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QCD phase diagram at zero density (continuum limit)

strange quark number 1
<3 suscegptit??lity

average light quark =
Zw condegnsotge g

¢ Polyakov loop

| [G Endrédi, 1504.08280]

eB (GeV?)
eB = 1GeV? ~ 1.69 - 10%° eG ~ (1.16 - 1013K)? (e = /4T Qe ™ B~ 3.3 ¢B).
RHIC eB < 0.04 GeV?, ALICE eB < 0.3 GeV2. Remains a crossover at least up to 3 GeV2.
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Paramagnetism and diamagnetism

B: magnetic flux density (colloquially: magnetic field), H: magnetic field strength.
B=H+M=14xmH=uH

Liquid oxygen: xm = 0.004

Harvard Natural Science Demonstrations
https://sciencedemonstrations.fas.harvard.edu/

presentations/paramagnetism-oxygen

Water: x, ~ —0.000009

Nijmegen High Field Magnetic Laboratory
https://www.ru.nl/hfml/research/levitation-explained/
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diamagnetic-levitation


https://sciencedemonstrations.fas.harvard.edu/presentations/paramagnetism-oxygen
https://sciencedemonstrations.fas.harvard.edu/presentations/paramagnetism-oxygen
https://www.ru.nl/hfml/research/levitation-explained/diamagnetic-levitation
https://www.ru.nl/hfml/research/levitation-explained/diamagnetic-levitation

The magnetic susceptibility

free energy density

fiot(al) (B) = fo(are)(B) + 82'% , f,(B) = —p(B) = —\7/; log Z
magnetization
My = _a?ef;) (: Ae/l) » Mle=o =0
susceptibility
oMy 0°f,

Xe = 3(eB) gy O(eB)?

X = = _ —
5o Sl+xm S\ g

@ renormalized x > 0: field reduces f, paramagnet, attracts magnetic field lines.

sign distinguishes between

@ renormalized x < 0: field increases f, diamagnet, repels magnetic field lines.
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Renormalization of £, M and y

Electric charge renormalization ey, - By = e(u) - B(u):

Zo(p) = 1+ bie’log(p?a®), ey = Z. M (n)e*(n), Bj = Ze(n) B2 (1)

(Free) energy density at zero temperature:

b1 (eB)? log(u?a® B? bi(eB)? log(u?a®) B2
fn(B) = fo(B) + 1(eB) 2%(# ) 2(u) _f(B) + 1(eB) 2%(# ) . 2(u)
B§/2 finite: f(B;u)

B is a background field (no FF kinetic term in the simulated Lagrangian) = b, = 0.

The (trivial) background energy density B2/2 is not included in the simulated Lagrangian.
K= HQED = AH(adronic)-

The inverse lattice spacing a~* provides the QCD UV cut-off (O[as(a~!)] corrections to by).
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Renormalization of f, M and x Il

Expand f5(B) at T =0:

O-O+-O-+ T~

Similar to background field method [Abbott 81]
O(B?) term: —by(eB)?log(A?)/2 = i is finite [Schwinger 51]. O[(eB)*] terms are finite.
Renormalization of f,(B) at T > 0:
subtract the T = 0 (eB)?-term for eB < A2, ~ m?
(7 is the lightest charged particle in the hadronic phase)
3 no other choice to ensure x =0« ¢ =1 in the T = 0 vacuum!
f(B, T =0)=0[(eB)*, f(B, T >0) = O[(eB)?].
Fit: Ay = 115(3)(5) MeV — renormalized .
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Magnetic susceptibility at very high and very low T >0

Consider a free quark with charge g and mass m.
Using Schwinger proper time regularization:
[GB, F Bruckmann, G Endrddi, S Katz, A Schifer 1406.0269; Elmfors et al 94]

2 2 2
Diracq *ds —m?2s T _1/(4sT? T—oo Dirac 9 T
X( T) _NCbl ? 0 ? e {93 |:2, e /( ):| —1} — +Ncb1 ? |Og ([772>

QED is not asymptotically free: bP"a¢ = 1/(1272) > 0
= Free quarks at high T are paramagnetic.

Consider a pion of mass m and charge +e.

; > ds 2 2
pion __ _ pscalar —m*s —1/(4sT?)| _
PN (T) = — b3 /0 € {@3 [O,e } 1}
finite and positive

with p§calar — pDirac /4 > 0. Sign change due to fermion + boson.
=  QCD at small T > 0 is diamagnetic.
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Expectation for the renormalized susceptibility

x:(T)

This is too
simplistic since

quarks only

j
become “free”

free
quarks
-
T T at T > T..

pions ~Te.

