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QCD phase diagram at zero density (continuum limit)

[G Endrődi, 1504.08280]

eB = 1 GeV2 ≈ 1.69 · 1020 eG ≈ (1.16 · 1013K)2 (e =
√

4παem ↷ B ≈ 3.3 eB).
RHIC eB < 0.04 GeV2, ALICE eB < 0.3 GeV2. Remains a crossover at least up to 3 GeV2.
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Paramagnetism and diamagnetism
B: magnetic flux density (colloquially: magnetic field), H: magnetic field strength.

B = H + M = (1 + χm)H = µH

Liquid oxygen: χm ≈ 0.004

Harvard Natural Science Demonstrations
https://sciencedemonstrations.fas.harvard.edu/

presentations/paramagnetism-oxygen

Water: χm ≈ −0.000009

Nijmegen High Field Magnetic Laboratory
https://www.ru.nl/hfml/research/levitation-explained/

diamagnetic-levitation 3 / 22
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The magnetic susceptibility
free energy density

ftot(al)(B) = fb(are)(B) + B2
b

2 , fb(B) = −p(B) = − T
V3

logZ

magnetization
Mb = − ∂fb

∂(eB)

(
= M

e

)
, M|B=0 = 0

susceptibility

χb = ∂Mb
∂(eB)

∣∣∣∣
eB=0

= − ∂2fb
∂(eB)2

∣∣∣∣∣
B=0

(
χ = 1

e2
χm

1 + χm
= 1

e2

(
1− 1

µ

))
sign distinguishes between

renormalized χ > 0: field reduces f , paramagnet, attracts magnetic field lines.
renormalized χ < 0: field increases f , diamagnet, repels magnetic field lines.
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Renormalization of f , M and χ

Electric charge renormalization eb · Bb = e(µ) · B(µ):

Ze(µ) = 1 + b1e2 log(µ2a2) , e2
b = Z−1

e (µ)e2(µ) , B2
b = Ze(µ)B2(µ)

(Free) energy density at zero temperature:

ftot(B) = fb(B) + b1(eB)2 log(µ2a2)
2 + B2(µ)

2︸ ︷︷ ︸
B2

b/2

= fb(B) + b1(eB)2 log(µ2a2)
2︸ ︷︷ ︸

finite: f (B;µ)

+B2(µ)
2

B is a background field (no FF kinetic term in the simulated Lagrangian) ⇒ b2 = 0.
The (trivial) background energy density B2

b/2 is not included in the simulated Lagrangian.
µ = µQED = ΛH(adronic).
The inverse lattice spacing a−1 provides the QCD UV cut-off (O[αs(a−1)] corrections to b1).
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Renormalization of f , M and χ II
Expand fb(B) at T = 0:

Renormalization

• consider free quarks (electric charge but no color charge)
• expand f matter in B at T = 0: in terms of diagrams

= + + + . . .

I O(B2) term is indeed −β1 · (qB)2 log Λ [Schwinger ’51],
making f total finite

I O(B4,6,...) terms are finite
I background field method [Abbott ’81]

I ‘vacuum polarization diagram with magnetic field-legs’
• 2-loop contribution: β1 → β1c1g2

12 / 31

Similar to background field method [Abbott 81]

O(B2) term: −b1(eB)2 log(Λ2)/2 ⇒ ftot is finite [Schwinger 51]. O[(eB)4] terms are finite.

Renormalization of fb(B) at T ≥ 0:
subtract the T = 0 (eB)2-term for eB ≪ Λ2

H ∼ m2
π

(π± is the lightest charged particle in the hadronic phase)
∃ no other choice to ensure χ = 0⇔ c = 1 in the T = 0 vacuum!

f (B,T = 0) = O[(eB)4], f (B,T > 0) = O[(eB)2].
Fit: ΛH = 115(3)(5) MeV −→ renormalized χ.
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Magnetic susceptibility at very high and very low T > 0
Consider a free quark with charge q and mass m.
Using Schwinger proper time regularization:
[GB, F Bruckmann, G Endrődi, S Katz, A Schäfer 1406.0269; Elmfors et al 94]

χ(T ) = −NcbDirac
1

q2

e2

∫ ∞

0

ds
s e−m2s

{
Θ3

[
π

2 , e
−1/(4sT 2)

]
−1
}

T→∞−→ +NcbDirac
1

q2

e2 log
(

T 2

m2

)

QED is not asymptotically free: bDirac
1 = 1/(12π2) > 0

⇒ Free quarks at high T are paramagnetic.
Consider a pion of mass m and charge ±e.

