective mass,

incompressibility, symmetry energy and slope of the symmetry energy.

tions in the outer core. This finding nicely explains the
spinodal instabilities observed in the homogeneous mat-
ter calculations of Refs. [37, 38].

The paper is organized as follows: in Section II the
methods and the formalism are given, in Section III we
show our results and discussion, and finally, in Section
IV, conclusions are drawn.

II. THEORETICAL FRAMEWORK

In this work, NS matter is described within a RMF ap-
proximation, where the interaction between the nucleons
is mediated by three types of mesons: the isoscalar-scalar
meson �, the isoscalar-vector meson ! and the isovector-
vector meson ⇢. In order to achieve electrical neutrality,
we also introduce electrons in our description. Through-
out the work, we consider an electromagnetic field of the
type Aµ = (0, 0, Bx, 0), so that the resulting field is ori-
ented along the z axis. We take the anomalous magnetic
moment of the nucleons to be zero, as it was shown in
the previous studies [42] that its main e↵ect is only to
increase the number of disconnected regions in the spin-
odal analysis, because of the removal of the spin polar-
ization degeneracy. We use the quantity B⇤, defined as
B⇤ = B/Bc

e, with Bc
e = 4.414⇥ 1013 G being the critical

field at which the electron cyclotron energy is equal to
the electron mass.

The Lagrangian density of our system is given by

L =
X

i=p,n

Li + Le + L� + L! + L⇢ + Lnl + LA . (1)

Here, Le and LA are the standard electron Lagrangian
density and electromagnetic term, given by

Le =  ̄e
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�me
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4
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with Fµ⌫ = @µA⌫ � @⌫Aµ . The nucleon Lagrangian
density is given by

Li =  ̄i
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M⇤ = M � g�� , (5)

iDµ = i@µ � g!V
µ � g⇢

2
⌧ · bµ � 1 + ⌧3

2
eAµ , (6)

where e =
p
4⇡/137 is the electron charge, and ⌧3 =

±1 is the isospin projection respectively for protons and
neutrons.
The mesonic components of the Lagrangian density are

given by
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2
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with the tensors written as

⌦µ⌫ = @µV⌫ � @⌫Vµ , (10)

Bµ⌫ = @µb⌫ � @⌫bµ � g⇢ (bµ ⇥ b⌫) . (11)

The NL3!⇢ model considers an extra term,

Lnl =⇤!⇢g
2
!g

2
⇢VµV

µbµ · bµ ,

responsible for the density dependence of the symmetry
energy.
From the Euler-Lagrange equations, we get the fields

equations of motion in the mean-field approximation. As
a result, the scalar and vector densities for protons and
neutrons, and the electron density, are given by
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B/A (MeV) ⇢0 (fm�3) M⇤/M K (MeV) Esym (MeV) L (MeV)
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TABLE I: Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3!⇢ [57, 58] models.
From left to right: binding energy per baryon, saturation density, normalized nucleon e↵ective mass,

incompressibility, symmetry energy and slope of the symmetry energy.

tions in the outer core. This finding nicely explains the
spinodal instabilities observed in the homogeneous mat-
ter calculations of Refs. [37, 38].

The paper is organized as follows: in Section II the
methods and the formalism are given, in Section III we
show our results and discussion, and finally, in Section
IV, conclusions are drawn.
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we also introduce electrons in our description. Through-
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responsible for the density dependence of the symmetry
energy.
From the Euler-Lagrange equations, we get the fields

equations of motion in the mean-field approximation. As
a result, the scalar and vector densities for protons and
neutrons, and the electron density, are given by

⇢s,p =
qpBM⇤

2⇡2

⌫p
maxX

⌫=0

gs ln

����
kpF,⌫ + Ep

Fp
M⇤2 + 2⌫qpB

���� , (12)

⇢s,n =
M⇤

2⇡2


En

F k
n
F �M⇤2 ln

����
knF + En

F

M⇤

����

�
, (13)

⇢p =
qpB

2⇡2

⌫p
maxX

⌫=0

gsk
p
F,⌫ , (14)

⇢n =
knF

3

3⇡2
, (15)

with

the structure of the NS. In [34] the maximum strength of
both components, poloidal and toroidal, does not differ
much. However, it was shown that in the presence of a
differentially rotating core the toroidal magnetic field can
be amplified due to the winding, so that toroidal fields that
dominate over the poloidal ones may be generated [37,38].
In [39], the authors could also obtain a larger toroidal
component than the poloidal one within a twisted-torus
equilibrium configuration for nonrotating magnetized NSs.
Although realistic magnetic fields, such as the ones that

may exist inside NSs, do not affect much the core EOS, as
discussed in [40], it has been shown that these fields have a
non-negligible effect, both on the outer and inner crusts.
The magnetic field affects strongly the NS outer crust
[41–44], in particular, the neutron drip density, its composi-
tion and the properties of the nuclei present in the outer crust.
In Refs. [45–49], it was shown from the calculation of

the dynamical or thermodynamical spinodals that a com-
plex inner crust could exist with several disconnected
nonhomogeneous regions. Considering a fixed proton
fraction, it was shown that disconnected regions with pasta
phases could exist at densities above the one associated to
the B ¼ 0 crust-core transition [50]. However, it was still
necessary to confirm these results if β equilibrium would be
imposed.
Avancini et al. have studied the inner crust pasta phases

in the field-free case [5,51], at zero and finite temperatures
using the Thomas-Fermi (TF) and coexistence phases (CP)
methods within a relativistic mean-field (RMF) description
of nuclear matter. Both β-equilibrium stellar matter and
matter with a fixed proton fraction have been considered.
Later, the effect of the magnetic fields on the inner crust
was also studied by some authors [52–55]. In Ref. [53],
quantities such as nuclear size, surface tension and the
transition between pasta configurations, were studied using
the TF approximation with a fixed proton fraction of
Yp ¼ 0.1, 0.3, and considering the RMF NL3 model.
Recently, Bao et al. [52] investigated the effects of strong
magnetic fields on the pasta properties and crust-core
transition, using the TF approximation and two RMF
models, TM1 and IUFSU, imposing the condition of β
equilibrium. Some features, such as an increase of the
proton fraction or the decrease of the binding energy per
nucleon, due to the magnetic field, were discussed [52].
In the present work, we will study the innermost part of

the crust in β equilibrium, using the CP calculation [5], and
considering a magnetic field strength B" ranging from 5 ×
103 to 2 × 104, with B" ¼ B=Be

c, Be
c being the critical field

at which the electron cyclotron energy is equal to the
electron mass, Be

c ¼ 4.414 × 1013 G. In particular, we are
interested in confirming whether the disconnected nonho-
mogeneous regions exist above the B ¼ 0 crust-core
transition, and in understanding the properties of clusters
inside these regions. We will only study the effect on the
inner crust and not in the outer crust.

The present paper is organized as follows: in Sec. II the
methods and the formalism are given, in Sec. III we show
our results and discussion, and we draw some conclusions
in Sec. IV.

II. FORMALISM

We describe nuclear matter at the NS inner crust within a
relativistic mean field approach, in which the nucleons
interact via the exchange of mesons. The exchanged
mesons are the isoscalar-scalar and vector mesons (σ
and ω, respectively) and the isovector meson (ρ). We
consider a system of protons and neutrons with mass M
interacting with and through an isoscalar-scalar field ϕwith
mass ms, an isoscalar-vector field Vμ with mass mv, an
isovector-vector field bμ with mass mρ. We also include a
system of electrons with massme to obtain a charge neutral
system. Protons and electrons interact through the electro-
magnetic field Aμ. The onset of muons occurs above the
crust-core transition and, therefore, they have not been
included in the present study. The Lagrangian density reads

L ¼
X

i¼p;n

Li þ Le þ Lσ þ Lω þ Lρ þ Lγ; ð1Þ

where the nucleon Lagrangian reads

Li ¼ ψ̄ i

!
γμiDμ −M" −

1

2
μNκbσμνFμν

"
ψ i; ð2Þ

with

iDμ ¼ i∂μ − gvVμ −
gρ
2
τ⃗ · bμ − e

1þ τ3
2

Aμ; ð3Þ

and

M" ¼ M − gsϕ; ð4Þ

the nucleon effective mass. The electron Lagrangian is
given by

Le ¼ ψ̄e½γμði∂μ þ eAμÞ −me'ψe; ð5Þ

and the meson Lagrangian densities are

Lσ ¼
1

2

#
∂μϕ∂μϕ −m2

sϕ2 −
1

3
κϕ3 −

1

12
λϕ4

$
; ð6Þ

Lω ¼ − 1

4
ΩμνΩμν þ 1

2
m2

vVμVμ þ ξ
4!
g4vðVμVμÞ2 ð7Þ

Lρ ¼ −
1

4
Bμν ·Bμν þ 1

2
m2

ρbμ · bμ; ð8Þ

Lγ ¼ −
1

4
FμνFμν; ð9Þ
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TABLE I. Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3ωρ [57,58] models. From left to right:
binding energy per baryon, saturation density, normalized nucleon effective mass, incompressibility, symmetry energy, and slope of the
symmetry energy.

B/A (MeV) ρ0 (fm−3) M∗/M K (MeV) Esym (MeV) L (MeV)

NL3 16.24 0.148 0.60 270 37.34 118
NL3ωρ 16.24 0.148 0.60 270 31.66 55

deviations from equilibrium in the distribution functions of
the particles and of the meson fields. In the core region,
the frequencies ω of the modes are real numbers, and the
fluctuations are spontaneously damped. Inside the spinodal
region, the frequencies are imaginary, reflecting the instability
of homogeneous matter with respect to density fluctuations.
The maximum frequency of the unstable modes # = |ω| can
be taken as the one that drives the instability, and it measures
the growth rate of the density fluctuation in the linear response
regime. In Refs. [37,38], only the longitudinal modes that
propagate along the magnetic field were considered. Later, in
Ref. [50], the authors also calculated the transverse modes,
and observed that for magnetic fields of the order of ≈ 1018G ,
the spinodal section is reduced, and for fields one order of
magnitude lower, the effect is completely washed out, and
the transverse spinodal coincides with the B = 0 field one,
meaning that the the propagation of the perturbations per-
pendicular to the magnetic field are more difficult under the
presence of strong magnetic fields, and accounting for lon-
gitudinal modes is enough. In the hypothesis that the linear
dynamics is continued until formation of the ion structure that
characterizes the solid crust, the density and pressure at which
the eigenfrequency goes to zero gives an estimation of the
crust-core transition point. In this interpretation, the extended
instability zone, due to the effect of the magnetic field, thus
corresponds to a higher crust-core transition density, and an
extended crust for the neutron star. These results appear in
contradiction with the previous findings of Ref. [47], where
the authors did not find such a region.

Subsequently, in Refs. [41,42], a coexistence phase (CP)
approximation was performed to check the dynamical spin-
odal results of Refs. [37,38]. This calculation was performed
both with fixed proton fraction [41] and at β equilibrium
[42]. In both Refs. [41,42], the solutions were in agreement
with the ones of the instability region found from the dy-
namical spinodal approach of Refs. [37,38]. This points to
the fact that the CP approach also predicts extra regions of
clusterized matter above the B = 0 region, and therefore a
thicker crust. However, in [42], it was also shown that these
extra regions of clustered matter have different properties with
respect to the rest of the inner crust. In particular, very close
densities between the clusters and the medium in which they
are embedded were found. This last finding suggests that
the extended crust might be rather interpreted as a slightly
inhomogeneous core, with density fluctuations of an ampli-
tude that is too small to be captured by the Thomas-Fermi
approach [47]. A definitive conclusion cannot be reached
though, because the CP calculation is not a self-consistent
approach. Indeed, surface and Coulomb terms are added af-
ter the minimization of the energy density, and therefore the

possible influence of the surface properties on the solution of
the variational equations is neglected.

To better settle the issue of the effect of the magnetic
field on the crust thickness, in this paper we study the struc-
ture of the inner crust of a neutron star in the presence of
a strong magnetic field by explicitly including the surface
and Coulomb contribution in the variational equations for the
inner crust, using the compressible liquid drop (CLD) model
[9,51–55].

We also calculate the pasta structures in the CP approx-
imation to compare with Refs. [41,42], and use the same
relativistic mean-field (RMF) functionals as in those previous
works, namely the NL3 [56] and the NL3ωρ [57,58].

These two models belong to the same family, i.e., they
have the same isoscalar properties. NL3ωρ was constructed
to model the density dependence of the symmetry energy
because NL3 has a very high slope of the symmetry energy at
saturation. We should keep in mind though that NL3 should be
adequate to study subsaturation density regimes, like the NS
inner crust, because this model gives a very good description
of the properties of stable nuclei. The properties of symmetric
nuclear matter at saturation density of these two models can
be found in Table I. Both these models predict stars with
masses above the 2M$ [58,59], even when hyperonic degrees
of freedom are taken into account, and the NL3ωρ model
also satisfies the constraints imposed by neutron-matter mi-
croscopic calculations [58,60].

