The role of quark anomalous magnetic moment in magnetized quark matter

William R. Tavares

Theoretical Physics Department - UERJ
The presenting author is a FAPERJ-postdoctoral fellow

September, 2023

Why magnetic fields?

Figure: Wei-Tian Deng and Xu-Guang Huang, Phys. Rev. C 85, 044907 (2012)

- Peripheral Heavy lon Collisions with $e B \sim 10^{19} \mathrm{G}$ for ALICE/(LHC) and $e B \sim 10^{18} \mathrm{G}$ for RHIC/(BNL)
- Quark and Neutron Stars: $e B>10^{16} \mathrm{C}$
- Primordial universe: Electroweak phase transition? eB $\sim 10^{20}$ to $10^{24} \mathrm{G}$

What does LQCD tell us?

G. S. Bali, et al. Phys. Rev. D 86, 071502(R), 2012

Figure: Average quark condensate as a function of the temperature for different values of temperature evaluated in LQCD.

What does LQCD tell us about very strong magnetic fields?

Figure: QCD phase diagram. The end point is located in the range $\left(4 \mathrm{CeV}^{2}, 65 \mathrm{MeV}\right)<\left(e \mathrm{~B}_{\mathrm{E}}, T_{\mathrm{E}}\right)<(9 \mathrm{CeV}, 95 \mathrm{MeV})$.

Why studying quark AMM is important?

physical review d

VOLUME 31, NUMBER 5
1 MARCH 1985

Anomalous magnetic moment of light quarks and dynamical symmetry breaking

$$
\begin{aligned}
& \text { Janardan P. Singh }
\end{aligned}
$$

Department of Physics, Indian Institute of Technology, Kanpur 208 016, India (Received 12 July 1984)
It is shown that in theories in which chiral symmetry breaks dynamically, quarks can have a rather large anomalous magnetic moment. This has been first shown, as an example, in a modified Nambu-Jona-Lasinio model. Next, using light-quark dynamical masses in QCD, derived and used by various authors, the light-quark anomalous magnetic moment has been calculated. This has been done in the one-gluon-exchange approximation using a nonsingular or singular form of the gluon propagator in a consistent way. It has been found that not all forms of quark dynamical masses give sensible results. Finally, some of the phenomenological consequences of the presence of such a term have also been worked out

Anomalous magnetic moment of quarks

Avenida Rovisco Pais, 1096 Lisboa, Portugal (Received 28 April 1998)

In the case of massless current quarks we find that the breaking of chiral symmerty usually triggers the generation of an anomalous magnetic moment for the quarks. We show that the kernel of the Ward identity for the vector vertex yields an important contribution. We compute the anomabous magnetic moment in several
quark models. The results show that it is hard to escape a masurable quark models. The results show that it is hard to escape a measurable anomalous magnetic moment for the quarks in the case of spontaneous chiral symmetry breaking. [S0556-2813(99)00202-2] PACS number(s): $12.39 . \mathrm{Ki}, 12.39 . \mathrm{Fe}, 24.85 .+\mathrm{p}$

Dressed-Quark Anomalous Magnetic Moments

Lei Chang, ${ }^{1}$ Yu-Xin Liu, ${ }^{2}$ and Craig D. Roberts ${ }^{2.3}$

${ }^{1}$ Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
${ }^{2}$ Departiment of Physics and State Key Laboratory of Nuclear Physics and Techatiology, Peking University, Beijing 100871. China ${ }^{3}$ Physics Division, Argoine National Laboratory, Argonne, Ilinois 60439, USA
(Received 17 September 2010; published 16 February 2011)
Perurbation theory predicts that a massless fermion cannot possess a measurable magnetic moment. We explain, however, that the nonperturbative phenomenon of dynamical chiral symmetry breaking

DOE: 101103/PhysRevLett. 106.072001

$$
\text { PACS numbers: } 1238 . \mathrm{Aw}, 11.30 . \mathrm{Rd}, 1238 \mathrm{Lg} .24 .85+\mathrm{p}
$$

What values of quark AMM have been considered?