χpion(T ) = −bscalar
1

∫ ∞

0

ds
s e−m2s

{
Θ3
[
0, e−1/(4sT 2)

]
− 1

}
︸ ︷︷ ︸

finite and positive

with bscalar
1 = bDirac

1 /4 > 0. Sign change due to fermion 7→ boson.
⇒ QCD at small T > 0 is diamagnetic.
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Expectation for the renormalized susceptibility

Expectation for the susceptibility

• based on the free theory
10 / 31

This is too
simplistic since
quarks only
become “free”
at T ≫ Tc .
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Observables

Partition function for three flavors

Z =
∫

[dU] e−βSg
∏

f =u,d ,s
[det Mf (qf · B,mf )]1/4 , Mf = ( /Df + mf )

(
1 +O(a2)

)
Chiral condensates

ψ̄ψf = T
V
∂ logZ
∂mf

= − ∂

∂mf
fb

Cancel additive QCD divergences of ψ̄ψ by computing

Σu,d(B,T ) = 2mud
M2

πF 2

[
ψ̄ψu,d(B,T )− ψ̄ψu,d(0, 0)

]
+ 1 ,

∆Σu,d(B,T ) = Σu,d(B,T )− Σu,d(0,T ) .

Note that ∆Σ(B,T ) still contains a term ∝ B2
b (T = 0 uncancelled).

Also ∆fb = fb(B)− fb(0) is not yet “QED-renormalized”.
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Magnetic catalysis at T = 0 (continuum limit)
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Inverse magnetic catalysis (T ≥ 0, continuum limit)

11 / 22



Thermodynamics in an external magnetic field
Pressure p = T

V logZ = −fb =⇒ equation of state
Interaction measure I = −T

V
d log Z
d log a = ϵ− 3p = −⟨Tµµ⟩

With magnetic field fb = ϵ− sT = ϵtot − sT −M · eB︸ ︷︷ ︸
ϵfield

Is the pressure isotropic?

For qB fixed ⟨Txx ⟩ = ⟨Tyy ⟩ = ⟨Tzz⟩ = p
We work at fixed flux Φ = LxLy qB pz = p, px = py = p −M · eB.

We pursued two approaches [1406.0269, 1303.1328, 1310.8145]:
generalized integral method and a microscopic determination from Txx = Tyy and Tzz .
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Susceptibility and permeability
half-half: L Levkova, C DeTar, PRL 112 (14) 012002, finite diff.: C Bonati et al, PRD89 (14) 054506

Magnetic susceptibility and permeability (f = −1
2(eB)2χ, oxygen: µ ≈ 1.004):

χ = ∂M
∂(eB)

∣∣∣∣
B=0

, B = H + eM , µ = B
H = 1

1− 4παemχ

eB, M, χ are scale-independent. eH, M = eM, αem, µ = 1 + χm depend on the QED scale.
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current-current method I: relation with the vacuum polarization
νµ

Πµν(q2) =
(
qµqν − δµνq2

)
Π(q2) ,

Π(0) = −∂2fb/∂(eB)2 = χb = χ(µ) + b1 log(µ2a2)
b1 = Nc

12π2
∑

f =u,d ,s

q2
f

e2

[
1 + αs(a−1)

π + · · ·
]

Method to determine χb = Π(0) with simulations at B = 0 only!