The crust-core transition density strongly depends on the
symmetry energy and particularly on its slope at saturation
L [15,58,61–65]. This latter quantity is still not yet well
constrained. Ab initio chiral effective field theory calcula-
tions seem to favor values for L below 60 MeV [66], or
below 90 MeV, when astrophysical observations are taken
into account as extra constraints [67]. Reed et al. [68] have
performed an analysis on the PREX-2 data [69], obtaining a
large value for L, L = 106 ± 37 MeV. However, other studies,
like the one performed by Essick et al. [70], that predicted
L = 53+14

−15 MeV, by also combining astrophysical observa-
tions, or the one by Estee et al. [71], that measured the charged
pion spectra at high transverse momenta, suggesting 42 <
L < 117 MeV, are both compatible with PREX-2 analysis.
Moreover, Reinhard et al. [72] based on the PREX-2 results,
were able to predict a smaller neutron skin thickness, which
lead them to infer a smaller slope of the symmetry energy,
L = 54 ± 8 MeV. Recently, the CREX [73] collaboration has
measured the 48Ca neutron skin thickness, and analyses seem
to indicate that L could be smaller than PREX-2 predic-
tions. Finally, Mondal et al. [74] have recently shown in a
Bayesian analysis that the constraints on L from both PREX-2
and CREX are very loose, if the uncertainties in the surface
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Theoretical Framework: Relativistic Mean Field

Relativistic Mean Field Approximation

In our work we use a Relativistic Mean Field Approximation in order to describe

stellar matter (npe). In this approximation, the interaction between nucleons is

mediated by mesons. The Lagrangian density of the system is given by :

L =
X

i=p,n

Li + Le + L� + L! + L⇢ + Lnl + LA (1)

with

Li =  ̄i

⇥
�µiD

µ �M⇤⇤ i, M⇤ = M � g��, (2)

iDµ = i@µ � g!V
µ � g⇢

2
⌧ · bµ � 1 + ⌧3

2
eAµ, (3)

Le =  ̄e

⇥
�µ

�
i@µ + eAµ��me

⇤
 e, LA = �1

4
Fµ⌫F

µ⌫ . (4)

We always consider Aµ = (0, 0, Bx, 0) and we define B⇤ = B/Bc
e, with

Bc
e = 4.414⇥ 1013

L.Scurto C.D. 10/02/23 16 / 34

3

B/A (MeV) ⇢0 (fm�3) M⇤/M K (MeV) Esym (MeV) L (MeV)
NL3 16.24 0.148 0.60 270 37.34 118

NL3!⇢ 16.24 0.148 0.60 270 31.66 55

TABLE I: Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3!⇢ [57, 58] models.
From left to right: binding energy per baryon, saturation density, normalized nucleon e↵ective mass,

incompressibility, symmetry energy and slope of the symmetry energy.

tions in the outer core. This finding nicely explains the
spinodal instabilities observed in the homogeneous mat-
ter calculations of Refs. [37, 38].

The paper is organized as follows: in Section II the
methods and the formalism are given, in Section III we
show our results and discussion, and finally, in Section
IV, conclusions are drawn.

II. THEORETICAL FRAMEWORK

In this work, NS matter is described within a RMF ap-
proximation, where the interaction between the nucleons
is mediated by three types of mesons: the isoscalar-scalar
meson �, the isoscalar-vector meson ! and the isovector-
vector meson ⇢. In order to achieve electrical neutrality,
we also introduce electrons in our description. Through-
out the work, we consider an electromagnetic field of the
type Aµ = (0, 0, Bx, 0), so that the resulting field is ori-
ented along the z axis. We take the anomalous magnetic
moment of the nucleons to be zero, as it was shown in
the previous studies [42] that its main e↵ect is only to
increase the number of disconnected regions in the spin-
odal analysis, because of the removal of the spin polar-
ization degeneracy. We use the quantity B⇤, defined as
B⇤ = B/Bc

e, with Bc
e = 4.414⇥ 1013 G being the critical

field at which the electron cyclotron energy is equal to
the electron mass.

The Lagrangian density of our system is given by

L =
X

i=p,n

Li + Le + L� + L! + L⇢ + Lnl + LA . (1)

Here, Le and LA are the standard electron Lagrangian
density and electromagnetic term, given by
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�me
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 e, (2)

LA = �1

4
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µ⌫ , (3)

with Fµ⌫ = @µA⌫ � @⌫Aµ . The nucleon Lagrangian
density is given by
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with

M⇤ = M � g�� , (5)

iDµ = i@µ � g!V
µ � g⇢

2
⌧ · bµ � 1 + ⌧3

2
eAµ , (6)

where e =
p
4⇡/137 is the electron charge, and ⌧3 =

±1 is the isospin projection respectively for protons and
neutrons.
The mesonic components of the Lagrangian density are

given by

L� =
1
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Bµ⌫ ·Bµ⌫ +
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⇢bµ · bµ , (9)

with the tensors written as

⌦µ⌫ = @µV⌫ � @⌫Vµ , (10)

Bµ⌫ = @µb⌫ � @⌫bµ � g⇢ (bµ ⇥ b⌫) . (11)

The NL3!⇢ model considers an extra term,

Lnl =⇤!⇢g
2
!g

2
⇢VµV

µbµ · bµ ,

responsible for the density dependence of the symmetry
energy.
From the Euler-Lagrange equations, we get the fields

equations of motion in the mean-field approximation. As
a result, the scalar and vector densities for protons and
neutrons, and the electron density, are given by

⇢s,p =
qpBM⇤

2⇡2
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⌫=0
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• The vector densities are given by
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TABLE I: Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3!⇢ [57, 58] models.
From left to right: binding energy per baryon, saturation density, normalized nucleon e↵ective mass,

incompressibility, symmetry energy and slope of the symmetry energy.

tions in the outer core. This finding nicely explains the
spinodal instabilities observed in the homogeneous mat-
ter calculations of Refs. [37, 38].

The paper is organized as follows: in Section II the
methods and the formalism are given, in Section III we
show our results and discussion, and finally, in Section
IV, conclusions are drawn.
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increase the number of disconnected regions in the spin-
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tions in the outer core. This finding nicely explains the
spinodal instabilities observed in the homogeneous mat-
ter calculations of Refs. [37, 38].

The paper is organized as follows: in Section II the
methods and the formalism are given, in Section III we
show our results and discussion, and finally, in Section
IV, conclusions are drawn.

II. THEORETICAL FRAMEWORK

In this work, NS matter is described within a RMF ap-
proximation, where the interaction between the nucleons
is mediated by three types of mesons: the isoscalar-scalar
meson �, the isoscalar-vector meson ! and the isovector-
vector meson ⇢. In order to achieve electrical neutrality,
we also introduce electrons in our description. Through-
out the work, we consider an electromagnetic field of the
type Aµ = (0, 0, Bx, 0), so that the resulting field is ori-
ented along the z axis. We take the anomalous magnetic
moment of the nucleons to be zero, as it was shown in
the previous studies [42] that its main e↵ect is only to
increase the number of disconnected regions in the spin-
odal analysis, because of the removal of the spin polar-
ization degeneracy. We use the quantity B⇤, defined as
B⇤ = B/Bc

e, with Bc
e = 4.414⇥ 1013 G being the critical

field at which the electron cyclotron energy is equal to
the electron mass.
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FIG. 1: Di↵erence between the energy per baryon of homogeneous matter and the energy per baryon of clustered
matter, as a function of the total baryon density, for the NL3 (solid) and NL3!⇢ (dashed) models, in a CP (left

panels) and CLD (right panels) calculations. The magnetic field intensity is fixed to B⇤ = 5⇥ 103 (top panels) and
B⇤ = 104 (bottom panels). In red, this di↵erence is positive, E/Ahm > E/Acl, and in blue it is negative.

⇢e =
|e|B
2⇡2

⌫e
maxX

⌫=0

gsk
e
F,⌫ , (16)

where ⌫ = n + 1
2 � 1

2
q
|q|s = 0, 1, · · · , ⌫max enumerates

the Landau levels (LL) for fermions with electric charge
q, q = e for electrons and q = qp for protons. s is the spin
quantum number, +1 for spin up cases and �1 for spin
down cases. The spin degeneracy factor of the Landau
levels, gs, is equal to gs = 1 for ⌫ = 0 and gs = 2
for ⌫ > 0, and ⌫max is the largest LL occupied by fully
degenerate charged fermions, defined as

⌫emax =
Ee2

F �m2
e

2|qe|B
, (17)

⌫pmax =
Ep2

F �M⇤2

2qpB
. (18)

kqF,⌫ and Eq
F are the Fermi momenta and energies of

the particles, defined as

kpF,⌫ =
q

Ep2
F �M⇤2 � 2⌫qpB , (19)

knF =
q

En2
F �M⇤2 , (20)

keF,⌫ =
q

Ee2
F �m2

e � 2⌫|e|B . (21)

The reader should note that the energy, defined above,
and other thermodynamic quantities do not depend on
x0, the coordinate space defined as x0 = py/m!0 with
!0 = qB/m the cyclotron frequency and py the quantum
number that specifies the x-projection of the guiding cen-
ter of the particle rotation, even though the hamiltonian
of the system corresponds to a shifted harmonic oscillator
by x0.

The mean-field evaluation of the fields allows a closed
expression for the bulk free energy density as:

E = Ef + Ep + En , (22)
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The reader should note that the energy, defined above,
and other thermodynamic quantities do not depend on
x0, the coordinate space defined as x0 = py/m!0 with
!0 = qB/m the cyclotron frequency and py the quantum
number that specifies the x-projection of the guiding cen-
ter of the particle rotation, even though the hamiltonian
of the system corresponds to a shifted harmonic oscillator
by x0.

The mean-field evaluation of the fields allows a closed
expression for the bulk free energy density as:
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with
the maximum number of 
Landau levels, for which 
the square of the Fermi 
momentum of the particle 
is still positive. 
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FIG. 1: Di↵erence between the energy per baryon of homogeneous matter and the energy per baryon of clustered
matter, as a function of the total baryon density, for the NL3 (solid) and NL3!⇢ (dashed) models, in a CP (left

panels) and CLD (right panels) calculations. The magnetic field intensity is fixed to B⇤ = 5⇥ 103 (top panels) and
B⇤ = 104 (bottom panels). In red, this di↵erence is positive, E/Ahm > E/Acl, and in blue it is negative.

⇢e =
|e|B
2⇡2

⌫e
maxX

⌫=0

gsk
e
F,⌫ , (16)

where ⌫ = n + 1
2 � 1

2
q
|q|s = 0, 1, · · · , ⌫max enumerates

the Landau levels (LL) for fermions with electric charge
q, q = e for electrons and q = qp for protons. s is the spin
quantum number, +1 for spin up cases and �1 for spin
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!0 = qB/m the cyclotron frequency and py the quantum
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of the system corresponds to a shifted harmonic oscillator
by x0.
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Finally, the chemical potentials for protons, neutrons,
and electrons are given by
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and the baryonic pressure can be deduced as

P = µp⇢p + µn⇢n � E . (29)

When considering charge-neutral, ��equilibrium mat-
ter, the following conditions should also be imposed:

⇢p = ⇢e , (30)

µn = µp + µe . (31)

A. Cluster and pasta structures in the CLD
approximation

In this work, we consider the CLD model [54] to calcu-
late the inner crust structures in ��equilibrium magne-
tized matter. We compare our results with a simpler CP
calculation, that was also previously done in Ref. [42].
The reader should refer to this publication for further
details on this calculation.

In the CLD model, each Wigner-Seitz cell is composed
of a high-density (”cluster”) part, labeled I, and a low-
density (”gas”) part, labeled II. The equilibrium pro-
portion of cluster and gas is obtained by minimizing the
total energy density, including the interface surface and
Coulomb terms, that is given by
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with respect to four variables: the linear size of the clus-
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The surface tension parameter � depends on the total
proton fraction of the system and its expression, for both
EoS models used in this work, can be found in Ref. [76].
This parameter was obtained from a fit to a relativistic
Thomas-Fermi calculation. For more details, the reader
should check Ref. [76] and references therein. When we
minimize ECoul + Esurf with respect to the size of the
cluster, Rd, we get
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The reader can check e.g. Ref. [42] for the di↵erent ex-
pressions in the total energy density. We note that we
do not consider superfluidity, since it has already been
shown in previous studies [77] that its impact on the
static properties of a neutron star is very small.

III. RESULTS AND DISCUSSION

In this section, we analyze the results obtained in
our study, comparing them to previous calculations, in
particular, the analysis of the dynamical spinodal in
Refs. [37, 38], and the study done with the CP model
in [42]. We will show how the CLD model, while in
agreement with the previous calculations, allows a more
realistic description of the system, and helps clarifying
some contradictory results that can be found in the lit-
erature [47].
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and the baryonic pressure can be deduced as

P = µp⇢p + µn⇢n � E . (29)

When considering charge-neutral, ��equilibrium mat-
ter, the following conditions should also be imposed:

⇢p = ⇢e , (30)

µn = µp + µe . (31)

A. Cluster and pasta structures in the CLD
approximation

In this work, we consider the CLD model [54] to calcu-
late the inner crust structures in ��equilibrium magne-
tized matter. We compare our results with a simpler CP
calculation, that was also previously done in Ref. [42].
The reader should refer to this publication for further
details on this calculation.

In the CLD model, each Wigner-Seitz cell is composed
of a high-density (”cluster”) part, labeled I, and a low-
density (”gas”) part, labeled II. The equilibrium pro-
portion of cluster and gas is obtained by minimizing the
total energy density, including the interface surface and
Coulomb terms, that is given by

E = fEI + (1� f)EII + ECoul + Esurf + Ee , (32)

with respect to four variables: the linear size of the clus-
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proton fraction of the system and its expression, for both
EoS models used in this work, can be found in Ref. [76].
This parameter was obtained from a fit to a relativistic
Thomas-Fermi calculation. For more details, the reader
should check Ref. [76] and references therein. When we
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The reader can check e.g. Ref. [42] for the di↵erent ex-
pressions in the total energy density. We note that we
do not consider superfluidity, since it has already been
shown in previous studies [77] that its impact on the
static properties of a neutron star is very small.

III. RESULTS AND DISCUSSION

In this section, we analyze the results obtained in
our study, comparing them to previous calculations, in
particular, the analysis of the dynamical spinodal in
Refs. [37, 38], and the study done with the CP model
in [42]. We will show how the CLD model, while in
agreement with the previous calculations, allows a more
realistic description of the system, and helps clarifying
some contradictory results that can be found in the lit-
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and the baryonic pressure can be deduced as

P = µp⇢p + µn⇢n � E . (29)

When considering charge-neutral, ��equilibrium mat-
ter, the following conditions should also be imposed:

⇢p = ⇢e , (30)

µn = µp + µe . (31)

A. Cluster and pasta structures in the CLD
approximation

In this work, we consider the CLD model [54] to calcu-
late the inner crust structures in ��equilibrium magne-
tized matter. We compare our results with a simpler CP
calculation, that was also previously done in Ref. [42].
The reader should refer to this publication for further
details on this calculation.

In the CLD model, each Wigner-Seitz cell is composed
of a high-density (”cluster”) part, labeled I, and a low-
density (”gas”) part, labeled II. The equilibrium pro-
portion of cluster and gas is obtained by minimizing the
total energy density, including the interface surface and
Coulomb terms, that is given by

E = fEI + (1� f)EII + ECoul + Esurf + Ee , (32)

with respect to four variables: the linear size of the clus-
ter, Rd, the baryonic density of the liquid phase ⇢I , the
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terms are given by
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proton fraction of the system and its expression, for both
EoS models used in this work, can be found in Ref. [76].
This parameter was obtained from a fit to a relativistic
Thomas-Fermi calculation. For more details, the reader
should check Ref. [76] and references therein. When we
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The reader can check e.g. Ref. [42] for the di↵erent ex-
pressions in the total energy density. We note that we
do not consider superfluidity, since it has already been
shown in previous studies [77] that its impact on the
static properties of a neutron star is very small.