The spin magnetic moment of the system with quarks up and down with a constant magnetic field is

$$
\begin{equation*}
\vec{\mu}=2(1+\hat{\alpha}) \hat{Q} \hat{\mu_{B}} \vec{s}, \quad \hat{\alpha}=\text { anomalous contribution. } \tag{1}
\end{equation*}
$$

Using $m_{p} \sim 0.938 \mathrm{GeV}, \mu_{N}=\frac{e}{2 m_{p}}$ and some phenomenological relations

$$
\begin{equation*}
\frac{M_{f}}{1+\alpha_{f}}=\frac{\mu_{N}}{\mu_{f}} q_{f} m_{p}, \quad \mu_{u}=\frac{1}{5}\left(4 u_{p}+u_{n}\right), \quad \mu_{d}=\frac{1}{5}\left(4 u_{n}+u_{p}\right) . \tag{2}
\end{equation*}
$$

The set of quark AMM values:

$\kappa_{u}^{[1]}$	$\kappa_{d}^{[1]}$	$\kappa_{u}^{[2]}$	$\kappa_{d}^{[2]}$	$\alpha_{u}^{[1]}$	$\alpha_{d}^{[1]}$	$\alpha_{u}^{[2]}$	$\alpha_{d}^{[2]}$
0.29	0.35	0.0099	0.0797	0.242	0.304	0.006	0.056

Table: Set [1] is for $M_{f}=420 \mathrm{MeV}$ and set [2] for $M_{f}=320 \mathrm{MeV}$. Also $\kappa_{f}=\alpha_{f} / M_{0}$. Sh. Fayazbakhsh, et al. Phys.Rev.D 90 (2014) 10, 105030

SU(2) NJL model with eB and quark AMM

The SU(2) NJL Lagrangian with quark AMM and a constant magnetic field is given by:

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left(i \not \emptyset-\tilde{m}+\frac{1}{2} \hat{a} F^{\mu \nu} \sigma_{\mu \nu}\right) \psi+C\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}, \tag{3}
\end{equation*}
$$

with the current quark masses matrix $\tilde{m}=\operatorname{diag}\left(m_{u}, m_{d}\right)$ in the isospin symmetry approximation, $m_{u}=m_{d}=m$.
The covariant derivative is given by $\partial^{\mu} \rightarrow D^{\mu}=\left(i \partial^{\mu}-Q_{q} A^{\mu}\right)$; the electromagnetic field tensor is defined as $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and the charge matrix $Q_{q}=\operatorname{diag}(2 / 3,-1 / 3) e$. The gauge adopted is $A_{\mu}=\delta_{\mu 2} x_{1} B,\left(\vec{B}=B \hat{e}_{z}\right)$.
The AMM factor is $\hat{a}=\operatorname{diag}\left(a_{u}, a_{d}\right)$ with $a_{f}=q_{f} \alpha_{f} \mu_{B}$. In the one-loop level approximation, the previous quantities are given by

$$
\begin{equation*}
\alpha_{f}=\frac{\alpha_{e} q_{f}^{2}}{2 \pi}, \quad \alpha_{e}=\frac{1}{137}, \quad \mu_{\mathrm{B}}=\frac{e}{2 M} . \tag{4}
\end{equation*}
$$

Some results of quark AMM in the NJL model

Chaudhuri, et al. Phys.Rev.D 99 (2019) 11, 116025

Sh. Fayazbakhsh, et al. Phys.Rev.D 90 (2014) 10, 105030

Some results of quark AMM in the NJL model

(b)

Mamiya Kawaguchi and Mei Huang. Chin.Phys.C 47 (2023) 6, 064103

Form-Factor regularization

The thermodynamical potential regularized with FF is given by

$$
\begin{equation*}
\Omega^{\text {mag }}(M, B)=-N_{c} \sum_{f=u, d}\left|B_{f}\right| \sum_{n=0}^{\infty} \sum_{s= \pm 1} \int_{-\infty}^{\infty} \frac{d p_{3}}{4 \pi^{2}} E_{n, s}^{f} f_{n, s}^{f}, \quad B_{f} \equiv q_{f} B B, \quad s= \pm 1 \tag{5}
\end{equation*}
$$

where $f_{n, s}^{f}$ is the Form-Factor function. There are several possibilites

$$
\begin{align*}
& f_{n, s}^{f}(\Lambda, e B)=\frac{1}{1+\exp \left(\frac{\left(\left(p_{z}^{2}+\left|q_{f} e B\right|\left(2 n+1-s s_{f}\right)\right)^{1 / 2}-\Lambda\right)}{A}\right)} \\
& f_{n, s}^{f}(\Lambda, e B)=\frac{\Lambda^{N}}{\Lambda^{N}+\left(p_{z}^{2}+\left|q_{f} e B\right|\left(2 n+1-s s_{f}\right)\right)^{N / 2}} \tag{6}
\end{align*}
$$

where Λ is the cutoff, N and A are extra parameters and $s_{f}=\operatorname{sign}\left(q_{f}\right)$.

