Instantons and chiral symmetry in hot QCD

Tamás G. Kovács

Eötvös Loránd University, Budapest, Hungary and Institute for Nuclear Research, Debrecen, Hungary

Trento, September 26, 2023

Symmetries of QCD and their realization

- partition function $Z = \int \mathscr{D}U \prod_{f} \det(D[U] + m_{f}) \cdot e^{-S_{g}[U]}$
- $m_{\rm u} \approx m_{\rm d} \approx 0$
- Symmetries: $SU(2)_V \times SU(2)_A \times U(1)_V \times U(1)_A$
 - U(1)_A anomalous
 - SU(2)_A spontaneously broken below T_c
- Order parameter of SU(2)_A (Banks-Casher formula):

$$\langle \bar{\psi}\psi \rangle \propto \frac{1}{V} \sum_{i} \frac{1}{\lambda_{i}+m} \propto \int_{-\Lambda}^{\Lambda} d\lambda \frac{m}{\lambda^{2}+m^{2}} \rho(\lambda) \xrightarrow[m \to 0]{} \rho(0)$$

 λ_i : eigenvalues of the Dirac operator, $\rho(\lambda)$: its spectral density

The finite temperature transition Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

Above T_c

- Chiral symmetry restored
- Order parameter $\rho(0) = 0$
- (Pseudo)gap (lowest Matsubara mode)

spectral density at 0 <-> realization of chiral symmetry

Spectral density at $T = 1.1 T_c$ on the lattice

quenched: determinant (quark backreaction) omitted from Boltzmann weight

Peak at zero in the spectral density!

Edwards et al. 2000; Alexandru & Horvath 2015; Kaczmarek, Mazur, Sharma 2021

- Why is there a peak at zero?
- How is it suppressed if the quark determinant is included?
- How does the peak influence the realization of chiral symmetry as m→ 0?

Spectral peak \leftrightarrow instantons?

- Instanton: special gauge field configuration with topological winding
- A "lump" of action localized in space-time
- (Anti)instanton

 \rightarrow zero eigenvalue of D(A) with (-)+ chirality eigenmode

- Topological charge $Q = n_i n_a$ $\rightarrow |Q|$ exact zero eigenvalues
- Its fluctuations $\chi = \frac{1}{V} \langle Q^2 \rangle$ (topological susceptibility)

- High *T*: large instantons "squeezed out" in the temporal direction
- Dilute gas of instantons and antiinstantons
- Zero modes exponentially localized
- Mixing (splitting) of I-A zero modes small
- n_i instantons n_a antiinstantons $\rightarrow |n_i - n_a|$ exact zero modes + mixing near zero modes

Quenched approximation \rightarrow free instanton gas $_{\text{lattice result}}$

Quenched approximation (quark backreaction neglected):

$$Z = \int \mathscr{D}U \prod_{f} \underline{\det(D[U] + m_{f})} \cdot e^{-S_{g}[U]}$$

 Number distribution of exact and near zero modes in the peak consistent with free instanton gas Vig R. & TGK 2021

Including dynamical quarks

• Dynamical quarks are expected to

- Suppress small Dirac eigenvalues (→ fewer instantons)
- Introduce I-A interaction (→ pull pairs closer)

• What happens to the spectral peak and χ symm if $m \rightarrow 0$?

• Direct lattice simulation with det presently not feasible

Instanon-based random matrix model (quenched)

- Model of Dirac operator in the subspace of zero modes
- Quenched ideal instanton gas:
 - Choose n_i and n_a from independent Poisson distributions of mean $\chi V/2$.
 - Place (anti)instantons randomly in 3d box of size L^3 ($V = L^3/T$).
 - Construct $(n_i + n_a) \times (n_i + n_a)$ random matrix:

•
$$w_{ij} = A \cdot \exp(-B \cdot r_{ij}),$$

 r_{ij} is the distance of instanton *i* and antiinstanton *j*.