Interesting observation: Entropy density: s = −∂f /∂T

T ∂2s
∂(eB)2

∣∣∣∣∣
B=0

= −2 ∂

∂ log T 2
∂2f

∂(eB)2

∣∣∣∣∣
B=0

= 2∂χ(B = 0)
∂ log T 2

Adler function (q large, T large or µ large, n = −∂f /∂µ):

D(q2) = 12π2 ∂Π
∂ log q2 ←→ 12π2 ∂χb(B = 0)

∂ log T 2 = 6π2T ∂2s
∂(eB)2

∣∣∣∣
B=0

= 6π2µ
∂2n

∂(eB)2

∣∣∣∣
B=0
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current-current method II: continuum extrapolation at T = 0

Fit: χb = b1(a−1) ·
[
log(a2/a2

0) + log(µ2
QEDa2

0)
]
·
[
1 + z1(a/a0)2].
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current-current method III: continuum extrapolation at T = 130 MeV

∃ problem with previous extrapolations (including from our integral method)!
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current-current method IV: results

Continuum limit for high T described by:

χ(T ) = b1(µtherm) · log
(
γ

T 2

µ2
QED

)
+O(1/T 2) , µtherm ∼ 2πT
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Spin contribution to the magnetic susceptibility

Decomposition:
χ =

∑
f
χf , χf = χS

f + χang
f ,

Cf (mf ) = qf /e
2mf

∂

∂(eB)
〈
ψ̄f σxyψf

〉∣∣∣∣
eB=0

= (qf /e)2

2mf
τfb, σµν = 1

2i [γµ, γν ].

χS
f = Cf (mf )− Cf (mvalence

f = 0) ,
〈
ψ̄f σxyψf

〉
= qf B ·

〈
ψ̄f ψf

〉
· ξfb ≡ qf B · τfb

τfb undergoes additive and multiplicative renormalization:

τf = ZT τfb − τdiv
f ≡ ZT [τf (T )− τf (0)] , τdiv

f = mf
3

4π2 log(µ2
QEDa2) +O(αs).

The additive divergence is related to the spin contribution to the T = 0 term ∝ (eB)2 that we
usually subtract.
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The tensor coefficient
τfb diverges for mu > 0 (as discussed above).

f ⊥
γ = τMS(µ = 2 GeV) = lima→0 limmu→0 ZT τu = −45.4(1.5) MeV

= Normalization of the photon distribution amplitude.
Probability amplitude of a real photon to dissociate into a massless quark-antiquark pair of
flavour u in the infinite momentum frame.
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Decomposition of the susceptibility I

χ = χang(µQCD) +
∑

f
χS

f (µQCD)

A free case calculation shows that χS(T = 0) = 0.

This implies that χang(T = 0) = χ(T = 0)− χS(T = 0) = 0.

We use the MS scheme with µQCD = 2 GeV.

Further decompositions are possible:

χ = χglue +
∑

f
χf = χglue +

∑
f

(
χang

f + χS
f

)
,

in analogy to the decomposition of the transverse spin of a hadron in deep inelastic scattering.
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Decomposition of the susceptibility II: results

At very high temperatures (free fermion gas): χS → 3
2χ > 0 , χang → −1

2χ < 0 .
At T ̸≫ ΛQCD in the strongly interacting medium: Pauli-diamagnetism (negative g-factor)!
This is possible since at least at T < Tc the quarks are bound within hadrons and are not the
relevant degrees of freedom.
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Summary

The QCD crossover temperature decreases slightly if the medium is exposed to a constant
magnetic field. At very large fields it will become a first order phase transition.
Complex, non-monotonic dependence of ψ̄ψ on B and T (inverse magnetic catalysis).
Once the QED running coupling (magnetic catalysis) is accounted for, the response at
T ≳ 150 MeV is paramagnetic.
At low temperatures QCD is slightly diamagnetic.
At the point T = 0, due to the B4 term, QCD is paramagnetic.
(χ = 0 at T = 0 by definition since c = 1.)
Equation of state re-computed, using the new current-current method (not shown here).
The so-called tensor coefficient τ has been determined.
(Magnetic susceptibility of the chiral condensate ξ = τ/⟨ψ̄ψ⟩ = ⟨ψ̄σxyψ⟩/(qFxy ⟨ψ̄ψ⟩).)
χ factorizes into spin contributions and a remainder (angular momentum and gluons).
The latter drives paramagnetism (!) at large but not too large T .
Do similar strongly coupled fermion systems exist in condensed matter physics???
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