Thermodynamical potential (VMR and $A M M=0$)

The thermodynamical potential in the VMR scheme is given by

$$
\begin{equation*}
\Omega=\frac{(M-m)^{2}}{4 G}+\Omega^{\text {vac }}+\Omega^{\text {field }}+\Omega^{\text {mag }} \tag{7}
\end{equation*}
$$

Assuming the definitions : $B_{f} \equiv\left|q_{f} B\right|$ and $x_{f}=\frac{M_{f}^{2}}{2 B_{f}}$, we have

$$
\begin{align*}
\Omega^{\text {mag }} & =\sum_{f=u, d} \frac{N_{c}}{8 \pi^{2}} \int_{0}^{\infty} \frac{d s}{s^{3}} e^{-s M_{f}^{2}}\left\{\frac{B_{f} s}{\tanh \left(B_{f} s\right)}-1-\frac{1}{3}\left(B_{f} s\right)^{2}\right\}, \tag{8}\\
& =-\sum_{f=u, d} \frac{N_{c} B_{f}^{2}}{2 \pi^{2}}\left[\zeta^{\prime}\left(-1, x_{f}\right)-\frac{1}{2}\left(x_{f}^{2}-x_{f}\right) \log x_{f}+\frac{x_{f}^{2}}{4}-\frac{1}{12}\left(1+\log x_{f}\right)\right] \\
\Omega^{\text {field }} & =-\sum_{f=u, d} \frac{N_{c} B_{f}^{2}}{24 \pi^{2}} \ln \frac{M_{f}^{2}}{\Lambda^{2}} . \quad \text { Avancini et al. Phys.Rev.D } 103(2021) 5,05 \tag{9}
\end{align*}
$$

and $\Omega_{\text {vac }}$ is the vacuum contribution which depends on the regularization scheme.

Thermodynamical potential (MFIR and $A M M=0$)

The thermodynamical potential in the VMR scheme is given by

$$
\begin{equation*}
\Omega=\frac{(M-m)^{2}}{4 G}+\Omega^{\text {vac }}+\Omega^{\text {mag }}, \tag{10}
\end{equation*}
$$

Assuming the definitions : $B_{f} \equiv\left|q_{f} B\right|$ and $x_{f}=\frac{M_{f}^{2}}{2 B_{f}}$, we have

$$
\begin{equation*}
\Omega^{\text {mag }}=-\sum_{f=u, d} \frac{N_{c} B_{f}^{2}}{2 \pi^{2}}\left[\zeta^{\prime}\left(-1, x_{f}\right)-\frac{1}{2}\left(x_{f}^{2}-x_{f}\right) \log x_{f}+\frac{x_{f}^{2}}{4}\right] \tag{11}
\end{equation*}
$$

and $\Omega_{\text {vac }}$ is the vacuum contribution which depends on the regularization scheme.

$$
\text { Avancini et al. Phys.Rev.D103 (2021) 5, } 056009
$$

VMR and MFIR with $A M M=0$

The thermodynamical potential in the VMR scheme is given by

$$
\begin{equation*}
\Omega=\frac{(M-m)^{2}}{4 G}+\Omega^{\text {vac }}+\Omega^{\text {field }}+\Omega^{\text {mag }} \tag{12}
\end{equation*}
$$

The gap equation is given by $\partial \Omega / \partial M=0$. Therefore, we have

$$
\begin{equation*}
\frac{\partial \Omega^{M F I R}}{\partial M} \equiv \frac{\partial \Omega^{V M R}}{\partial M} \rightarrow\langle\bar{\psi} \psi\rangle^{M F I R} \equiv\langle\bar{\psi} \psi\rangle^{V M R} \tag{13}
\end{equation*}
$$

which means

$$
\begin{equation*}
M=m-2 G\langle\bar{\psi} \psi\rangle \tag{14}
\end{equation*}
$$

this equation is true also for the $A M M \neq 0$.

Figure: Average quark condensate as a function of $e B$ with the Fermi-Dirac (top) and Lorentzian (bottom) regularizations. Blue bands are the results with different parameter values.