Fit parameters to Dirac spectrum guenched, $T = 1.1 T_c$

- Three parameters:
 - χ_0 instanton density: from exact zero modes $\rightarrow \chi_0 = \langle Q^2 \rangle / V$
 - A, B parameters of the exponential mixing between zero modes

• Fit A, B to distribution of Dirac eigenvalues

lowest eigenvalue in $V = 32^3$ configurations with only one IA pair

Perferct description of quenched lattice Dirac spectrum

Distribution of lowest and 2nd lowest eigenvalues - different volumes

Instantons and chiral symmetry in hot QCD 12/20

Famás G. Kovács

Random matrix model with dynamical quarks

• On the lattice $det(D+m)^{N_f}$ in Boltzmann weight

•
$$\det(D+m) = \prod_{zmz} (\lambda_i + m) \times \prod_{bulk} (\lambda_i + m)$$

• Bulk weakly correlated with zero mode zone

• Approximate det with
$$\prod_{zmz} (\lambda_i + m)$$

• Consistently included in RM model:

$$P(n_{i}, n_{a}) = \underbrace{e^{-\chi_{0}V} \frac{1}{n_{i}!} \frac{1}{n_{a}!} \left(\frac{\chi_{0}V}{2}\right)^{n_{i}+n_{a}}}_{\text{free instanton gas}} \cdot \det(D+m)^{N_{f}}$$

Suppression of instantons by dynamical quarks

• If
$$|\lambda_i| \ll m \implies \prod_i (\lambda_i + m) \approx m^{n_i + n_a}$$

•
$$\left(rac{\chi_0 V}{2}
ight)^{n_{\mathrm{i}}+n_{\mathrm{a}}} \cdot \det(D+m)^{N_{\mathrm{f}}} ~\approx~ \left(rac{m^{N_{\mathrm{f}}}\chi_0 V}{2}
ight)^{n_{\mathrm{i}}+n_{\mathrm{a}}}$$

- Distribution of number of (anti)instantons still Poisson
- Free gas, but susceptibility suppressed as $\chi_0
 ightarrow m^{N_f} \chi_0$
- Instanton gas more dilute $\Rightarrow |\lambda_i|$ smaller
- Even in the chiral limit $|\lambda_i| \ll m \implies$ free instanton gas

Spectral density - full QCD vs. ideal instanton gas

Instanton-antiinstanton molecules

density of closest opposite charge pairs at given distance

Spectral density singular at the origin (in the $V \rightarrow \infty$ limit)

If $\rho(\lambda) \propto \lambda^{\alpha}$ and $y = \log(\lambda)$ then $\tilde{\rho}(y) \propto e^{(1+\alpha)y} \alpha = -0.775(5)$

What is $\rho(0)$ for a singular spectral density?

"Banks-Casher" for singular spectral density

Free instanton gas contribution dominates condensate

$$\langle \bar{\psi}\psi \rangle \approx \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{(\underset{\text{stantons in free gas}}{\text{avg. number of in-}})}_{m^{N_{f}}\chi_{0}V} \cdot \frac{1}{m} = m^{N_{f}-1}\chi_{0}V$$
$$|\lambda_{i}| \ll m$$

Fate of chiral symmetry as $m \rightarrow 0$

- Free IA gas eigenvalues $|\lambda_i| \ll m$ for any quark mass.
- U(1)_A breaking susceptibility χ_π χ_δ =?
 (Zero or nonzero? 10 year old unsettled dispute in the lattice community)

•
$$\chi_{\pi} - \chi_{\delta} \approx \langle \sum_{i} \frac{m^2}{(m^2 + \lambda_i^2)^2} \rangle \approx \underbrace{\underbrace{(avg. number of in-)}_{\text{stantons in free gas}}}_{m^{N_f} \chi_0 V} \cdot \frac{1}{m^2} = m^{N_f - 2} \chi_0 V$$

• Contribution of IA molecules in $m \rightarrow 0$ limit: $|\lambda_i| \gg m$

- For N_f ≤ 2 numerically small (≪ 1% for realistic parameters).
- Contribution to $\langle \bar{\psi} \psi \rangle \propto m$
- Contribution to $\chi_{\pi} \chi_{\delta} \propto m^2$

Conclusions for QCD at $T > T_c$

- Non-interacting degrees of freedom: instantons (+ IA molecules)
- Dirac spectral density has singular peak at zero.
- Chiral symmetry restoration nontrivial (anomaly remains).
- Even though SU(N_f)_A restored, order of the m→0 and V→∞ limit important
- Chiral limit with *N*_f degenerate light quarks:
 - $\langle \bar{\psi}\psi \rangle \approx m^{N_{\rm f}-1}$ agrees with small *m* expansion of the free energy Kanazawa and Yamamoto (2015)

•
$$\chi_{\pi} - \chi_{\delta} \approx m^{N_{\rm f}-2}$$