
MASSIVE NEUTRON STARS
EFFECTS OF EQUATION OF STATE AND MAGNETIC FIELD

ECT*  Workshop: Strongly Interacting Matter in Extreme Magnetic Fields

Zenia Zuraiq

Ph.D. (Theoretical Physics)

Indian Institute of Science

Work done in collaboration with Banibrata Mukhopadhyay (IISc), Fridolin Weber (San Diego State)



NEUTRON STARS 

(NSs)
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 End stages of main sequence 

stars with masses 10 − 25 𝑀⊙.

 Typically have masses of the 

order of 𝑀⊙ contained within 

a radius of 10 𝑘𝑚.

 Extremely dense! At their 

cores – density several times 

that of the nuclear saturation 

density. 

Artist’s impression of two neutron stars merging
ESA/Hubble



MASSIVE NSs : AN INTRODUCTION

There is no limit to the mass of a NS

→ high-density nuclear matter equation of state (EOS) still remains unknown

→ no physical reason to rule out massive NSs ( M > 2𝑀⊙).

Why explore massive NSs?

 Recent pulsar observations indicate NS mass can be well above 2𝑀⊙ limit 

PSR J1614-2230: 𝑀 = 1.97 +0.04 𝑀⊙, MSP J0740+6620: 𝑀 = 2.14 +0.20 𝑀⊙, 

PSR J0952–0607: 𝑀 = 2.35 +0.17 𝑀⊙

 Gravitational wave (GW) observations discovering objects in the “mass gap” range (2.5𝑀⊙ − 5 𝑀⊙) 

→ some of these objects (e.g. – GW190814) could be massive NSs

 Other “massive” compact objects (Super-Chandrasekhar white dwarfs) explored in recent years 

→ sets a general precedent for massive degenerate stars
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OBJECTIVE

How does a NS increase its mass?

 Classically → magnetic field effects, anisotropy, rotation

 Microscopic → through EOS effects → not sufficient due to competing effects like hyperon 

softening

In this work, we explore the theoretical possibility of massive NSs

→ examining how the mass changes under different relativistic mean field models for the NS EOS 

→ additionally checking how adding magnetic field and anisotropy can affect the system 

Following the work of Deb, Mukhopadhyay and Weber (2021, 2022) who did a similar analysis but with a non-relativistic EOS 

(SLy4) and with white dwarfs respectively
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(MODIFIED) TOV EQUATIONS
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For radially oriented (RO) fields

For transversely oriented (TO) fields

Ansatz for anisotropy
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In this work we 

have considered 

central fields up to 

1.32 × 1018 𝐺 or 

less. 

Beyond this value, 

we have to 

consider Landau 

quantization in 

EOS. 

Magnetic Field profile used: 

𝐵 𝜌 = 𝐵𝑠 + 𝐵0 1 − exp −𝜂
𝜌

𝜌0

𝛾

Bandyopadhyay et al. (1997, 1998)

Energy-momentum tensor on inclusion of 

magnetic field

𝑇𝜇𝜈 = 𝑇𝑚
𝜇𝜈
+ 𝑇𝑓

𝜇𝜈

with matter contribution
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𝐵𝜇𝐵𝜈

𝐵2

and field contribution

𝑇𝑓
𝜇𝜈 =

𝐵2

4𝜋
𝑢𝜇𝑢𝜈 −

1

2
𝑔𝜇𝜈 −

𝐵𝜇𝐵𝜈

4𝜋

Magnetisation effects are not considered as it is 

negligible at strong fields.

Sinha, Mukhopadhyay, Sedrakian (2013)



CONSTRAINING THE EOS
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Constraints on 
NS EOS

Macroscopic NS 
properties from 

observations

Maximum Mass,

Mass-Radius curves, 

Rotational Frequency

Properties of Symmetric 
Nuclear Matter (SNM) at 
nuclear saturation density

Binding energy per nucleon, 

nuclear incompressibility, 

isospin asymmetry energy, 

effective mass



MODELLING NS MATTER

 We use an effective field theory→ “Quantum Hadrodynamics”.

 Baryon-baryon interactions described in terms of meson fields:

 Scalar Meson 𝝈 : Describes attraction between baryons

 Vector Meson 𝝎 : Describes repulsion between baryons

 Isovector Meson 𝝆 : Describes baryon-baryon interactions in isospin asymmetric systems

 Isospin symmetric nuclear matter (SNM) used as an approximation to NS matter.
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THE RMF LAGRANGIAN
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Necessary to introduce non-linear terms to reproduce all properties of nuclear matter at the

saturation density:ℒ𝑁𝐿𝜎, ℒ𝑁𝐿𝜔, ℒ𝜎𝜔𝜌.

ℒ𝑅𝑀𝐹 = ℒ𝑏𝑎𝑟𝑦𝑜𝑛𝑠+ ℒ𝑙𝑒𝑝𝑡𝑜𝑛𝑠 + ℒ𝑚𝑒𝑠𝑜𝑛𝑠 + ℒ𝑁𝐿𝜎 + ℒ𝑁𝐿𝜔+ ℒ𝜎𝜔𝜌
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SYSTEM OF NONLINEAR EQUATIONS TO BE SOLVED

Coupled non-linear equations solved to give us meson mean fields and neutron, electron Fermi

momenta. Fermi momenta of rest of baryons given by imposing chemical equilibrium condition.