Thermodynamical Potential with $A M M \neq 0$

The thermodynamic potential of the $\operatorname{SU}(2) \mathrm{NJL}$ model at $T=0$ with quark AMM is given by

$$
\begin{equation*}
\Omega=\frac{(M-m)^{2}}{4 C}+\Omega^{\text {mag }}(M, B), \tag{15}
\end{equation*}
$$

where $\Omega^{\text {mag }}$ is the magnetic contribution given by

$$
\begin{equation*}
\Omega^{\text {mag }}(M, B)=-N_{c} \sum_{f=u, d}\left|B_{f}\right| \sum_{n=0}^{\infty} \sum_{s= \pm 1} \int_{-\infty}^{\infty} \frac{d p_{3}}{4 \pi^{2}} E_{n, s}^{f}, \quad B_{f} \equiv q_{f} e B, \quad s= \pm 1 \tag{16}
\end{equation*}
$$

in which n are the Landau levels and the quark energy dispersion relation is defined as

$$
\begin{equation*}
E_{n, s}^{f}=\sqrt{p_{3}^{2}+\left(M_{n, s}^{f}-s a_{f} B\right)^{2}}, \quad M_{n, s}^{f}=\sqrt{\left|B_{f}\right|\left(2 n+1-s_{f} s\right)+M^{2}} . \tag{17}
\end{equation*}
$$

Tavares , Avancini , Farias , Cardoso ArXiv: 2309.04055 [hep-ph]

Thermodynamical Potential with $A M M \neq 0$

Using the gamma function integral representation, one may write:

$$
\begin{equation*}
\frac{1}{A^{n}}=\frac{1}{\Gamma(n)} \int_{0}^{\infty} d \tau \tau^{n-1} e^{-\tau A} \tag{18}
\end{equation*}
$$

We can rewrite the magnetic part of the thermodynamic potential, Eq. (16) as

$$
\begin{equation*}
\Omega^{\text {mag }}(M, B)=\frac{N_{c}}{8 \pi^{2}} \sum_{f=u, d} \int_{0}^{\infty} \frac{d \tau}{\tau^{3}} e^{-\tau M^{2}} F_{f}(\tau), \tag{19}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
F_{f}(\tau)=e^{-\tau\left(a_{f} B\right)^{2}} \tau\left|B_{f}\right| \sum_{n=0} \sum_{s= \pm 1} e^{-\tau\left(\left|B_{f}\right|\left(2 n+1-s_{f} s\right)-2 s a_{f} B M_{n, s}^{f}\right)} . \tag{20}
\end{equation*}
$$

Tavares , Avancini , Farias , Cardoso ArXiv: 2309.04055 [hep-ph]

Thermodynamical Potential with $A M M \neq 0$

It is possible to rewrite the function $F_{f}(\tau)$ in the following way

$$
\begin{equation*}
F_{f}(\tau)=e^{-\tau\left(a_{f} B\right)^{2}} \tau\left|B_{f}\right|\left[s_{f} \sinh \left(\tau 2 a_{f} B M\right)+F_{f}^{(2)}(\tau)\right] \tag{21}
\end{equation*}
$$

where the function $F^{(2)}(\tau)$ is

$$
\begin{equation*}
F_{f}^{(2)}(\tau)=\sum_{k=0}^{\infty} \frac{\left(2 a_{f} B\right)^{2 k}}{(2 k)!}(-1)^{k} \tau^{2 k} D_{k}(\tau), \tag{22}
\end{equation*}
$$

The function $D_{k}(\tau)$ is given by

$$
\begin{equation*}
D_{k}(\tau)=(-1)^{k}\left(M^{2}\right)^{k} \sum_{n=0}^{k}\binom{k}{n}(-1)^{n}\left(\frac{\left|B_{f}\right|}{M^{2}}\right)^{n} \frac{d^{n}}{d\left(\tau\left|B_{f}\right|\right)^{n}} \operatorname{coth}\left(\left|B_{f}\right| \tau\right) . \tag{23}
\end{equation*}
$$

Mass-Dependent Regularization

Consider the Taylor expansion of the function $F_{f}(\tau)$ around $\tau=0$ up to the order $\mathcal{O}\left(\tau^{2}\right)$ as

$$
\begin{equation*}
F_{f}^{0}(\tau)=1+\left(a_{f} B\right)^{2} \tau+R_{f}\left(B_{f}, M\right) \tau^{2}+\mathcal{O}\left(\tau^{3}\right), \tau \ll 1 \tag{24}
\end{equation*}
$$

where the coefficient of τ^{2} is mass-dependent and given by

$$
\begin{equation*}
R_{f}\left(B_{f}, M\right)=\frac{\left|B_{f}\right|^{2}}{3}-\frac{\left(a_{f} B\right)^{4}}{6}+2\left(a_{f} B\right)^{2} M^{2}+s_{f} 2\left|B_{f}\right|\left(a_{f} B\right) M . \tag{25}
\end{equation*}
$$