III. RESULTS AND DISCUSSION

In this section, we analyze the results obtained in
our study, comparing them to previous calculations, in
particular, the analysis of the dynamical spinodal in
Refs. [37, 38], and the study done with the CP model
in [42]. We will show how the CLD model, while in
agreement with the previous calculations, allows a more
realistic description of the system, and helps clarifying
some contradictory results that can be found in the lit-
erature [47].



The pasta phases
•Competition between Coulomb and nuclear forces leads to 
frustrated system

•Geometrical structures, the pasta phases, evolve with density 
until they melt crust-core transition

•Criterium: pasta free energy must be lower than the  
correspondent hm state

G. Watanabe et al, PRL 103, 121101, 2009
C. J. Horowitz et al, PRC 70, 065806, 2004 

QMD calculations:

cases studied in this Letter, we set the proton fraction equal
to 0.3, a likely value for CCSNmatter. The minimum of the
free energy in a cell at a given particle number density,
temperature, and proton fraction is sought as a function of
three free parameters: the number of particles in the cell
(determining the cell size) and !, ", the parameters of the
quadrupole moment of the neutron distribution. Each
minimization takes approximately 12 hours of CPU time
on a single core of the Cray XT5/XK6 machine and is
performed in a trivially parallel mode, typically using
45 000 processors.

We present here a complete calculation for T ¼ 2 MeV
and the particle number density range 0:02–0:12 fm"3. We
observed the onset of the pasta phase and its dissolution to
uniform matter. All classical pasta formations, starting
from spherical droplets through rods, slabs, tubes (cylin-
drical holes), and bubbles (spherical holes) were observed
fully self-consistently for all Skyrme force models. The
shapes are illustrated in Fig. 1 for the SMC700 Skyrme
force as an example at threshold densities for each shape.
We show the 3D image in the top row and the yx, xz, and yz
projections in the 2nd, 3rd, and 4th rows, respectively. In
the tube and bubble regions we found the cylindrical
(spherical) holes appearing exactly in the edges (corners)
of the unit cell and not in the center as expected in the bcc
or fcc symmetries, which are in principle allowed in a
cubic box. The reason for this effect is likely to be that
in our model we calculate the density distribution only in
one octant of the cell and assemble the whole cell using
reflection symmetry. This procedure reduces the higher
order bcc and fcc symmetries to a simple cubic symmetry.
The use of reflection symmetry makes the 3D-SHF model

manageable. Removal of that symmetry would increase the
demand on computational time by a factor of 8 which is not
realistic at this time.
In addition, we determined the transition densities

between individual phases as shown in Fig. 2. For com-

FIG. 1 (color online). First row: Pasta phases calculated using the SQMC700 Skyrme interaction, T ¼ 2 MeV and yp ¼ 0:3. Rows
2, 3, 4: 2D projection of the pasta phases on the (y, x), (x, z), and (y, z) planes, respectively. The neutron density distribution is shown at
the density corresponding to the onset of each phase, known with the uncertainty given in brackets. Blue (red) color indicates the
bottom (top) of the density scale: 0.001 (dark blue)—0.02475 (light blue)—0.0485 (green)—0.07225 (light orange)—0.095 (red) fm"3.
The pasta formation shown here appears for all the Skyrme models, but the threshold density changes somewhat; see Fig. 2. For more
explanation see text.
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FIG. 2 (color online). Comparison of phase diagrams at T ¼
2 MeV and yp ¼ 0:3 as calculated for the four Skyrme inter-
actions used in the 3D-SHF model. The sequence of phases from
bottom to top is spherical droplets (magenta): no pasta, rods
(yellow), cross-rods (blue), slabs (red), cylindrical holes (tubes,
orange), and spherical holes (bubbles, green). The white gaps
between colored boxes represent transition regions in which
calculation is not available. The onset densities of each phase
can be compared with results of Sonoda et al. [12], who found
the following regions of densities (all in fm"3 rounded to 3
decimal places): 0.017–0.029 (spherical droplets), 0.034 (rods),
0.059–0.063 (slabs), 0.080–0.084 (cylindrical holes), and 0.088–
0.109 (spherical holes). For more explanation see text.
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Pais and Stone, PRL 109, 151101, 20123D-SHF calculation:
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• Separated regions of higher (pasta phases) and lower density (background 
nucleon gas).


• Gibbs equilibrium conditions:    

• Finite size effects are taken into account by a surface and a Coulomb 
terms in the energy density, after the coexisting phases are achieved.


• The total energy density and proton fraction of the system are given by 
             

•   By minimizing the surface the Coulomb energies w.r.t size of cluster:

µI
p = µII

p

µI
n = µII

n

P I = P II

check e.g. PRC 91, 055801 2015

Pasta phases - calculation (I)

• Coexistence Phase (CP) approximation: 
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Finally, the chemical potentials for protons, neutrons,
and electrons are given by
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and the baryonic pressure can be deduced as

P = µp⇢p + µn⇢n � E . (29)

When considering charge-neutral, ��equilibrium mat-
ter, the following conditions should also be imposed:

⇢p = ⇢e , (30)

µn = µp + µe . (31)

A. Cluster and pasta structures in the CLD
approximation

In this work, we consider the CLD model [54] to calcu-
late the inner crust structures in ��equilibrium magne-
tized matter. We compare our results with a simpler CP
calculation, that was also previously done in Ref. [42].
The reader should refer to this publication for further
details on this calculation.

In the CLD model, each Wigner-Seitz cell is composed
of a high-density (”cluster”) part, labeled I, and a low-
density (”gas”) part, labeled II. The equilibrium pro-
portion of cluster and gas is obtained by minimizing the
total energy density, including the interface surface and
Coulomb terms, that is given by

E = fEI + (1� f)EII + ECoul + Esurf + Ee , (32)

with respect to four variables: the linear size of the clus-
ter, Rd, the baryonic density of the liquid phase ⇢I , the

proton density of the liquid phase ⇢Ip, and the volume
fraction of the liquid phase f . The Coulomb and surface
terms are given by
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The surface tension parameter � depends on the total
proton fraction of the system and its expression, for both
EoS models used in this work, can be found in Ref. [76].
This parameter was obtained from a fit to a relativistic
Thomas-Fermi calculation. For more details, the reader
should check Ref. [76] and references therein. When we
minimize ECoul + Esurf with respect to the size of the
cluster, Rd, we get

Esurf = 2ECoul , (36)
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The reader can check e.g. Ref. [42] for the di↵erent ex-
pressions in the total energy density. We note that we
do not consider superfluidity, since it has already been
shown in previous studies [77] that its impact on the
static properties of a neutron star is very small.

III. RESULTS AND DISCUSSION

In this section, we analyze the results obtained in
our study, comparing them to previous calculations, in
particular, the analysis of the dynamical spinodal in
Refs. [37, 38], and the study done with the CP model
in [42]. We will show how the CLD model, while in
agreement with the previous calculations, allows a more
realistic description of the system, and helps clarifying
some contradictory results that can be found in the lit-
erature [47].
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µe =Ee
F =

q
ke2F,⌫ +m2

e + 2⌫|qe|B . (28)

and the baryonic pressure can be deduced as
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where α = f for droplets, rods, slabs and α = 1 − f for
tubes and bubbles, f is the volume fraction of phase I,
σ is the surface energy coefficient and Φ is given by

Φ =

{
(

2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1, 3

α−1−lnα
D+2 , D = 2 .

(28)

The Gibbs equilibrium conditions are imposed to get
the lowest energy state, and, for a temperature T = T I =
T II , are written as

µI
n = µII

n , (29)

µI
p = µII

p ,

P I = P II ,

where I and II label the high- and low-density phases,
respectively. When clusters are present, there are equi-
librium conditions for them too [17].
The total free energy density, and the total proton den-

sity of the system are given by

F = fF I + (1 − f)F II + Fe + εsurf + εCoul, (30)

ρp = ρe = ypρ = fρI
p + (1− f)ρII

p , (31)

where F i, i = I, II, is the free energy density of the ho-
mogeneous neutral nuclear matter, given by Eq. (12), Fe

is given by Eq. (16), and εsurf and εCoul are the sur-
face and Coulomb energies, given by Eqs. (26) and (27),
respectively.

C. Compressible Liquid Drop model

In the Compressible Liquid Drop model [18, 29–31], the
equilibrium conditions of the system are derived from the
minimization of the total free energy [29], including the
surface and Coulomb terms. This minimization is done
with respect to four variables: the size of the geometric
configuration, rd, which gives, just like in the CP case,
Eq. (26), the baryonic density in the high-density phase,
ρI , the proton density in the high-density phase, ρIp, and
the volume fraction, f . The equilibrium conditions be-
come:

µ
I
n = µ

II
n , (32)

µ
I
p = µ

II
p −

εsurf
f(1− f)(ρIp − ρIIp )

,

P I = P II − εsurf

(

1

2α
+

1

2Φ

∂Φ

∂f
−

ρIIp
f(1− f)(ρIp − ρIIp )

)

.

Note that there is an extra term in both the pro-
ton chemical potential and in the mechanical equilibrium
conditions, as compared to the ones obtained in the CP
approximation, Eqs. (29). These terms arise from the
inclusion of the surface and Coulomb terms in the min-
imization of the total energy. The Coulomb repulsion

induces an extra positive term while the surface tension
reduces the cluster internal pressure.
The total pressure, and the total proton chemical po-

tential of the system are given by

Ptot = µpρp + µnρn + µeρe − F, (33)

µp = fµI
p + (1 − f)µII

p , (34)

where F is the total free energy density, given by Eq. (30),
and f is the volume fraction of phase I.

III. RESULTS

In the present section, we discuss how the nuclear
liquid-gas instability, occurring at subsaturation densi-
ties for asymmetric nuclear matter, is partially lifted by
an adequate description of the inner crust, allowing for
the appearance of nonhomogeneous phases. In particu-
lar, we will compare several physical quantities obtained
within a TF calculation, a CP approach, supposing a
zero thickness surface, and the CLD model, where finite
size effects are included in a consistent way, with the cor-
responding quantities for homogeneous matter. We will
also discuss the effect of the inclusion of light clusters in
the calculation.
The free energy per particle, the pressure, the proton,

neutron and baryonic chemical potentials, and the en-
tropy per particle of the inner crust, obtained within the
approaches referred above, are plotted in the following
figures as a function of density or chemical potential, for
the FSU interaction, two temperatures T = 4 MeV and
8 MeV, and the proton fraction yp = ρp/ρ = 0.3. The re-
sults are shown for homogeneous matter (red), CP (blue)
calculations with (dashed) and without (solid line) clus-
ters, CLD (green solid line) and TF (points) calculations.
For reference and to help the discussion, we show in

Table I the symmetric nuclear matter properties for all
the models we are using in this study to compare with
our calculations with the FSU interaction: another RMF
parametrization, TW [32], with density-dependent cou-
plings, and four Skyrme interactions, SkM* [33], SLy4
[34], NRAPR [35], and SQMC700 [36], chosen based on
their overall performance in modelling a wide variety of
nuclear matter properties [37].
In Figure 1, we show the free energy per particle, F/A,

as a function of the density. As expected, F/A is lowered
when nonhomogeneous matter is present, making these
states more stable. A second effect is the disappearance
of the negative curvature that the EOS of homogeneous
matter presents below saturation density. This effect is
present in all the three methods considered.
The light clusters are only present for very small densi-

ties, and will start melting for ρ ! 0.001 fm−3. However,
their presence lowers the free energy of the homogenous
matter EOS and of the CP calculation, as can be seen in
the inset panels. A TF calculation, including light clus-
ters, should also be performed (see e.g. [38]). The CP
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This expression holds if we consider either the e↵ective
or ideal gas expression for the translational energy term.

The total free energy density, and the total proton den-
sity of the system are given by

F = fF I + (1� f)F II + Fe + "surf + "Coul + "Trans,(26)
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p + (1� f)⇢II

p , (27)

where F i, i = I, II, is the free energy density of the ho-
mogeneous neutral nuclear matter, given by Eq. (11), Fe

is given by Eq. (15), and "surf , "Coul, and "Trans are the
surface, Coulomb and translational energies, given by the
above equations.
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FIG. 1. The total free energy per baryon as a function of the

total baryon density at T = 2 MeV for the FSU interaction

yp = 0.2 (panel a), and yp = 0.4 (panel b). In each panel,

the homogeneous matter result (thin black line) is plotted in

comparison with those in the CLD calculation without the

translational free energy (dashed blue line), with the ideal-

gas translational term Ftrans (solid green line), and with the

corrected translational term F ?
trans (dash-dotted red line).

FIG. 2. The cluster surface tension � as a function of the

total baryon density ⇢ in the inner crust at T = 2 MeV for

the FSU interaction at beta equilibrium (thick magenta line),

yp = 0.2 (blue line), and yp = 0.4 (thin orange line). The sur-

face parameters are obtained from the fit to the mass table

AME2016 [? ]. The result is obtained without the transla-

tional term.
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with the spatial coordinates xi = (r, θ). The first term
in Eq. (3) corresponds to the purely matter contribu-
tion, the second represents the gravitational potential,
the third accounts for the centrifugal effects due to rota-
tion, and the last one is the Lorentz force (fµ = Fµν jν)
induced by magnetic fields, which, in our case, are gen-
erated by the four-electric current jν . Since Aµ =
(At, 0, 0, Aφ), then jν = (jt, 0, 0, jφ), which comes from
the assumption of circularity condition. In other words,
there are not meridional currents.
Eq. (3) is the relativistic version of the Euler equation.