&
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Observables

@ Partition function for three flavors

z— [l ] [ecMi(ar-BmlY* . My = (05 -+ mp) (14 0())
f=u,d,s
@ Chiral condensates
TOlgz 0

=——f
74 8mf 8mf b

o Cancel additive QCD divergences of 17 by computing

Pipr =

2 [ a(B, T) — P a(0,0)] + 1,

Azu,d(B; T) = zu,d(B7 T) = zu,d(07 T) .

Y,4(B, T)=

Note that AX(B, T) still contains a term o BZ (T = 0 uncancelled).
Also Af, = fp(B) — 15(0) is not yet “QED-renormalized".
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Magnetic catalysis at T = 0 (continuum limit)
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Inverse magnetic catalysis (T > 0, continuum limit)

1 T1=0
T=130 MeV
N T=148 MeV
~ T=153 MeV
~ 05 T=163 MeV
0y V- T=17
+
«
< 0 E
S
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Thermodynamics in an external magnetic field

Pressure p= % log Z = —f, == equation of state
. _ T dlogZ __ —
Interaction measure /= —v; dloga — €~ 3P = —(Tup)
With magnetic field f, =¢—sT =€t — ST — M - eB
field
€ e

A h Nh A

Is the pressure isotropic?

For gB fixed (Tax) =(Tyy) =(Tzz) = p
We work at fixed flux & = L, L,qB p,=p, px =p, =p— M- eB.
We pursued two approaches [1406.0269, 1303.1328, 1310.8145]:

generalized integral method and a microscopic determination from T, = T,, and T,,.
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Susceptibility and permeability

half-half: L Levkova, C DeTar, PRL 112 (14) 012002, finite diff.: C Bonati et al, PRD89 (14) 054506

lattice
continuum estimate

4l 3 [1311.2559]
anisotropy method

1300.1142
I Ve

- L 1 S i A C VI
x — - L
o | [1310.8656) {1 x1.002 - 1" < m o) PT -
> | inite diff. method | o a8 O(ag) PT g
o L : i
- i o et meitod I o) PT T
0 g i 1 s A=0.12 GeV
Gl v vt v by v v by v a1y o oo b e b e by
100 150 200 250 300 200 300 400
T (MeV) T (Mev)

Magnetic susceptibility and permeability (f = —%(68)2)(, oxygen: u ~ 1.004):

oM B 1

X d(eB)lg_y’ eM, n H 1-4raemx

eB, M, x are scale-independent. eH, M = eM, aem, 1+ = 1 + xm depend on the QED scale.
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current-current method I: relation with the vacuum polarization

I 1%
VWV MW T (g2 = (quq,, — 5Wq2) N(q?),

N(0) = —82f,/0(eB)? = x» = x(1) + by log(p2a?) i 1
b= © G te ]
f=u,d,s

Method to determine xp = I1(0) with simulations at B = 0 only!

Interesting observation: Entropy density: s = —9f /0T

0?s _ s 0 0?f 28)((8 =0)
I(eBR)2 - 2 2 T T a0 T2
9(eB)?|5_, dlog T* 0(eB)*|,_, Olog T
Adler function (q large, T large or u large, n = —0f /Op):
an dxs(B = 0) 8s 8%n
2\ _ 152 2 _ 2 _ a2
D(g") = 127 dlog g2 e lam Jlog T2 or T&(eB)2 B—0 on N@(eB)Z B—0
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current-current method Il: continuum extrapolation at 7 =0

Fit:

[ T | T T T T T T T T | 4
6 !
°r ¥ mo ]
o = perturbative fit i
S -/r ® integral method # -
x T % finite diff. ]
< oL 5 E
o L ]
I - x -
£ oL ]
2 9 i ]
10 L = ]
1 1 | 1 1 1 1 | 1 1 1 1 | ]

-1 -0.5 0

log(a/ay)

Xb = bi(a™?) - [log(a®/a3) + log(uyspag)] -

[1+2z1(a/a0)].
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current-current method Ill: continuum extrapolation at T = 130 MeV

o.3¥ % 1 % %—

s L I
« O _
~ o 4 integral method
I finite diff. ]

~0.3 |- b finite di ]

L T=130 MeV current—current |

correlator
C 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 7
0 0.5 1 15
a? (Gev-2?)