EXOTIC MATTER IN NS CORES

High densities at NS cores 

→ Possibility of formation of exotic particles
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HYPERONS
baryons that contain at 

least one strange quark

DELTAS
baryons consisting only of up 

and down quarks but with 

spin 3/2

Another possibility → at high densities, quarks can become 

deconfined → quark stars (not explored in current work)

Sinha, Mukhopadhyay, Sedrakian (2013)



EOS USED IN THIS 

WORK

GM1L
Glendenning et al., PRL 67, 2414 
(1991) 

SWL
Spinella et al. (2017) 

DD2
Typel et al., PRC 81, 015803 (2010) 

DDME1
Niksic et al., PRC 66, 024306 (2002)

DDME2
Lalazissis et al., PRC 71, 024312 
(2005) 

DDMEX
Taninah et al., PLB 800, 135065 
(2020)
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TIDAL DEFORMABILITY

In presence of external gravitational field (𝜖𝑖𝑗), the 

star develops a quadrupole moment (𝑄𝑖𝑗) such that 

𝑄𝑖𝑗 = −𝜆𝜖𝑖𝑗, where 𝜆 is the tidal deformability of 

the star

• 𝜆 related to dimensionless second Love number 

𝑘2 as 𝜆 =
2

3
𝑘2𝑅

5

• Dimensionless tidal deformability: Λ =
𝜆

𝑀5
=

2

3
𝑘2𝐶

−5, where C is the compactness (M/R)

Observational Limits

→GW170817 : Λ1.4 < 800, 

Λ1.4 < 580

Computing 𝒌𝟐from a given EOS
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Hinderer (2007)



RESULTS

EOS GENERATED

Solving mean field equations through a numerical code courtesy of
Prof. Fridolin Weber (San Diego State University).

TOV SOLVER

Solving the coupled equations of stellar structure in general
relativity using numerical techniques with generated EOS as input

Each EOS generates a family of stars parameterised by central
density → Mass-Radius curve → Maximum mass supported by each
EOS
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Isotropic, non-magnetised case (𝑩 = 𝟎, 𝜿 = 𝟎)

EOS 𝑴𝒎𝒂𝒙 𝑴⊙ 𝑹 (𝒌𝒎)

GM1L 2.0348 11.365

SWL 2.0098 11.246

DD2 2.1049 11.786

DDME1 2.1486 12.096

DDME2 2.1857 12.257

DDMEX 2.2555 12.532H
yp

e
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n
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e
lt

a 
re
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lt
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Adding magnetic field with fixed anisotropy 

parameter, 𝜿 = 𝟎. 𝟓 𝑩𝟎 (G) 𝑴𝒎𝒂𝒙 𝑴⊙ 𝑹 (𝒌𝒎)

1.2 × 1018 (𝑇𝑂) 2.8423 13.990

0.9 × 1018 (𝑇𝑂) 2.7516 13.695

0 𝐺 2.6231 13.263

0.6 × 1018 (𝑅𝑂) 2.4929 12.764

0.9 × 1018 (𝑅𝑂) 2.3383 12.046

𝜂 = 0.2,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

RO – Radially oriented

TO –Transversely oriented
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Adding magnetic field with fixed anisotropy 

parameter, 𝜿 = 𝟎. 𝟓 𝑩𝟎 (G) 𝑴𝒎𝒂𝒙 𝑴⊙ 𝑹 (𝒌𝒎)

1.2 × 1018 (𝑇𝑂) 2.8423 13.990

0.9 × 1018 (𝑇𝑂) 2.7516 13.695

0 𝐺 2.6231 13.263

0.6 × 1018 (𝑅𝑂) 2.4929 12.764

0.9 × 1018 (𝑅𝑂) 2.3383 12.046

𝜂 = 0.2,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

RO – Radially oriented

TO –Transversely oriented
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Stability
(𝜿 = 𝟎. 𝟓) 

𝜂 = 0.01,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

• Central field, 𝐵𝑐
• Field profile

𝜂 = 0.2,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

𝑩𝒄 (𝟏𝟎𝟏𝟖G) 𝑴𝒎𝒂𝒙 𝑴⊙ 𝑹 (𝒌𝒎) ME/GE

1.18 (𝑇𝑂) 2.8423 13.990 0.192

0 2.6231 13.263 -

0.24 (𝑇𝑂) 2.6261 13.247 0.0023

0.49 (𝑇𝑂) 2.6492 13.232 0.0090

0.74 (𝑇𝑂) 2.6492 13.219 0.0204

0.95 (𝑇𝑂) 2.6680 13.207 0.0356

1.18 (𝑇𝑂) 2.6906 13.182 0.0558



Stability
(𝜿 = 𝟎. 𝟓) 

𝜂 = 0.01,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

• Central field, 𝐵𝑐
• Field profile

𝜂 = 0.2,
𝛾 = 2,

𝐵𝑠 = 1015 𝐺

𝑩𝒄 (𝟏𝟎𝟏𝟖G) 𝑴𝒎𝒂𝒙 𝑴⊙ 𝑹 (𝒌𝒎) ME/GE

1.18 (𝑇𝑂) 2.8423 13.990 0.192

0 2.6231 13.263 -

0.24 (𝑇𝑂) 2.6261 13.247 0.0023

0.49 (𝑇𝑂) 2.6492 13.232 0.0090

0.74 (𝑇𝑂) 2.6492 13.219 0.0204

0.95 (𝑇𝑂) 2.6680 13.207 0.0356

1.18 (𝑇𝑂) 2.6906 13.182 0.0558
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Changing anisotropy parameter, 𝜿



SUMMARY
 We explored theoretical possibility of massive neutron stars which could potentially be candidates 

that fall in the “mass gap”

 Pure EOS effect not sufficient for mass gap. 

 Require additional physics → magnetic field and/or anisotropy 

 Field does not necessarily increase mass → RO vs. TO. Geometry determines how mass changes with 

respect to that without field.

 Tidal deformability further constrains mass of NS. Strong field induced very massive NS may not 

satisfy tidal deformability constraint. 

 2.5 𝑀⊙ NS is demonstrated to be still possible even with all constraints.
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