One can show, by taking the rotational, that the Lorentz
term in Eq. (3) can be written as

∂M

∂xi
=

F iν jν
E + P

=

(

jφ − Ω jt

E + P

)

∂Aφ

∂xi
. (4)

Note that Eq.(4) represents also the integrability con-
dition of Eq.(3). The term in parenthesis in Eq. (4) can
be a constant, or a function of the magnetic vector po-
tential, g (Aφ). The arbitrary function M can then be
chosen such that:

∂M

∂Aφ
= g(Aφ) . (5)

In other words,

M = M(Aφ(r, θ)) =

∫ Aφ

0

g(u) du . (6)

The function g(u) is called the current function, andM is
the magnetic potential. Here, the magnetic star models
are obtained by assuming a constant value for the di-
mensionless current function, also referred to as current
function amplitude (CFA), and denoted by k0. In Ref.
[27], other choices for g(u) were considered, other than
constants functions, but the general conclusions remain
the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0
is related to the macroscopic electric current via:

jφ = Ω jt + (E + P ) k0 , (7)

which is obtained relating Eq. (5) with Eq. (4). Here, E
is the energy density and P is the pressure.
Finally, the integral form of the equation of motion for

a fluid in the presence of magnetic fields, Eq. (3), reads:

H(r, θ)+ln N(r, θ)−ln Γ(r, θ) +M(r, θ) = const. , (8)

where M is the magnetic potential, see Eq. (6), and
H is the dimensionless log-enthalpy (also called pseudo-
enthalpy or heat function) defined as

H(P ) =

∫ P

0

dP ′

E(P ′) + P ′
, (9)

which can be cast in terms of the specific enthalpy h

h(P ) =
E(P ) + P

mb nb
, (10)

as

H(P ) := ln h(P ) = ln

(

µ

mb

)

, (11)

where mB = 939 MeV is the baryonic mass, and µ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our
study. We consider the effect of the magnetic field on
the NS crust for a non-rotating star in Sec. III A, and,
for a rotating star, in Sec. III B.

A. Magnetised neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary be-
tween the inner crust and the core, where homogeneous
and non-homogeneous matter (matter with the presence
of clusters) coexist – the extended crust – identified by
the densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the
radii that correspond to each of these densities as R1 and
R2, respectively. In this notation, the thickness of the ex-
tended crust is defined as∆Rt = R1−R2, whilst the total
size of the crust is given by the difference ∆R2 = R−R2

(with R being the coordinate radius of the star). The
difference ∆R1 = R − R1 corresponds to the size of the
crust without the extended region.

FIG. 1. (Color online) The extended crust region. The den-
sities ρ1 and ρ2 define the boundaries of this region.

For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with
the crust-core transition of a non-magnetized star, we
take the EoS of non-magnetized matter. In [24], it has
been shown that the magnetic field does not affect much

Sengo et al, PRD 102, 
063013 (2020)
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The crust-core transition extends to a larger range of densities.
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with the spatial coordinates xi = (r, θ). The first term
in Eq. (3) corresponds to the purely matter contribu-
tion, the second represents the gravitational potential,
the third accounts for the centrifugal effects due to rota-
tion, and the last one is the Lorentz force (fµ = Fµν jν)
induced by magnetic fields, which, in our case, are gen-
erated by the four-electric current jν . Since Aµ =
(At, 0, 0, Aφ), then jν = (jt, 0, 0, jφ), which comes from
the assumption of circularity condition. In other words,
there are not meridional currents.
Eq. (3) is the relativistic version of the Euler equation.

One can show, by taking the rotational, that the Lorentz
term in Eq. (3) can be written as

∂M

∂xi
=

F iν jν
E + P

=

(

jφ − Ω jt

E + P

)

∂Aφ

∂xi
. (4)

Note that Eq.(4) represents also the integrability con-
dition of Eq.(3). The term in parenthesis in Eq. (4) can
be a constant, or a function of the magnetic vector po-
tential, g (Aφ). The arbitrary function M can then be
chosen such that:

∂M

∂Aφ
= g(Aφ) . (5)

In other words,

M = M(Aφ(r, θ)) =

∫ Aφ

0

g(u) du . (6)

The function g(u) is called the current function, andM is
the magnetic potential. Here, the magnetic star models
are obtained by assuming a constant value for the di-
mensionless current function, also referred to as current
function amplitude (CFA), and denoted by k0. In Ref.
[27], other choices for g(u) were considered, other than
constants functions, but the general conclusions remain
the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0
is related to the macroscopic electric current via:

jφ = Ω jt + (E + P ) k0 , (7)

which is obtained relating Eq. (5) with Eq. (4). Here, E
is the energy density and P is the pressure.
Finally, the integral form of the equation of motion for

a fluid in the presence of magnetic fields, Eq. (3), reads:

H(r, θ)+ln N(r, θ)−ln Γ(r, θ) +M(r, θ) = const. , (8)

where M is the magnetic potential, see Eq. (6), and
H is the dimensionless log-enthalpy (also called pseudo-
enthalpy or heat function) defined as

H(P ) =

∫ P

0

dP ′

E(P ′) + P ′
, (9)

which can be cast in terms of the specific enthalpy h

h(P ) =
E(P ) + P

mb nb
, (10)

as

H(P ) := ln h(P ) = ln

(

µ

mb

)

, (11)

where mB = 939 MeV is the baryonic mass, and µ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our
study. We consider the effect of the magnetic field on
the NS crust for a non-rotating star in Sec. III A, and,
for a rotating star, in Sec. III B.

A. Magnetised neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary be-
tween the inner crust and the core, where homogeneous
and non-homogeneous matter (matter with the presence
of clusters) coexist – the extended crust – identified by
the densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the
radii that correspond to each of these densities as R1 and
R2, respectively. In this notation, the thickness of the ex-
tended crust is defined as∆Rt = R1−R2, whilst the total
size of the crust is given by the difference ∆R2 = R−R2

(with R being the coordinate radius of the star). The
difference ∆R1 = R − R1 corresponds to the size of the
crust without the extended region.

FIG. 1. (Color online) The extended crust region. The den-
sities ρ1 and ρ2 define the boundaries of this region.

For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with
the crust-core transition of a non-magnetized star, we
take the EoS of non-magnetized matter. In [24], it has
been shown that the magnetic field does not affect much
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tion, and the last one is the Lorentz force (fµ = Fµν jν)
induced by magnetic fields, which, in our case, are gen-
erated by the four-electric current jν . Since Aµ =
(At, 0, 0, Aφ), then jν = (jt, 0, 0, jφ), which comes from
the assumption of circularity condition. In other words,
there are not meridional currents.
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the magnetic potential. Here, the magnetic star models
are obtained by assuming a constant value for the di-
mensionless current function, also referred to as current
function amplitude (CFA), and denoted by k0. In Ref.
[27], other choices for g(u) were considered, other than
constants functions, but the general conclusions remain
the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0
is related to the macroscopic electric current via:

jφ = Ω jt + (E + P ) k0 , (7)

which is obtained relating Eq. (5) with Eq. (4). Here, E
is the energy density and P is the pressure.
Finally, the integral form of the equation of motion for

a fluid in the presence of magnetic fields, Eq. (3), reads:

H(r, θ)+ln N(r, θ)−ln Γ(r, θ) +M(r, θ) = const. , (8)

where M is the magnetic potential, see Eq. (6), and
H is the dimensionless log-enthalpy (also called pseudo-
enthalpy or heat function) defined as

H(P ) =
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, (9)

which can be cast in terms of the specific enthalpy h

h(P ) =
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as
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where mB = 939 MeV is the baryonic mass, and µ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our
study. We consider the effect of the magnetic field on
the NS crust for a non-rotating star in Sec. III A, and,
for a rotating star, in Sec. III B.

A. Magnetised neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary be-
tween the inner crust and the core, where homogeneous
and non-homogeneous matter (matter with the presence
of clusters) coexist – the extended crust – identified by
the densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the
radii that correspond to each of these densities as R1 and
R2, respectively. In this notation, the thickness of the ex-
tended crust is defined as∆Rt = R1−R2, whilst the total
size of the crust is given by the difference ∆R2 = R−R2

(with R being the coordinate radius of the star). The
difference ∆R1 = R − R1 corresponds to the size of the
crust without the extended region.

FIG. 1. (Color online) The extended crust region. The den-
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For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with
the crust-core transition of a non-magnetized star, we
take the EoS of non-magnetized matter. In [24], it has
been shown that the magnetic field does not affect much

PRD 102, 063013 (2020)

The strong external B makes the inner crust more complex.

The crust-core transition extends to a range of densities.

=



The crust-core transition - effect of strong external B - spinodal calculation

• The strong external B makes the inner crust more complex. 

• New bands associated with the filling of the Landau levels. 

• The stronger the B, the greater the spinodal section, and the smaller and wider the 
number of bands              decrease of the number of Landau levels when B increases. 

• The crust-core transition extends to a range of densities.
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• Inside the region delimited by B=0 
spinodal: oscillations around the  B=0 
results, the larger the B, the larger the 
oscillations. 

• Above the B=0 crust-core transition: 
alternate regions of clustered and non-
clusterized regions of matter appear. 

• These regions appear when new Landau 
level opens. 

• The smaller the B, the closer it gets to the 
B=0 results. 

• for a star of M =1.4M⊙ and R=13.734km

• ∆Rʹ = R(ρ1 ) − R(ρ2 )

• ∆RB = ∆R−∆R(B = 0)
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FIG. 4: Radii of the WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3ωρ parametrization without
(first row, (a), (b) and (c)) and with (second row, (d), (e) and (f)) the inclusion of AMM for different magnetic field strengths
B∗=5× 103 (left, (a), (d), (g) and (j)), 104 (middle, (b), (e), (h) and (k)), 2× 104 (right, (c), (f), (i) and (l)). The no-field case
is also shown with gray points as a reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted
with blue lines. The gas (L, blue) and the cluster (H, red) neutron third row, (g), (h), (i)) and proton (fourth row, (j), (k), (l))
densities inside the WS cell are also plotted as a function of the density without (light colors) and with (dark colors) AMM.

Above this first spinodal region the disconnected re-
gions appear which present some special properties: the
neutron cluster density increases and the gas and cluster
densities differ only slightly, but this difference increases

for stronger fields and it is larger if AMM is set to zero.
In the bottom row, the proton gas and cluster densities
are given. In the first spinodal region, the proton cluster
density decreases with density, as in [6, 52]. Above this
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FIG. 4: Radii of the WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3ωρ parametrization without
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is also shown with gray points as a reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted
with blue lines. The gas (L, blue) and the cluster (H, red) neutron third row, (g), (h), (i)) and proton (fourth row, (j), (k), (l))
densities inside the WS cell are also plotted as a function of the density without (light colors) and with (dark colors) AMM.

Above this first spinodal region the disconnected re-
gions appear which present some special properties: the
neutron cluster density increases and the gas and cluster
densities differ only slightly, but this difference increases

for stronger fields and it is larger if AMM is set to zero.
In the bottom row, the proton gas and cluster densities
are given. In the first spinodal region, the proton cluster
density decreases with density, as in [6, 52]. Above this
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FIG. 4: Radii of the WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3ωρ parametrization without
(first row, (a), (b) and (c)) and with (second row, (d), (e) and (f)) the inclusion of AMM for different magnetic field strengths
B∗=5× 103 (left, (a), (d), (g) and (j)), 104 (middle, (b), (e), (h) and (k)), 2× 104 (right, (c), (f), (i) and (l)). The no-field case
is also shown with gray points as a reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted
with blue lines. The gas (L, blue) and the cluster (H, red) neutron third row, (g), (h), (i)) and proton (fourth row, (j), (k), (l))
densities inside the WS cell are also plotted as a function of the density without (light colors) and with (dark colors) AMM.

Above this first spinodal region the disconnected re-
gions appear which present some special properties: the
neutron cluster density increases and the gas and cluster
densities differ only slightly, but this difference increases

for stronger fields and it is larger if AMM is set to zero.
In the bottom row, the proton gas and cluster densities
are given. In the first spinodal region, the proton cluster
density decreases with density, as in [6, 52]. Above this

AMM=0 AMM

• There are several disconnected pasta regions that appear above the B=0 region. Effect 
caused by Landau quantisation induced by B field. 


• The stronger the B, the smaller the number of regions, and the wider the density range 
that they cover.    


• If AMM is considered, more and narrower disconnected regions occur, because the spin 
polarisation degeneracy is removed.

Wang et al, PRD 105, 
063004 (2022)

Confirmation of previous results: PRC 95, 062801(R) 2017PRC 94, 062801(R) 2016 
PRC 95, 045802 2017
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Above this first spinodal region the disconnected re-
gions appear which present some special properties: the
neutron cluster density increases and the gas and cluster
densities differ only slightly, but this difference increases

for stronger fields and it is larger if AMM is set to zero.
In the bottom row, the proton gas and cluster densities
are given. In the first spinodal region, the proton cluster
density decreases with density, as in [6, 52]. Above this
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Vf as it can be estimated from the abundance of a given (AZ) species:

Vf = h3R
A�Z
A�1
np CAZ exp

"
BAZ

T (A� 1)

#

·
 
2JAZ + 1

2A
Ỹ A

11
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! 1
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, (23)
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·
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(24)

B⇤ = 104G ) B = 4.41⇥ 1017G (25)

where the temperature T is still estimated by eq.(16). The unknown parameters

~a = {ai(⇢, yp, T ), i = 1 � 4} can be fixed by imposing that the volumes obtained from

the experimental spectra ỸAZ via Eq.(23) of the di↵erent (A,Z) nuclear species in a

given vsurf , correspond to compatible values. Because of the presence of experimental

uncertainties, we cannot simply solve Eq. (23) for the ~a parameters to impose a strictly

identical volume for the di↵erent species. Even if the experimental errors were negligible,

the correlation between vsurf and the volume is not a one-to-one correlation because

of the physical dispersion of the vsurf variable. For these reasons, we consider the

unknown ~a parameters as random variables. We take in each vsurf bin flat priors,

Pprior(~a) = ✓(~amin � ~amax), within an interval largely covering the physically possible

reduction range of the binding energy, 0  a1  15 MeV, 0  a3  a1 MeV,

�1  a2  1, 0  a4  4.

The posterior distribution is obtained by imposing the volume observation with a

likelihood probability as follows:

Ppost(~a) = N exp

0

@�
P

AZ(V
(AZ)

f
(~a)� V̄f (~a))2

2V̄f (~a)2

1

A . (26)

Here, N is a normalization, V (AZ)

f
(~a) is the free volume obtained from the (A,Z) cluster

using Eq.(23) with the specific choice ~a for the parameter set of the correction, and V̄f (~a)

is the average volume corresponding to a given parameter set ~a from Eq.(20).