3 problem with previous extrapolations (including from our integral method)!
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current-current method IV: results

L T T T T I T T T T I T T T T I T T T T ] _I T 1T 17T I LI L I LI I LI
-1 N=6 ] [ = finite diff. method
3 & N=8 7 S B integral method
r 3 N=10 / ] L
8 o & N2 JMCURECICIRL T N SR
3 - cont. A . 3 r ]
~ 1k 02 b ] > 1 via TI(0) —
: o B : : :
o —02 ] B
0 :_ ............... 70_4f_~~_‘__‘_ — 0 - 1y B
[ ~RaageaiP AP U P i S r - b
C_1 1 1 I\‘I‘VI 1 1 1 I 1 1 1 1 I 1 1 1 1 I T -I | I I I | I I | I L1 1 | I L1 1 | I
150 200 250 300 100 150 200 250 300
T (MeV) T (MeV)
Continuum limit for high T described by:
T? 5
X( T) = bl(ﬂtherm) ' IOg ’Yluz + O(l/T ): Htherm ™~ 2n T
QED
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Spin contribution to the magnetic susceptibility

Decomposition:

X=D_Xf,  Xr=X7+XFE,
f

gr/e O
2m¢ O(eB)

_ (qf/e)2

eB=0 2m f

- 1
Cr(my) = <¢f0xy¢f> T, Ou = E[’m,%]-

X7 = Cr(mg) — Ce(mpalence = ) <15f0xy¢f> =qrB- <”&f¢f> $m=qrB -
T, undergoes additive and multiplicative renormalization:
3
= Zrra — ¢ = Zr [re(T) = 7¢(0)], 7 = me s log(1gEpa®) + O(as).

The additive divergence is related to the spin contribution to the T = 0 term o (eB)? that we
usually subtract.
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The tensor coefficient

Ta diverges for m, > 0 (as discussed above).

-40

§ 022
$ 015

0.12
0.1 = a(fm)
¢ chiral & cont. limit
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(g / )2
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Tub

-35

-40

-45

leading

logarithm

log(a/a,)

fl = M5(1 = 2GeV) = limy_yo limm, 0 Z77, = —45.4(1.5) MeV

= Normalization of the photon distribution amplitude.

0

Probability amplitude of a real photon to dissociate into a massless quark-antiquark pair of
flavour u in the infinite momentum frame.



Decomposition of the susceptibility |

X = X (uqep) + > X7 (kaep)
f

A free case calculation shows that x°(T = 0) = 0.
This implies that x*"&(T = 0) = x(T =0) — x>(T =0) = 0.
We use the MS scheme with ugep = 2 GeV.

Further decompositions are possible:
X = Xglue T Z Xf = Xglue T Z <X?ng + X?) ’
f f
in analogy to the decomposition of the transverse spin of a hadron in deep inelastic scattering.
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Decomposition of the susceptibility Il: results

_I T I LU I LU I LU I LU I LI I_ _I T I LU I LU I LU I LU I LI I_
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o r ] o - -
— .k B 9 r /
x o 1 « OF -
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o ] -5 ]
-8 e [ yspin S ]
C continuum ] [ X MS, 2 Gev ]
-0l b b e Ly I BRI R R R R B B

120 140 160 180 200 120 140 160 180 200

T (Mev) T (MeV)

At very high temperatures (free fermion gas): x° — %X >0,

X8 — —%X <0.

At T % Nqcp in the strongly interacting medium: Pauli-diamagnetism (negative g-factor)!

This is possible since at least at T < T, the quarks are bound within hadrons and are not the
relevant degrees of freedom.
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@ The QCD crossover temperature decreases slightly if the medium is exposed to a constant
magnetic field. At very large fields it will become a first order phase transition.

e Complex, non-monotonic dependence of ¥1) on B and T (inverse magnetic catalysis).

@ Once the QED running coupling (magnetic catalysis) is accounted for, the response at
T = 150 MeV is paramagnetic.

@ At low temperatures QCD is slightly diamagnetic.
@ At the point T =0, due to the B* term, QCD is paramagnetic.
(x =0 at T = 0 by definition since c = 1.)
e Equation of state re-computed, using the new current-current method (not shown here).
@ The so-called tensor coefficient 7 has been determined. _ _
(Magnetic susceptibility of the chiral condensate { = 7/(¥1)) = (VoY) /(qF« (¥1))).)

@ x factorizes into spin contributions and a remainder (angular momentum and gluons).
The latter drives paramagnetism (!) at large but not too large T.

@ Do similar strongly coupled fermion systems exist in condensed matter physics??77?
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