To regularize the effective potential, we will apply the VMR prescription

$$
\begin{align*}
\Omega^{\text {mag }}(B, M) & =\left[\Omega^{\text {mag }}(B, M)-\Omega^{V D}(B, M)\right]+\Omega^{V D}(B, M) \\
& \rightarrow \Omega_{R}^{\text {mag }}(B, M)+\Omega^{V M}(B, M) . \tag{26}
\end{align*}
$$

Tavares, Avancini , Farias , Cardoso ArXiv:2309.04055 [hep-ph]

Mass-Dependent Regularization

Assuming:

$$
\begin{equation*}
\Omega^{\text {mag }}(B, M) \rightarrow \Omega_{R}^{\text {mag }}(B, M)+\Omega^{V M}(B, M) \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega^{V D}(B, M)=\frac{N_{c}}{8 \pi^{2}} \sum_{f=u, d} \int_{0}^{\infty} \frac{d \tau}{\tau^{3}} e^{-\tau M^{2}} F_{f}^{0}(\tau) . \\
& \Omega^{V M}(B, M)=\frac{N_{c}}{8 \pi^{2}} \sum_{f=u, d} \int_{\frac{1}{\Lambda^{2}}}^{\infty} \frac{d \tau}{\tau^{3}} e^{-\tau M^{2}} F_{f}^{0}(\tau) . \tag{28}
\end{align*}
$$

What do we know in the $A M M=0$ case?

We have simply, in the $\tau \sim 0$ region

$$
\begin{align*}
F_{f}(\tau) & =\left|B_{f}\right| \tau \operatorname{coth}\left(\left|B_{f}\right| \tau\right) \\
& \sim 1+\frac{\left(\left|B_{f}\right| \tau\right)^{2}}{3}, \quad \tau \ll 1 \tag{29}
\end{align*}
$$

The term proportional to B^{2} is mass-indepedent, and we do not have any additional physics in the gap equation, $\partial \Omega / \partial M=0$.

Mass-Indepedent Regularization

Remembering the function $F_{f}^{(2)}(\tau)$

$$
\begin{align*}
F_{f}^{(2)} & =\sum_{k=0}^{\infty} \sum_{n=0}^{k}\binom{k}{n} \frac{\left(2 a_{f} B \tau M\right)^{2 k}}{(2 k)!}(-1)^{n}\left(\frac{\left|B_{f}\right|}{M^{2}}\right)^{n} \overline{D_{n}}(\tau) \\
& =\operatorname{coth}\left(\left|B_{f}\right| \tau\right)\left[\cosh \left(\alpha_{f}\left|B_{f}\right| \tau\right)+\epsilon \tau \alpha_{f}\left|B_{f}\right| \sinh \left(\alpha\left|B_{f}\right| \tau\right)\right] \\
& =\operatorname{coth}\left(\left|B_{f}\right| \tau\right)\left[\cosh \left(\alpha_{f}\left|B_{f}\right| \tau\right)\right], \quad \epsilon \alpha \rightarrow 0 \tag{30}
\end{align*}
$$

where $\epsilon=\delta M / M_{0}$ represents how much M changes in relation to $M_{0} \equiv M(B=0, T=0)$. We assume $\left|B_{f}\right| / M_{0}^{2} \ll 1$, so the $n=0$ term is dominant.

Mass-indepedent Regularization

It is easy to show that the function $F_{f}(\tau)$ is now given by

$$
F_{f}(\tau)=e^{-\tau\left(a_{f} B\right)^{2}} \tau\left|B_{f}\right|\left[\frac{\cosh \left(\left(\alpha_{f}+1\right)\left|B_{f}\right| \tau\right)}{\sinh \left(\left|B_{f}\right| \tau \mid\right)}\right] .
$$

The thermodynamical potential is then given by

$$
\begin{equation*}
\Omega=\frac{N_{c}}{8 \pi^{2}} \sum_{f} \int_{0}^{\infty} \frac{d \tau}{\tau^{3}} e^{-\tau \mathcal{K}_{0, f}^{2}}\left[\tau\left|B_{f}\right| \frac{\cosh \left(c_{f}\left|B_{f}\right| \tau\right)}{\sinh \left(\left|B_{f}\right| \tau \mid\right)}\right] \tag{31}
\end{equation*}
$$

where we have defined $c_{f}=a_{f}+1$ and $\mathcal{K}_{0, f}=\sqrt{M^{2}+\left(a_{f} B\right)^{2}}$.