The prior (posterior) probability distribution of any physical quantity X is then

readily calculated as:

P (X = X0) =
Z

d~aP (~a)� (X(~a)�X0) , (27)

where P (~a) is the prior (posterior) distribution of the correction parameters. Similarly,

expectation values can be calculated as:

hXi =
Z

d~aP (~a)X(~a) , (28)

and the correspondent standard deviations as,

�X =
q
hX2i � hXi2 . (29)

The left part of Fig. 3 shows the prior and posterior distribution of the total volume

VT in two chosen velocity bins, vsurf = 4.1 cm/ns (6th bin) and vsurf = 5.9 cm/ns (15th
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FIG. 6: The evolution of the pasta shapes as a function of the
baryonic density for β-equilibrium matter and for different
magnetic field strenghts: B∗=0 (gray), 5 × 103 (red), 104

(green), 2 × 104 (blue), for the NL3ωρ model with (bottom)
and without (top) AMM.

within the NL3ωρmodel can go almost up to around 0.07
fm−3. This behaviour was also obtained in Refs. [65, 66],
in two calculations that did not take into account the
magnetic fields. The extended pasta regions above that
density are difficult to obtain for the field intensity B∗ =
5 × 103. This can be understood, because, as predicted
within the growth rates approach, the density range of
this clusterized matter is quite small. The same situation
occurs for even weaker fields with strengths as might also
occur in the inner crust of magnetars, e.g. B∗ = 103 and
3×103 (respectively 4×1016 G and 1017 G). However, our
main conclusions may be drawn with the field intensities
we consider: for densities above the main spinodal region,
which also occurs for zero magnetic field, a finite mag-
netic field may give rise to disconnected spinodal regions
which generally (i) contain all types of geometries in their
narrow density range, (ii) with very similar cluster and
gas densities, and (iii) with a nonzero proton density of
the gas.

The binding energy per nucleon of the pasta phases
(Ep) with respect to the zero-field homogeneous matter
binding energy per nucleon (Eh), i.e. ∆E = Ep(B) −
Eh(B = 0), is plotted in Fig. 7 as a function of the
baryonic density, using the NL3 (top) and NL3ωρ (bot-
tom) models for 5 × 103 (red), 104 (green), and 2 × 104

(blue). The dark (light) colors correspond to the results
with (without) AMM. Both models show a similar be-
havior in general: the binding energy is lowered when
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FIG. 7: The difference between the finite-B binding en-
ergy per nucleon of the pasta phases (Ep) and the zero-B
binding energy per nucleon of homogeneous matter (Eh),
∆E = Ep(B) − Eh(B = 0), as a function of the baryonic
density for β-equilibrium matter using the NL3 (top) and
NL3ωρ (bottom) parametrizations, considering different mag-
netic field strengths: 5 × 103 (red), 104 (green), and 2 × 104

(blue). The results consider calculations with (dark colors)
and without (ligh colors) AMM.

strong magnetic fields are considered due to the Lan-
dau quantization, which causes the softening of the EoS.
However, the difference between the binding energies ob-
tained with strong magnetic fields and the field free case
become smaller as the baryonic density increases, because
the magnitude of the effect depends on the intensity of
the magnetic field with respect to the Fermi momentum
of the nucleon: the larger the B−field, the larger the ef-
fects on the thermodynamic properties of the magnetized
matter. For the stronger fields, it is clearly seen that
the inclusion of AMM lowers the energy, particularly at
the lowest densities and strongest magnetic fields, being
the most prominent effect of AMM. This essentially re-
flects the presence of the term s µNκiB. Notice also that
the disconnected non-homogeneous matter show just a
modest trend, almost continuous in the continuation of

• All geometric configurations appear in the 
disconnected pasta regions. 


• B favors larger proton fractions, and gives 
rise to fluctuations due to the opening of 
Landau levels.
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FIG. 8: The proton fraction as a function of the baryonic
density for β-equilibrium matter using the NL3 (top) and
NL3ωρ (bottom) parametrizations, considering different mag-
netic field strengths: B∗=0 (gray), 5× 103 (red), 104 (green),
and 2 × 104 (blue). The results consider calculations with
(dark colors) and without (light colors) AMM.

the ”primary” pasta, i.e. the binding energy of cluster-
ized matter is just a smooth line with segments cut off
for some densities. In these intervals, matter is homoge-
neous and the binding energy was plotted only for non-
homogeneous matter.
In Fig. 8, the proton fraction Yp in the WS cell is plot-

ted against the baryonic density. The proton fraction
decreases with increasing density following the B = 0
proton fraction in the ”primary” pasta region. After
attaining a minimum, the proton fraction starts to in-
crease as shown in Refs. [6, 52]. In the presence of a
finite magnetic field, several features are identified: (i)
the decrease of the proton fraction at low densities oc-
curs much slower, so that the minimum of Yp occurs at
larger densities; (ii) after the minimum is attained, the
Landau quantization is reflected in the proton fraction,
and a fluctuation around the B = 0 scenario is obtained;
(iii) the disconnected spinodal regions have larger pro-
ton fractions than the one at the upper boundary of the

”primary” pasta region. This behavior is similar to the
one of the homogeneous matter core, above the crust-
core transition. It is evident that strong magnetic fields
increase the proton fraction within the cell, while the
difference between AMM and no-AMM cases are barely
distinguishable, except at the ”extended” pasta region:
slightly larger proton fractions are obtained with AMM.
In addition, when the magnetic fields are relatively weak
(B∗=5×103 ∼ 2 × 1017G), the impact of the magnetic
fields on the proton fraction Yp is not large, as seen in
the Figure, i.e. the red points almost coincide with the
gray points until a density of the order of 0.015 fm−3.
In Tables I and II, the pressures Pi (MeV/fm3) and the

corresponding baryonic densities ρi (fm−3) at the pasta-
homogeneous phases or homogeneous-pasta phases tran-
sition points are shown, respectively, for the NL3 and the
NL3ωρ parametrizations. All the calculated regions have
been included in the tables. For a finite magnetic field,
the pressure at the last transition boundary is quite larger
than the pressure at the primary spinodal transition to
homogeneous matter. The pressure at the crust-core in-
terface Pt is a key parameter to determine the crustal
fraction of the moment of inertia [67–71], because the
crustal momentum of inertia may be the mechanism that
drives glitches in NSs, as the ones observed in the Vela
pulsar [67]. It was, however, suggested that this mecha-
nism may be more complicated if the entrainment effects
between the superfluid neutrons and the crust are taken
into account [72, 73], and, in this case, the angular mo-
mentum reservoir of the crust would not be enough to
explain the glitch mechanism. The possible increase of
the non-homogeneous matter at the transition to the NS
core due to the presence of strong magnetic fields could
be an answer to the extra angular momentum reservoir.
Though we may have not computed the crust-core in-
terface precisely, due to convergence problems occurring
when the cluster and gas densities are similar, the present
study indicates that the pressure at the crust-core tran-
sition may be well above the 0.65 MeV/fm3 indicated in
Ref. [67].

IV. CONCLUSION

In the present paper, we investigate the effects of
strong magnetic fields under the β-equilibrium condition,
in the innermost crust of NSs where non-homogeneous
nuclear matter known as pasta phases may exist. The
CP approximation and RMF models NL3 and NL3ωρ
are employed. Although the CP approach is non self-
consistent, and, in particular, the surface tension has
been considered magnetic field independent, we believe
that both qualitative, and even quantitative conclusions,
although probably carrying a large uncertainty, can be
drawn. The two models chosen have allowed us to dis-
cuss how sensitive is matter with a different symmetry en-
ergy behavior to magnetic field effects. NL3 and NL3ωρ,
have in common the same isoscalar properties, but have

3

with the spatial coordinates xi = (r, θ). The first term
in Eq. (3) corresponds to the purely matter contribu-
tion, the second represents the gravitational potential,
the third accounts for the centrifugal effects due to rota-
tion, and the last one is the Lorentz force (fµ = Fµν jν)
induced by magnetic fields, which, in our case, are gen-
erated by the four-electric current jν . Since Aµ =
(At, 0, 0, Aφ), then jν = (jt, 0, 0, jφ), which comes from
the assumption of circularity condition. In other words,
there are not meridional currents.
Eq. (3) is the relativistic version of the Euler equation.

One can show, by taking the rotational, that the Lorentz
term in Eq. (3) can be written as

∂M

∂xi
=

F iν jν
E + P

=

(

jφ − Ω jt

E + P

)

∂Aφ

∂xi
. (4)

Note that Eq.(4) represents also the integrability con-
dition of Eq.(3). The term in parenthesis in Eq. (4) can
be a constant, or a function of the magnetic vector po-
tential, g (Aφ). The arbitrary function M can then be
chosen such that:

∂M

∂Aφ
= g(Aφ) . (5)

In other words,

M = M(Aφ(r, θ)) =

∫ Aφ

0

g(u) du . (6)

The function g(u) is called the current function, andM is
the magnetic potential. Here, the magnetic star models
are obtained by assuming a constant value for the di-
mensionless current function, also referred to as current
function amplitude (CFA), and denoted by k0. In Ref.
[27], other choices for g(u) were considered, other than
constants functions, but the general conclusions remain
the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0
is related to the macroscopic electric current via:

jφ = Ω jt + (E + P ) k0 , (7)

which is obtained relating Eq. (5) with Eq. (4). Here, E
is the energy density and P is the pressure.
Finally, the integral form of the equation of motion for

a fluid in the presence of magnetic fields, Eq. (3), reads:

H(r, θ)+ln N(r, θ)−ln Γ(r, θ) +M(r, θ) = const. , (8)

where M is the magnetic potential, see Eq. (6), and
H is the dimensionless log-enthalpy (also called pseudo-
enthalpy or heat function) defined as

H(P ) =

∫ P

0

dP ′

E(P ′) + P ′
, (9)

which can be cast in terms of the specific enthalpy h

h(P ) =
E(P ) + P

mb nb
, (10)

as

H(P ) := ln h(P ) = ln

(

µ

mb

)

, (11)

where mB = 939 MeV is the baryonic mass, and µ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our
study. We consider the effect of the magnetic field on
the NS crust for a non-rotating star in Sec. III A, and,
for a rotating star, in Sec. III B.

A. Magnetised neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary be-
tween the inner crust and the core, where homogeneous
and non-homogeneous matter (matter with the presence
of clusters) coexist – the extended crust – identified by
the densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the
radii that correspond to each of these densities as R1 and
R2, respectively. In this notation, the thickness of the ex-
tended crust is defined as∆Rt = R1−R2, whilst the total
size of the crust is given by the difference ∆R2 = R−R2

(with R being the coordinate radius of the star). The
difference ∆R1 = R − R1 corresponds to the size of the
crust without the extended region.

FIG. 1. (Color online) The extended crust region. The den-
sities ρ1 and ρ2 define the boundaries of this region.

For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with
the crust-core transition of a non-magnetized star, we
take the EoS of non-magnetized matter. In [24], it has
been shown that the magnetic field does not affect much
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homogeneous matter core, above the crust-core transition.
It is evident that strong magnetic fields increase the proton
fraction within the cell, while the difference between AMM
and no-AMM cases are barely distinguishable, except at
the “extended” pasta region: slightly larger proton fractions
are obtained with AMM. In addition, when the magnetic
fields are relatively weak (B! ¼ 5 × 103 ∼ 2 × 1017 G), the
impact of the magnetic fields on the proton fraction Yp is
not large, as seen in the figure, i.e., the red points almost
coincide with the gray points until a density of the order
of 0.015 fm−3.
In Tables I and II, the pressures Pi (MeV=fm3) and the

corresponding baryonic densities ρi (fm−3) at the pasta-
homogeneous phase or homogeneous-pasta phase transi-
tion points are shown, respectively, for the NL3 and the
NL3ωρ parametrizations. All the calculated regions have
been included in the tables. For a finite magnetic field, the

pressure at the last transition boundary is quite larger
than the pressure at the primary spinodal transition to
homogeneous matter. The pressure at the crust-core
interface Pt is a key parameter to determine the crustal
fraction of the moment of inertia [67–71], because the
crustal momentum of inertia may be the mechanism that
drives glitches in NSs, as the ones observed in the Vela
pulsar [67]. It was, however, suggested that this mecha-
nism may be more complicated if the entrainment effects
between the superfluid neutrons and the crust are taken
into account [72,73], and, in this case, the angular
momentum reservoir of the crust would not be enough
to explain the glitch mechanism. The possible increase of
the nonhomogeneous matter at the transition to the NS
core due to the presence of strong magnetic fields could
be an answer to the extra angular momentum reservoir.
Though we may have not computed the crust-core
interface precisely, due to convergence problems occur-
ring when the cluster and gas densities are similar, the
present study indicates that the pressure at the crust-core

FIG. 7. The difference between the finite-B binding energy per
nucleon of the pasta phases (Ep) and the zero-B binding energy per
nucleon of homogeneous matter (Eh),ΔE ¼ EpðBÞ − EhðB ¼ 0Þ,
as a function of the baryonic density for β-equilibriummatter using
the NL3 (top) and NL3ωρ (bottom) parametrizations, considering
different magnetic field strengths: 5 × 103 (red), 104 (green), and
2 × 104 (blue). The results consider calculations with (dark colors)
and without (light colors) AMM.

FIG. 8. The proton fraction as a function of the baryonic density
for β-equilibrium matter using the NL3 (top) and NL3ωρ
(bottom) parametrizations, considering different magnetic field
strengths: B! ¼ 0 (gray), 5 × 103 (red), 104 (green), and 2 × 104

(blue). The results consider calculations with (dark colors) and
without (light colors) AMM.
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FIG. 4: Radii of the WS cell (red) and nucleus (green) for β-equilibrium matter using the NL3ωρ parametrization without
(first row, (a), (b) and (c)) and with (second row, (d), (e) and (f)) the inclusion of AMM for different magnetic field strengths
B∗=5× 103 (left, (a), (d), (g) and (j)), 104 (middle, (b), (e), (h) and (k)), 2× 104 (right, (c), (f), (i) and (l)). The no-field case
is also shown with gray points as a reference. Growth rates obtained with a dynamical spinodal calculation in [48] are plotted
with blue lines. The gas (L, blue) and the cluster (H, red) neutron third row, (g), (h), (i)) and proton (fourth row, (j), (k), (l))
densities inside the WS cell are also plotted as a function of the density without (light colors) and with (dark colors) AMM.

Above this first spinodal region the disconnected re-
gions appear which present some special properties: the
neutron cluster density increases and the gas and cluster
densities differ only slightly, but this difference increases

for stronger fields and it is larger if AMM is set to zero.
In the bottom row, the proton gas and cluster densities
are given. In the first spinodal region, the proton cluster
density decreases with density, as in [6, 52]. Above this
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FIG. 6: The evolution of the pasta shapes as a function of the
baryonic density for β-equilibrium matter and for different
magnetic field strenghts: B∗=0 (gray), 5 × 103 (red), 104

(green), 2 × 104 (blue), for the NL3ωρ model with (bottom)
and without (top) AMM.

within the NL3ωρmodel can go almost up to around 0.07
fm−3. This behaviour was also obtained in Refs. [65, 66],
in two calculations that did not take into account the
magnetic fields. The extended pasta regions above that
density are difficult to obtain for the field intensity B∗ =
5 × 103. This can be understood, because, as predicted
within the growth rates approach, the density range of
this clusterized matter is quite small. The same situation
occurs for even weaker fields with strengths as might also
occur in the inner crust of magnetars, e.g. B∗ = 103 and
3×103 (respectively 4×1016 G and 1017 G). However, our
main conclusions may be drawn with the field intensities
we consider: for densities above the main spinodal region,
which also occurs for zero magnetic field, a finite mag-
netic field may give rise to disconnected spinodal regions
which generally (i) contain all types of geometries in their
narrow density range, (ii) with very similar cluster and
gas densities, and (iii) with a nonzero proton density of
the gas.

The binding energy per nucleon of the pasta phases
(Ep) with respect to the zero-field homogeneous matter
binding energy per nucleon (Eh), i.e. ∆E = Ep(B) −
Eh(B = 0), is plotted in Fig. 7 as a function of the
baryonic density, using the NL3 (top) and NL3ωρ (bot-
tom) models for 5 × 103 (red), 104 (green), and 2 × 104

(blue). The dark (light) colors correspond to the results
with (without) AMM. Both models show a similar be-
havior in general: the binding energy is lowered when
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FIG. 7: The difference between the finite-B binding en-
ergy per nucleon of the pasta phases (Ep) and the zero-B
binding energy per nucleon of homogeneous matter (Eh),
∆E = Ep(B) − Eh(B = 0), as a function of the baryonic
density for β-equilibrium matter using the NL3 (top) and
NL3ωρ (bottom) parametrizations, considering different mag-
netic field strengths: 5 × 103 (red), 104 (green), and 2 × 104

(blue). The results consider calculations with (dark colors)
and without (ligh colors) AMM.

strong magnetic fields are considered due to the Lan-
dau quantization, which causes the softening of the EoS.
However, the difference between the binding energies ob-
tained with strong magnetic fields and the field free case
become smaller as the baryonic density increases, because
the magnitude of the effect depends on the intensity of
the magnetic field with respect to the Fermi momentum
of the nucleon: the larger the B−field, the larger the ef-
fects on the thermodynamic properties of the magnetized
matter. For the stronger fields, it is clearly seen that
the inclusion of AMM lowers the energy, particularly at
the lowest densities and strongest magnetic fields, being
the most prominent effect of AMM. This essentially re-
flects the presence of the term s µNκiB. Notice also that
the disconnected non-homogeneous matter show just a
modest trend, almost continuous in the continuation of
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FIG. 6: The evolution of the pasta shapes as a function of the
baryonic density for β-equilibrium matter and for different
magnetic field strenghts: B∗=0 (gray), 5 × 103 (red), 104

(green), 2 × 104 (blue), for the NL3ωρ model with (bottom)
and without (top) AMM.

within the NL3ωρmodel can go almost up to around 0.07
fm−3. This behaviour was also obtained in Refs. [65, 66],
in two calculations that did not take into account the
magnetic fields. The extended pasta regions above that
density are difficult to obtain for the field intensity B∗ =
5 × 103. This can be understood, because, as predicted
within the growth rates approach, the density range of
this clusterized matter is quite small. The same situation
occurs for even weaker fields with strengths as might also
occur in the inner crust of magnetars, e.g. B∗ = 103 and
3×103 (respectively 4×1016 G and 1017 G). However, our
main conclusions may be drawn with the field intensities
we consider: for densities above the main spinodal region,
which also occurs for zero magnetic field, a finite mag-
netic field may give rise to disconnected spinodal regions
which generally (i) contain all types of geometries in their
narrow density range, (ii) with very similar cluster and
gas densities, and (iii) with a nonzero proton density of
the gas.

The binding energy per nucleon of the pasta phases
(Ep) with respect to the zero-field homogeneous matter
binding energy per nucleon (Eh), i.e. ∆E = Ep(B) −
Eh(B = 0), is plotted in Fig. 7 as a function of the
baryonic density, using the NL3 (top) and NL3ωρ (bot-
tom) models for 5 × 103 (red), 104 (green), and 2 × 104

(blue). The dark (light) colors correspond to the results
with (without) AMM. Both models show a similar be-
havior in general: the binding energy is lowered when
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FIG. 7: The difference between the finite-B binding en-
ergy per nucleon of the pasta phases (Ep) and the zero-B
binding energy per nucleon of homogeneous matter (Eh),
∆E = Ep(B) − Eh(B = 0), as a function of the baryonic
density for β-equilibrium matter using the NL3 (top) and
NL3ωρ (bottom) parametrizations, considering different mag-
netic field strengths: 5 × 103 (red), 104 (green), and 2 × 104

(blue). The results consider calculations with (dark colors)
and without (ligh colors) AMM.

strong magnetic fields are considered due to the Lan-
dau quantization, which causes the softening of the EoS.
However, the difference between the binding energies ob-
tained with strong magnetic fields and the field free case
become smaller as the baryonic density increases, because
the magnitude of the effect depends on the intensity of
the magnetic field with respect to the Fermi momentum
of the nucleon: the larger the B−field, the larger the ef-
fects on the thermodynamic properties of the magnetized
matter. For the stronger fields, it is clearly seen that
the inclusion of AMM lowers the energy, particularly at
the lowest densities and strongest magnetic fields, being
the most prominent effect of AMM. This essentially re-
flects the presence of the term s µNκiB. Notice also that
the disconnected non-homogeneous matter show just a
modest trend, almost continuous in the continuation of

• All geometric configurations appear in 
the disconnected pasta regions. 


• B favors larger proton fractions, and 
gives rise to fluctuations due to the 
opening of Landau levels.
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FIG. 8: The proton fraction as a function of the baryonic
density for β-equilibrium matter using the NL3 (top) and
NL3ωρ (bottom) parametrizations, considering different mag-
netic field strengths: B∗=0 (gray), 5× 103 (red), 104 (green),
and 2 × 104 (blue). The results consider calculations with
(dark colors) and without (light colors) AMM.

the ”primary” pasta, i.e. the binding energy of cluster-
ized matter is just a smooth line with segments cut off
for some densities. In these intervals, matter is homoge-
neous and the binding energy was plotted only for non-
homogeneous matter.
In Fig. 8, the proton fraction Yp in the WS cell is plot-

ted against the baryonic density. The proton fraction
decreases with increasing density following the B = 0
proton fraction in the ”primary” pasta region. After
attaining a minimum, the proton fraction starts to in-
crease as shown in Refs. [6, 52]. In the presence of a
finite magnetic field, several features are identified: (i)
the decrease of the proton fraction at low densities oc-
curs much slower, so that the minimum of Yp occurs at
larger densities; (ii) after the minimum is attained, the
Landau quantization is reflected in the proton fraction,
and a fluctuation around the B = 0 scenario is obtained;
(iii) the disconnected spinodal regions have larger pro-
ton fractions than the one at the upper boundary of the

”primary” pasta region. This behavior is similar to the
one of the homogeneous matter core, above the crust-
core transition. It is evident that strong magnetic fields
increase the proton fraction within the cell, while the
difference between AMM and no-AMM cases are barely
distinguishable, except at the ”extended” pasta region:
slightly larger proton fractions are obtained with AMM.
In addition, when the magnetic fields are relatively weak
(B∗=5×103 ∼ 2 × 1017G), the impact of the magnetic
fields on the proton fraction Yp is not large, as seen in
the Figure, i.e. the red points almost coincide with the
gray points until a density of the order of 0.015 fm−3.
In Tables I and II, the pressures Pi (MeV/fm3) and the

corresponding baryonic densities ρi (fm−3) at the pasta-
homogeneous phases or homogeneous-pasta phases tran-
sition points are shown, respectively, for the NL3 and the
NL3ωρ parametrizations. All the calculated regions have
been included in the tables. For a finite magnetic field,
the pressure at the last transition boundary is quite larger
than the pressure at the primary spinodal transition to
homogeneous matter. The pressure at the crust-core in-
terface Pt is a key parameter to determine the crustal
fraction of the moment of inertia [67–71], because the
crustal momentum of inertia may be the mechanism that
drives glitches in NSs, as the ones observed in the Vela
pulsar [67]. It was, however, suggested that this mecha-
nism may be more complicated if the entrainment effects
between the superfluid neutrons and the crust are taken
into account [72, 73], and, in this case, the angular mo-
mentum reservoir of the crust would not be enough to
explain the glitch mechanism. The possible increase of
the non-homogeneous matter at the transition to the NS
core due to the presence of strong magnetic fields could
be an answer to the extra angular momentum reservoir.
Though we may have not computed the crust-core in-
terface precisely, due to convergence problems occurring
when the cluster and gas densities are similar, the present
study indicates that the pressure at the crust-core tran-
sition may be well above the 0.65 MeV/fm3 indicated in
Ref. [67].

IV. CONCLUSION

In the present paper, we investigate the effects of
strong magnetic fields under the β-equilibrium condition,
in the innermost crust of NSs where non-homogeneous
nuclear matter known as pasta phases may exist. The
CP approximation and RMF models NL3 and NL3ωρ
are employed. Although the CP approach is non self-
consistent, and, in particular, the surface tension has
been considered magnetic field independent, we believe
that both qualitative, and even quantitative conclusions,
although probably carrying a large uncertainty, can be
drawn. The two models chosen have allowed us to dis-
cuss how sensitive is matter with a different symmetry en-
ergy behavior to magnetic field effects. NL3 and NL3ωρ,
have in common the same isoscalar properties, but have
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with the spatial coordinates xi = (r, θ). The first term
in Eq. (3) corresponds to the purely matter contribu-
tion, the second represents the gravitational potential,
the third accounts for the centrifugal effects due to rota-
tion, and the last one is the Lorentz force (fµ = Fµν jν)
induced by magnetic fields, which, in our case, are gen-
erated by the four-electric current jν . Since Aµ =
(At, 0, 0, Aφ), then jν = (jt, 0, 0, jφ), which comes from
the assumption of circularity condition. In other words,
there are not meridional currents.
Eq. (3) is the relativistic version of the Euler equation.

One can show, by taking the rotational, that the Lorentz
term in Eq. (3) can be written as

∂M

∂xi
=

F iν jν
E + P

=

(

jφ − Ω jt

E + P

)

∂Aφ

∂xi
. (4)

Note that Eq.(4) represents also the integrability con-
dition of Eq.(3). The term in parenthesis in Eq. (4) can
be a constant, or a function of the magnetic vector po-
tential, g (Aφ). The arbitrary function M can then be
chosen such that:

∂M

∂Aφ
= g(Aφ) . (5)

In other words,

M = M(Aφ(r, θ)) =

∫ Aφ

0

g(u) du . (6)

The function g(u) is called the current function, andM is
the magnetic potential. Here, the magnetic star models
are obtained by assuming a constant value for the di-
mensionless current function, also referred to as current
function amplitude (CFA), and denoted by k0. In Ref.
[27], other choices for g(u) were considered, other than
constants functions, but the general conclusions remain
the same.
For higher values of the current function, the magnetic

field in the star increases proportionally. In addition, k0
is related to the macroscopic electric current via:

jφ = Ω jt + (E + P ) k0 , (7)

which is obtained relating Eq. (5) with Eq. (4). Here, E
is the energy density and P is the pressure.
Finally, the integral form of the equation of motion for

a fluid in the presence of magnetic fields, Eq. (3), reads:

H(r, θ)+ln N(r, θ)−ln Γ(r, θ) +M(r, θ) = const. , (8)

where M is the magnetic potential, see Eq. (6), and
H is the dimensionless log-enthalpy (also called pseudo-
enthalpy or heat function) defined as

H(P ) =

∫ P

0

dP ′

E(P ′) + P ′
, (9)

which can be cast in terms of the specific enthalpy h

h(P ) =
E(P ) + P

mb nb
, (10)

as

H(P ) := ln h(P ) = ln

(

µ

mb

)

, (11)

where mB = 939 MeV is the baryonic mass, and µ the
baryonic chemical potential.

III. RESULTS

In the following, we present the main results of our
study. We consider the effect of the magnetic field on
the NS crust for a non-rotating star in Sec. III A, and,
for a rotating star, in Sec. III B.

A. Magnetised neutron stars

As already discussed in Ref. [23], the presence of strong
magnetic fields originates a region, at the boundary be-
tween the inner crust and the core, where homogeneous
and non-homogeneous matter (matter with the presence
of clusters) coexist – the extended crust – identified by
the densities ρ1 and ρ2 (cf. Fig. 1). We shall denote the
radii that correspond to each of these densities as R1 and
R2, respectively. In this notation, the thickness of the ex-
tended crust is defined as∆Rt = R1−R2, whilst the total
size of the crust is given by the difference ∆R2 = R−R2

(with R being the coordinate radius of the star). The
difference ∆R1 = R − R1 corresponds to the size of the
crust without the extended region.

FIG. 1. (Color online) The extended crust region. The den-
sities ρ1 and ρ2 define the boundaries of this region.