Mass-indepedent Regularization

J. Phys. A: Math. Gen., Vol. 11, No. 6, 1978. Printed in Great Britain. © 1978

One-loop effective potential with anomalous moment of the electron

W Dittrich

Institut für Theoretische Physik der Universität Tübingen, Auf der Morgenstelle 14, D-7400 Tubingen 1, West Germany

Received 7 November 1977

Abstract. We investigate the one-loop effective potential in OED by adding a Pauli term in the Green function equation for the electron. A modified Weisskopf-Schwinger Lagrangian is then computed up to order α^{2}

So far we have for the effective Lagrangian

$$
\begin{equation*}
\mathscr{L}[H]=\frac{1}{32 \pi^{2}} \int_{0}^{\infty} \frac{\mathrm{d} s}{s^{3}} \mathrm{e}^{-\mathrm{i} \kappa \mathrm{\delta}^{2} s} \frac{e H s}{\sin (e H s)} 4 \cos (2 m \mu H s)+\mathrm{CT} \tag{2.9}
\end{equation*}
$$

Mass-indepedent Regularization

It is easy to show that the function $F_{f}(\tau)$ is now given by

$$
F_{f}(\tau)=e^{-\tau\left(a_{f} B\right)^{2}} \tau\left|B_{f}\right|\left[\frac{\cosh \left(\left(\alpha_{f}+1\right)\left|B_{f}\right| \tau\right)}{\sinh \left(\left|B_{f}\right| \tau \mid\right)}\right] .
$$

The expansion of $F_{f}^{0}(\tau)$ is then, given by

$$
\begin{equation*}
F_{f}^{0}(\tau)=1+\frac{\left(B_{f} \tau\right)^{2}}{6}\left(3 c_{f}^{2}-1\right)+\mathcal{O}\left(\tau^{3}\right) \tag{32}
\end{equation*}
$$

which is a mass-independent contribution.

Parameters

The parameter set is given by:

Λ	G	m	$\langle\bar{u} u\rangle^{1 / 3}$	f_{π}	m_{π}
591.6 MeV	$2.404 / \Lambda^{2}$	5.7233 MeV	-241 MeV	92.4 MeV	138 MeV

Table: Parameters of the 3D sharp cutoff Ref. [Farias, R.L.S, Tavares, W.R. et al. Eur. Phys. J. C (2022) 82:674].

Λ	G	m	$\langle\bar{u} u\rangle^{1 / 3}$	f_{π}	m_{π}
886.62 MeV	$4.001 / \Lambda^{2}$	7.383 MeV	-220 MeV	92.4 MeV	138 MeV

Table: Parameters of the PT Regularization Ref. [Tavares , Avancini , Farias, Cardoso ArXiv: 2309.04055 [hep-ph].

Obs: The values of κ_{f} are given in dimensions of $[\mathrm{GeV}]^{-1}$.

nVMR vs VMR results: $e B \neq 0$ with $A M M \neq 0$

Farias, R.L.S, Tavares, W.R. et al. Eur. Phys. J. C (2022) 82:674

nVMR vs VMR results: $e B \neq 0$ with $A M M \neq 0$

Chaudhuri, et al. Phys.Rev.D 99 (2019) 11, 116025

Farias, R.L.S, Tavares, W.R. et al. Eur. Phys. J. C (2022) 82:674

Thermodynamical potential

Figure: Left: Thermodynamical potential with MI regularization. Right: Thermodynamical potential with MD regularization.

Summary and conclusions

Summary:

- We evaluate the thermodynamical potential with $\mathrm{AMM} \neq 0$ and have compared our results, in the VMR scheme, for effective quark masses and thermodyniamical potential with non-MFIR results.
- We observe that MD terms in the ultraviolet limite of the model induce possible artificial first-order phase transitions, IMC at $T \sim 0$ and several oscillations in physical quantities.
- Our results are valid for regions where $e B<M_{0}^{2}$, which is compatible with the ideias behind the Schwinger ansatz.

Future perspectives:

- Evaluation of quark AMM as a function of temperature and magnetic fields in the VMR (or MFIR) scheme.
- Thermodynamics, deconfinement transition and so on;

Thanks for your attention!

Collaborators:

- Prof. Dr. Sidney S. Avancini (UFSC)
- Prof. Dr. Ricardo L. S. Farias (UFSM)
- Rafael Pacheco (Ph.D student in UFSC)
- Rodrigo M. Nunes (Ph.D student in UFSM)