For the region between the surface and the boundary
defined by R1 and the density ρ1, which coincides with
the crust-core transition of a non-magnetized star, we
take the EoS of non-magnetized matter. In [24], it has
been shown that the magnetic field does not affect much
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fields have a non-negligible effect, both on the outer and
inner crusts. The magnetic field affects strongly the
NS outer crust [41–44], in particular, the neutron drip
density, its composition and the properties of the nuclei
present in the outer crust.
In Refs. [45–49], it was shown from the calculation

of the dynamical or thermodynamical spinodals that a
complex inner crust could exist with several disconnected
non-homogeneous regions. Considering a fixed proton
fraction, it was shown that disconnected regions with
pasta phases could exist at densities above the one as-
sociated to the B = 0 crust-core transition [50]. How-
ever, it was still necessary to confirm these results if β-
equilibrium would be imposed.
Avancini et al. have studied the inner-crust pasta

phases in the field-free case [5, 51], at zero and finite
temperatures using the Thomas-Fermi (TF) and coexis-
tence phases (CP) methods within a relativistic mean-
field (RMF) description of nuclear matter. Both β-
equilibrium stellar matter and matter with a fixed pro-
ton fraction have been considered. Later, the effect of
the magnetic fields on the inner-crust was also studied
by some authors [52–55]. In Ref. [53], quantities such as
nuclear size, surface tension and the transition between
pasta configurations, were studied using the TF approx-
imation with a fixed proton fraction of Yp=0.1, 0.3, and
considering the RMF NL3 model. Recently, Bao et al
[52] investigated the effects of strong magnetic fields on
the pasta properties and crust-core(CC) transition, using
the TF approximation and two RMF models, TM1 and
IUFSU, imposing the condition of β-equilibrium. Some
features, such as an increase of the proton fraction or the
decrease of the binding energy per nucleon, due to the
magnetic field, were discussed [52].
In the present work, we will study the innermost part

of the crust in β−equilibrium, using the CP calculation
[5], and considering a magnetic field strength B∗ ranging
from 5 × 103 to 2 × 104, with B∗ = B/Be

c , Be
c being

the critical field at which the electron cyclotron energy
is equal to the electron mass, Be

c = 4.414 × 1013 G. In
particular, we are interested in confirming whether the
disconnected non-homogeneous regions exist above the
B = 0 crust-core transition, and in understanding the
properties of clusters inside these regions. We will only
study the effect on the inner crust and not in the outer
crust.
The present paper is organized as follows: in section II

the methods and the formalism are given, in section III
we show our results and discussion, and we draw some
conclusions in section IV.

II. FORMALISM

We describe nuclear matter at the NS inner crust
within a relativistic mean field approach, in which the
nucleons interact via the exchange of mesons. The
exchanged mesons are the isoscalar-scalar and vector

mesons (σ and ω, respectively) and the isovector me-
son (ρ). We consider a system of protons and neutrons
with mass M interacting with and through an isoscalar-
scalar field φ with mass ms, an isoscalar-vector field V µ

with massmv, an isovector-vector field bµ with mass mρ.
We also include a system of electrons with mass me to
obtain a charge neutral system. Protons and electrons in-
teract through the electromagnetic field Aµ. The onset of
muons occurs above the crust-core transition and, there-
fore, they have not been included in the present study.
The Lagrangian density reads:

L =
∑

i=p,n

Li + Le + Lσ + Lω + Lρ + Lγ , (1)

where the nucleon Lagrangian reads

Li = ψ̄i

[

γµiD
µ −M∗ −

1

2
µNκbσµνF

µν

]

ψi, (2)

with

iDµ = i∂µ − gvV
µ −

gρ
2
*τ · bµ − e

1 + τ3
2

Aµ, (3)

and

M∗ = M − gsφ, (4)

the nucleon effective mass. The electron Lagrangian is
given by

Le = ψ̄e[γµ(i∂
µ + eAµ)−me]ψe , (5)

and the meson Lagrangian densities are

Lσ =
1

2

(

∂µφ∂
µφ−m2

sφ
2 −

1

3
κφ3 −

1

12
λφ4

)

, (6)

Lω = −
1

4
ΩµνΩ

µν +
1

2
m2

vVµV
µ +

ξ

4!
g4v(VµV

µ)2 (7)

Lρ = −
1

4
Bµν ·Bµν +

1

2
m2

ρbµ · bµ , (8)

Lγ = −
1

4
FµνF

µν , (9)

where the tensors are given by

Ωµν = ∂µVν − ∂νVµ , (10)

Bµν = ∂µbν − ∂νbµ − gρ(bµ × bν) , (11)

Fµν = ∂µAν − ∂νAµ . (12)

The parameters of the model are: the nucleon mass M ,
three coupling constants gs, gv, and gρ, of the mesons
to the nucleons, the electrons mass me, the masses of
the mesons ms, mv, mρ, and the self-interacting cou-
pling constants κ, λ, and ξ. The electromagnetic coupling
constant is given by e =

√

4π/137, and τ3 = ±1 is the
isospin projection for protons (+1) and neutrons (−1).
The nucleon anomalous magnetic moments (AMM) are
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• For NL3, the crust-core transition density 
(orange lines) gets shifted to higher values 
wrt to the B=0 case (green lines). 


• This extra region, that appears due to the 
B field, is in line with previous studies 
using the dynamical spinodal (light blue 
lines).
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In the case of the NL3 model, we observed that, due 
to the presence of the B field, the crust-core 
transition density (orange line in the plots) gets 
shifted to higher values with respect to the B=0 
case (green line in the plots).

As already observed in previous studies, the new region of 
inhomogeneity in in good agreement with the results of a 
dynamical spinodal calculation (light blue lines in the plots). 

Moreover, in the new region, the baryon and proton 
density of the liquid (blue in the plots) and gas (red in 
the plots) phases, become very similar.

Fig.2 Baryon density of liquid (blue) and gas (red) phase for the NL3 model.

Fig.3 Proton density of liquid (blue) and gas (red) phase for the NL3 model.
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to the presence of the B field, the crust-core 
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case (green line in the plots).

As already observed in previous studies, the new region of 
inhomogeneity in in good agreement with the results of a 
dynamical spinodal calculation (light blue lines in the plots). 

Moreover, in the new region, the baryon and proton 
density of the liquid (blue in the plots) and gas (red in 
the plots) phases, become very similar.

Fig.2 Baryon density of liquid (blue) and gas (red) phase for the NL3 model.

Fig.3 Proton density of liquid (blue) and gas (red) phase for the NL3 model.

• In this new region, both the proton and 
baryon densities of the liquid (blue) and 
gas (red) become very similar, in line with 
the previous study using the CP 
approximation.
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045806 (2023)• However, for NL3wr, the behaviour seems to be opposite: with 

increasing B, the crust-core transition decreases, and this extra 
regions does not appear:

• This seems to be related with Esym: even 
though L(NL3)>L(NL3wr), for densities 
below 0.1.        , Esym(NL3wr)>Esym(NL3):
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TABLE I: The pressures P i/f
n (MeV/fm3), and the corresponding baryonic densities ρi/fn (fm−3) at the n−th initial (i) pasta-

homogeneous phase transition , and at the n−th final (f) homogeneous-pasta phase discontinuity points, for NL3 parametriza-
tion and all the spinodal regions, starting at the upper boundary of the primary spinodal region. The last density/pressure
corresponds to the crust-core transition.

B∗ AMM 1, f 2, i 3, f 4, i 5, f 6, i 7, f 8, i 9, f 10, i 11, f

5× 103
No

ρi,fn 0.06930 0.07330 0.07722 0.08800 0.09217 0.10590 0.10739 ... ... ... ...

P
i/f
n 0.56126 0.61657 0.71852 1.07596 1.21360 1.83551 1.89440 ... ... ... ...

Yes
ρi,fn 0.06750 0.06872 0.07136 0.07584 0.07965 0.08493 0.08849 0.09490 0.09622 0.10132 0.10271

P
i/f
n 0.49730 0.52282 0.57339 0.68389 0.79260 0.96607 1.09669 1.32341 1.37746 1.60711 1.67405

104
No

ρi,fn 0.06420 0.07392 0.08316 0.10477 0.10936 ... ... ... ... ... ...

P
i/f
n 0.45504 0.63916 0.89136 1.81560 1.99741 ... ... ... ... ... ...

Yes
ρi,fn 0.055690 0.06264 0.07060 0.08484 0.09020 0.10001 0.10473 0.11779 0.11793 ... ...

P
i/f
n 0.30335 0.41565 0.56473 0.95961 1.15361 1.58326 1.82087 2.47114 2.47935 ... ...

2× 104
No

ρi,fn 0.06919 0.10123 0.11412 ... ... ... ... ... ... ... ...

P
i/f
n 0.53919 1.73962 2.25502 ... ... ... ... ... ... ... ...

Yes
ρi,fn 0.06555 0.09880 0.10243 ... ... ... ... ... ... ... ...

P
i/f
n 0.46980 1.65124 1.75850 ... ... ... ... ... ... ... ...

TABLE II: The pressures P
i/f
n (MeV/fm3), and the corresponding baryonic densities ρ

i/f
n (fm−3) at the n−th initial (i)

pasta-homogeneous phase transition , and at the n−th final (f) homogeneous-pasta phase discontinuity points, for NL3ωρ
parametrization and all the spinodal regions, starting at the upper boundary of the primary spinodal region. The last den-
sity/pressure corresponds to the crust-core transition.

B∗ AMM 1, f 2, i 3, f 4, i 5, f 6, i 7, f 8, i 9, f 10, i 11, f

5× 103
No

ρi,fn 0.08516 0.09531 0.09622 ... ... ... ... ... ... ... ...

P
i/f
n 0.96444 1.10613 1.25015 ... ... ... ... ... ... ... ...

Yes
ρi,fn 0.08422 0.08700 0.09107 0.09566 0.09808 0.10173 0.10396 ... ... ... ...

P
i/f
n 0.94087 1.00968 1.11587 1.23839 1.31097 1.43031 1.50674 ... ... ... ...

104
No

ρi,fn 0.07561 0.08401 0.09841 ... ... ... ... ... ... ... ...

P
i/f
n 0.76215 0.96028 1.29971 ... ... ... ... ... ... ... ...

Yes
ρi,fn 0.06901 0.08360 0.09250 0.10190 0.10550 0.11333 0.11594 ... ... ... ...

P
i/f
n 0.62999 0.95172 1.16818 1.44014 1.56046 1.85963 1.96759 ... ... ... ...

2× 104
No

ρi,fn 0.08375 0.09956 0.10832 ... ... ... ... ... ... ... ...

P
i/f
n 1.05267 1.16429 1.63340 ... ... ... ... ... ... ... ...

Yes
ρi,fn 0.07658 0.08348 0.09152 0.11752 0.12016 ... ... ... ... ... ...

P
i/f
n 0.86279 1.06788 1.18199 2.05859 2.16918 ... ... ... ... ... ...

a very different density dependence of the symmetry en-
ergy. NL3 has a smaller symmetry energy below ρ = 0.1
fm−3, where most of the inner crust lies, and this favors
smaller proton fractions and stronger magnetic field ef-
fects, in particular, a smaller number of Landau levels.
The larger proton fraction predicted by NL3ωρ involves a
larger number of Landau levels, and a smaller relative ex-
tension of the non-homogeneous matter when compared
to NL3.

Within a zero-temperature calculation and the
Wigner-Seitz approximation to describe clusterized mat-
ter, we have carried out calculations with and without the
anomalous magnetic moment of the nucleon. We found,
when taking into account strong magnetic fields, that,
besides a primary spinodal region occurring at densities
as predicted in the B = 0 calculations [74–76], a series
of disconnected regions including pasta-like clusters may
appear at densities above the first spinodal region, giving
rise to an extension of the inner crust of the NS.

Several properties of the non-homogeneous layers have
been calculated, including the nuclear size, the pasta
shapes, the pasta-homogeneous matter transitions, the
binding energy per nucleon, the pressure at the interfaces,
and the density-dependence of the proton fraction. Most
results concerning the first spinodal region are in good
agreement with the discussion performed in Ref. [52],
where a Thomas-Fermi calculation was used to study
the non-homogeneous layers of a magnetized NS. In their
study, however, no disconnected spinodal regions were re-
ported. In previous studies, these disconnected regions
had been predicted within a dynamical spinodal, which
takes into account both the Coulomb interaction and the
finite range of the nuclear force [45, 46]. In the present
study, the density range of the disconnected spinodal re-
gions, where new pasta phases are found, agree well with
the predictions of the dynamical spinodal. Also, in a
recent work [50], the accordance between the unstable
regions obtained within the dynamical approach, and a
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FIG. 3. Baryon (left) and proton (right) densities of liquid (1, blue) and gas (2, red) phases as function of the total baryon density for the
NL3ωρ model in a CP (dashed line) and CLD (solid lines) calculations, with B∗ = 5 × 103 (top) and B∗ = 104 (bottom). We also plot the
magnetized growth rates divided by a factor 102, |ωmax| (light blue), as well as the densities in the B = 0 case (black). The orange segments
indicate ρcc, defined in the text.

CP results are indistinguishable on the scale of the figure as
in Fig. 2 above. For the NL3ωρ model, we see that the ex-
tended region does not appear and ρ1→2 ≡ ρcc. A tendency
towards a liquid region with small amplitude inhomogeneities
can still be seen as a (small) density drop correlated to the
instability observed in the spinodal analysis, but apparently
the homogeneous matter instability is not sufficient to produce
an equilibrium inhomogeneity. These results are in agreement
with the ones found before [42], but in Wang et al. this energy
criterium was not used, and this explains why the authors
interpreted the results as the persistence of the inhomogeneous
region to higher densities as compared to this work.

In Table II, we present the values for ρ1→2 and ρcc for the
different values of the magnetic field and for the two models.

In the NL3 model, the higher the value of B, the higher the
value of the transition density to homogeneous matter ρcc, and
in the NL3ωρ model, the opposite happens, i.e., the higher the
value of B, the smaller the value of the transition density. In
fact, this effect is due to the extended region, that only appears
in the NL3 model. If we discard this region, and consider the
crust-core transition as the the opening of proton drip ρ1→2,
this density decreases with increasing B, as in the NL3ωρ
model.

The different behavior of the two models with respect to
the magnetic field can be also appreciated by looking at Fig. 4,
where the geometry of the clusters is plotted as a function of

the baryon density. We observe that, for all the calculations
considered, the CLD model gives slightly higher transition
densities between the different shapes, as well as to homo-
geneous matter(values displayed in Table II as ρcc).

The fact that small discontinuities appear in the density
behavior of the clustered region at the highest densities, par-
ticularly for the higher value of the magnetic field (see inserts
in Fig. 3) suggests that the physical origin of the extended
region might be related to the discontinuous occupation of
the Landau levels. To better understand this peculiar ther-
modynamic behavior, where a spinodal instability does not
lead to phase separation but to an equilibrium configuration
with small amplitude inhomogeneities, we plot in Fig. 5 the
density evolution of the number of Landau levels (LL), in
the highest B case. The other value of B gives the same
qualitative information. Both models are considered, such
as to understand the origin of the model dependence of the
results.

In that figure, the maximum number νmax of occupied LL
for the protons Eq. (18) is displayed. This is calculated for
the higher density region I of Eq. (32) (blue curves labeled
“Clus” in Fig. 5), the lower density region II (red curves la-
beled “Gas”), and also for homogeneous nuclear matter (green
curves labeled “Hom.”). The CLD calculations are given by
solid curves, while CP ones (almost indistinguishable from
CLD) correspond to dashed curves.
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tended region does not appear and ρ1→2 ≡ ρcc. A tendency
towards a liquid region with small amplitude inhomogeneities
can still be seen as a (small) density drop correlated to the
instability observed in the spinodal analysis, but apparently
the homogeneous matter instability is not sufficient to produce
an equilibrium inhomogeneity. These results are in agreement
with the ones found before [42], but in Wang et al. this energy
criterium was not used, and this explains why the authors
interpreted the results as the persistence of the inhomogeneous
region to higher densities as compared to this work.

In Table II, we present the values for ρ1→2 and ρcc for the
different values of the magnetic field and for the two models.

In the NL3 model, the higher the value of B, the higher the
value of the transition density to homogeneous matter ρcc, and
in the NL3ωρ model, the opposite happens, i.e., the higher the
value of B, the smaller the value of the transition density. In
fact, this effect is due to the extended region, that only appears
in the NL3 model. If we discard this region, and consider the
crust-core transition as the the opening of proton drip ρ1→2,
this density decreases with increasing B, as in the NL3ωρ
model.

The different behavior of the two models with respect to
the magnetic field can be also appreciated by looking at Fig. 4,
where the geometry of the clusters is plotted as a function of

the baryon density. We observe that, for all the calculations
considered, the CLD model gives slightly higher transition
densities between the different shapes, as well as to homo-
geneous matter(values displayed in Table II as ρcc).

The fact that small discontinuities appear in the density
behavior of the clustered region at the highest densities, par-
ticularly for the higher value of the magnetic field (see inserts
in Fig. 3) suggests that the physical origin of the extended
region might be related to the discontinuous occupation of
the Landau levels. To better understand this peculiar ther-
modynamic behavior, where a spinodal instability does not
lead to phase separation but to an equilibrium configuration
with small amplitude inhomogeneities, we plot in Fig. 5 the
density evolution of the number of Landau levels (LL), in
the highest B case. The other value of B gives the same
qualitative information. Both models are considered, such
as to understand the origin of the model dependence of the
results.

In that figure, the maximum number νmax of occupied LL
for the protons Eq. (18) is displayed. This is calculated for
the higher density region I of Eq. (32) (blue curves labeled
“Clus” in Fig. 5), the lower density region II (red curves la-
beled “Gas”), and also for homogeneous nuclear matter (green
curves labeled “Hom.”). The CLD calculations are given by
solid curves, while CP ones (almost indistinguishable from
CLD) correspond to dashed curves.
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• The Esym behaviour favours larger proton 
fractions for NL3wr, and smaller B-field 
effects, since the number of Landau levels 
will be larger, favouring a smaller crust, 
when compared to NL3.

Pasta in beta-equilibrium matter - effect of strong external B - CLD calculation

• NL3wr: higher Esym (below 0.1) —> larger yp—
> larger LL —> smaller Bfield effect—> smaller 
extension of crust


• NL3: smaller Esym (below 0.1)—>smaller yp—> 
smaller LL —> larger B-field effect —> wider 
extension of crust
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• The mass and radius of the extended crust (region 2) increases 
with B.


• For the higher B-field, the mass of the extended region 
becomes comparable with M1.

10

M1(M�) M2(M�) RT (km) �R1(km) �R2(km)

MT =
1.4M�

NL3
B = 0 0.0588 0.0 14.685 1.4270 0.0

B⇤ = 5⇥ 103 0.0597 0.0258 14.908 1.6532 0.1541
B⇤ = 104 0.0574 0.0414 15.025 1.7427 0.3148

NL3!⇢
B=0 0.0457 0.0 13.747 1.3665 0.0

B⇤ = 5⇥ 103 0.0526 0.0 13.871 1.5431 0.0
B⇤ = 104 0.0526 0.0 13.991 1.6556 0.0

MT =
2.0M�

NL3
B = 0 0.0394 0.0 14.777 0.8691 0.0

B⇤ = 5⇥ 103 0.0400 0.0132 14.914 1.0064 0.0932
B⇤ = 104 0.0385 0.0288 14.989 1.0617 0.1973

NL3!⇢
B=0 0.0326 0.0 14.079 0.8632 0.0

B⇤ = 5⇥ 103 0.0384 0.0 14.161 0.9769 0.0
B⇤ = 104 0.0383 0.0 14.234 1.0437 0.0

TABLE III: Mass and radial width of the solid (1) and liquid (2) crust of the NS, together with the total radius of
the star RT , for the NL3 and NL3!⇢ model in the CLD approximation, and taking B = 0, B⇤ = 5⇥ 103 and

B⇤ = 104, for two di↵erent values of the total mass of the star. See text for the definition of the di↵erent quantities.

IV. CONCLUSIONS

In this paper, we studied the structure of the inner
crust of a neutron star in the presence of a strong mag-
netic field, within a relativistic mean-field framework,
and using the compressible liquid drop model for the cal-
culation of the pasta phases. We then compared our re-
sults with the ones obtained in previous studies using the
coexisting phases calculation [41, 42], and the dynamical
spinodal method [37, 38]. We considered two di↵erent
RMF models, NL3 [56] and NL3!⇢ [57], and two di↵er-
ent values of the magnetic field, namely B = 1.3 ⇥ 1017

G and B = 4.4⇥ 1017 G.
Our main result is that the extended spinodal instabil-

ity observed in di↵erent previous works [37–41, 43] leads
to stable or metastable equilibrium configurations that
are inhomogeneous, with density fluctuations (⇢clus �
⇢gas)/(⇢clus + ⇢gas) in the range 1.3 � 5.5% and pro-
ton density fluctuations (⇢pclus � ⇢pgas)/(⇢

p
clus + ⇢pgas) in

the range 21 � 57%. The energetic gain of such small
amplitude fluctuations is due to the possibility, for the
protons of the more dilute regions, of occupying a lower
order LL. Because of that, the existence of such inhomo-
geneous configurations depends crucially on the proton
fraction, and therefore on both the strength of the mag-
netic field, and on the value of the symmetry energy in
the sub-saturation region. In particular, the configura-
tions are stable only if the slope parameter L is high, as
in the case of the NL3 functional.

We found that the transition densities given by the
CLD calculation are in good agreement with the simpler
CP approximation employed in the previous analysis [42].

The presence of metastable inhomogeneous solutions

enlighted in the present work, particularly for the softer
NL3!⇢ model, may explain why di↵erent results on a
possible extended crust in magnetars were reported in
the literature depending on the chosen functionals and
crust modelling [37–43, 47].
Moreover, the qualitative e↵ect of the magnetic field

on the crust-core transition densities is also in good
agreement with the Thomas-Fermi calculations by Bao
et al. [47] for the cases where the extended crust does
not appear, such as the NL3!⇢ model.
However, its contribution can amount to approxi-

mately 4% of the mass and 6% of the radius of a heavily
magnetized canonical 1.4M� neutron star, for an EOS
as sti↵ as NL3. If L values as high as the ones proposed
by recent analyses of PREX-2 data [70] were to be con-
firmed in the future, it will be very important to study
the elasticity and conductivity properties of this interme-
diate region, in order to settle its possible influence on
NS observations.
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• The difference between E/A (homogenous 
matter) and E/A (crust):


• Red: Clusters favoured

• Blue: HM favoured

• The transition to HM occurs when this 
difference is zero, E/A(HM)>E/A(crust)


• The two approaches tend to give similar 
results, however


• CP and CLD are not self-consistent (surface 
tension is parametrised from a fit to TF), 
therefore pasta curve intersects HM curve.


• In a consistent calculation (eg TF) the pasta 
curve merges continuously with HM curve.


• Surface tension influences the transition 
density


Open questions:

Will the crust be even more complex, wider?

Need to know surface tension with B
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FIG. 1. Difference between the energy per baryon of homogeneous matter and the energy per baryon of clustered matter, as a function of the
total baryon density, for the NL3 (solid lines) and NL3ωρ (dashed lines) models, in a CP (left panels) and CLD (right panels) calculations. The
magnetic field intensity is fixed to B∗ = 5 × 103 (top panels) and B∗ = 104 (bottom panels). In red, this difference is positive, E/Ahm > E/Acl ,
and in blue it is negative.

calculations, allows a more realistic description of the system,
and helps clarifying some contradictory results that can be
found in the literature [47].

We consider stellar matter in β equilibrium, taking the
NL3 and the NL3ωρ RMF models, for different values of
the magnetic field. We will consider a magnetic field of
B∗ = 5 × 103 and B∗ = 104, corresponding, respectively, to
B = 2.2 × 1017 G and B = 4.4 × 1017 G. These values are the
same as in Ref. [42].

In Fig. 1, we plot the difference between the energy per
baryon of homogeneous matter and the one of clustered mat-
ter, comparing the results obtained with the CP and the CLD
calculations. The results for both values of the magnetic field
are shown. The density at which this difference crosses zero
indicates the transition between homogeneous (core-like) and
nonhomogeneous (crust-like) matter. From this figure we can
extract the following conclusions: the two calculations give
a similar value of the crust-core transition density; while the
CP calculation (left panels) tends to give both stable solutions,
i.e., solutions in which the clusterized matter energy is lower
than the one of homogeneous matter, and metastable solu-
tions, i.e., solutions in which the energy is higher than the one
of homogeneous matter, in the CLD calculation (right pan-
els), the metastable solutions are almost completely absent.
This feature is particularly pronounced at the highest value
of the field (lower panels) and for the softest EoS (dashed

lines). This finding suggests that the estimation of the tran-
sition density might be overestimated, if the CP approach is
considered.

In Fig. 2 we show the baryon (left) and proton (right)
densities of the clusterized (blue) and nonclusterized (red) part
of the Wigner-Seitz cell, together with the growth rates ωmax

obtained from the study of the dynamical spinodal, for both
values of the magnetic field, considering the NL3 model. The
growth rates are taken from [38], where the classical Vlasov
approach was used. They are included in the plot in order to
compare the new results to the ones in literature. In this figure,
the difference between the results given by the CP and CLD
calculations is always negligible compared to the scale of the
plot, making the two lines almost indistinguishable.

It can be seen from the plots that, as already showed in
Ref. [42], in the presence of the magnetic field, the inner
crust can be divided into two regions. In the first region, the
density inhomogeneity is important, even if it decreases with
the baryon density, and the protons are confined inside the
cluster. This is the standard feature of a solid crust, corre-
sponding to a periodic arrangement of the ions in the lattice,
and consequently of the electrostatic potential.

A second, extended region, only appears in the finite-
B calculation, and starts approximately at the B = 0
crust-core transition density. In this region, the inhomo-
geneous solution is still energetically favored over the
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found in the literature [47].
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NL3 and the NL3ωρ RMF models, for different values of
the magnetic field. We will consider a magnetic field of
B∗ = 5 × 103 and B∗ = 104, corresponding, respectively, to
B = 2.2 × 1017 G and B = 4.4 × 1017 G. These values are the
same as in Ref. [42].

In Fig. 1, we plot the difference between the energy per
baryon of homogeneous matter and the one of clustered mat-
ter, comparing the results obtained with the CP and the CLD
calculations. The results for both values of the magnetic field
are shown. The density at which this difference crosses zero
indicates the transition between homogeneous (core-like) and
nonhomogeneous (crust-like) matter. From this figure we can
extract the following conclusions: the two calculations give
a similar value of the crust-core transition density; while the
CP calculation (left panels) tends to give both stable solutions,
i.e., solutions in which the clusterized matter energy is lower
than the one of homogeneous matter, and metastable solu-
tions, i.e., solutions in which the energy is higher than the one
of homogeneous matter, in the CLD calculation (right pan-
els), the metastable solutions are almost completely absent.
This feature is particularly pronounced at the highest value
of the field (lower panels) and for the softest EoS (dashed

lines). This finding suggests that the estimation of the tran-
sition density might be overestimated, if the CP approach is
considered.

In Fig. 2 we show the baryon (left) and proton (right)
densities of the clusterized (blue) and nonclusterized (red) part
of the Wigner-Seitz cell, together with the growth rates ωmax

obtained from the study of the dynamical spinodal, for both
values of the magnetic field, considering the NL3 model. The
growth rates are taken from [38], where the classical Vlasov
approach was used. They are included in the plot in order to
compare the new results to the ones in literature. In this figure,
the difference between the results given by the CP and CLD
calculations is always negligible compared to the scale of the
plot, making the two lines almost indistinguishable.

It can be seen from the plots that, as already showed in
Ref. [42], in the presence of the magnetic field, the inner
crust can be divided into two regions. In the first region, the
density inhomogeneity is important, even if it decreases with
the baryon density, and the protons are confined inside the
cluster. This is the standard feature of a solid crust, corre-
sponding to a periodic arrangement of the ions in the lattice,
and consequently of the electrostatic potential.

A second, extended region, only appears in the finite-
B calculation, and starts approximately at the B = 0
crust-core transition density. In this region, the inhomo-
geneous solution is still energetically favored over the

045806-5

CP

CLD



Conclusions

•An extended region of clusters appears due to the presence of the 
magnetic field. This extra region seems to depend on the behaviour of 
the symmetry energy in the crustal EoS.


•The mass and radius of this extended crust seems to be comparable in 
size with the one of the B=0 crust.


•The surface tension is a crucial property and needs to be explored in 
the presence of strong magnetic fields.


• Heavy clusters are relevant and should be explicitly included in the 
NS EoS (and also CCSN simulations and NS mergers).


• Strong external B fields make inner crust more complex, and this may 
have consequences in the glitch mechanism. 

Thank you!


