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First Section Second Section Results

Why magnetic fields?

Figure: Wei-Tian Deng and Xu-Guang Huang, Phys. Rev. C 85, 044907 (2012)

I Peripheral Heavy Ion Collisions with eB ∼ 1019 G for ALICE/(LHC) and eB ∼ 1018 G for
RHIC/(BNL)

I Quark and Neutron Stars: eB > 1016G
I Primordial universe: Electroweak phase transition? eB ∼ 1020 to 1024G
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What does LQCD tell us?

Figure: Average quark condensate as a function of the temperature for different values of temperature
evaluated in LQCD.
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What does LQCD tell us about very strong magnetic fields?

Figure: QCD phase diagram. The end point is located in the range
(4GeV2, 65MeV) < (eBE, TE) < (9GeV, 95MeV) .
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Why studying quark AMM is important?
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What values of quark AMM have been considered?
The spin magnetic moment of the system with quarks up and down with a constant magnetic
field is

~µ = 2(1 + α̂)Q̂µ̂B~s, α̂ = anomalous contribution. (1)

Using mp ∼ 0.938 GeV,µN = e
2mp

and some phenomenological relations

Mf

1 + αf
=
µN

µf
qf mp, µu =

1
5

(4up + un), µd =
1
5

(4un + up). (2)

The set of quark AMM values:

κ
[1]
u κ

[1]
d κ

[2]
u κ

[2]
d α

[1]
u α

[1]
d α

[2]
u α

[2]
d

0.29 0.35 0.0099 0.0797 0.242 0.304 0.006 0.056

Table: Set [1] is for Mf = 420 MeV and set [2] for Mf = 320 MeV. Alsoκf = αf /M0.
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SU(2) NJL model with eB and quark AMM
The SU(2) NJL Lagrangian with quark AMM and a constant magnetic field is given by:

L = ψ

(
i/D− m̃ +

1
2

âFµνσµν
)
ψ + G

[
(ψψ)2 + (ψiγ5

−→τ ψ)2]− 1
4

FµνFµν , (3)

with the current quark masses matrix m̃ =diag(mu,md) in the isospin symmetry
approximation, mu = md = m.
The covariant derivative is given by ∂µ → Dµ = (i∂µ − QqAµ); the electromagnetic field
tensor is defined as Fµν = ∂µAν − ∂νAµ and the charge matrix Qq =diag(2/3,−1/3)e. The
gauge adopted is Aµ = δµ2x1B, (

−→
B = Bêz).

The AMM factor is â=diag(au, ad) with af = qfαfµB. In the one-loop level approximation, the
previous quantities are given by

αf =
αeq2

f

2π
, αe =

1
137

, µB =
e

2M
. (4)
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Some results of quark AMM in the NJL model
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Chaudhuri, et al. Phys.Rev.D 99 (2019) 11, 116025

Sh. Fayazbakhsh, et al. Phys.Rev.D 90 (2014) 10, 105030
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Some results of quark AMM in the NJL model
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Mamiya Kawaguchi and Mei Huang. Chin.Phys.C 47 (2023) 6, 064103
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Form-Factor regularization
The thermodynamical potential regularized with FF is given by

Ωmag(M, B) = −Nc
∑

f =u,d

|Bf |
∞∑

n=0

∑
s=±1

∫ ∞
−∞

dp3

4π2 Ef
n,sf f

n,s , Bf ≡ qf eB, s = ±1 (5)

where f f
n,s is the Form-Factor function. There are several possibilites

f f
n,s(Λ, eB) =

1

1 + exp
(

((p2
z +|qf eB|(2n+1−ssf ))1/2−Λ)

A

)
f f

n,s(Λ, eB) =
ΛN

ΛN + (p2
z + |qf eB|(2n + 1− ssf ))N/2 (6)

where Λ is the cutoff, N and A are extra parameters and sf = sign(qf ).
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Thermodynamical potential (VMR and AMM= 0)
The thermodynamical potential in the VMR scheme is given by

Ω =
(M− m)2

4G
+ Ωvac + Ωfield + Ωmag, (7)

Assuming the definitions : Bf ≡ |qf B| and xf =
M2

f
2Bf

, we have

Ωmag =
∑

f =u,d

Nc

8π2

∫ ∞
0

ds
s3 e−sM2

f

{
Bf s

tanh(Bf s)
− 1− 1

3
(Bf s)2

}
, (8)

= −
∑

f =u,d

NcB2
f

2π2

[
ζ ′(−1, xf )− 1

2
(x2

f − xf ) log xf +
x2

f

4
− 1

12
(1 + log xf )

]

Ωfield = −
∑

f =u,d

NcB2
f

24π2 ln
M2

f

Λ2 . (9)

and Ωvac is the vacuum contribution which depends on the regularization scheme.
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Thermodynamical potential (MFIR and AMM= 0)

The thermodynamical potential in the VMR scheme is given by

Ω =
(M− m)2

4G
+ Ωvac + Ωmag, (10)

Assuming the definitions : Bf ≡ |qf B| and xf =
M2

f
2Bf

, we have

Ωmag = −
∑

f =u,d

NcB2
f

2π2

[
ζ ′(−1, xf )− 1

2
(x2

f − xf ) log xf +
x2

f

4

]
(11)

and Ωvac is the vacuum contribution which depends on the regularization scheme.
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VMR and MFIR with AMM= 0
The thermodynamical potential in the VMR scheme is given by

Ω =
(M− m)2

4G
+ Ωvac + Ωfield + Ωmag, (12)

The gap equation is given by ∂Ω/∂M = 0. Therefore, we have

∂ΩMFIR

∂M
≡ ∂ΩVMR

∂M
→ 〈ψ̄ψ〉MFIR ≡ 〈ψ̄ψ〉VMR (13)

which means

M = m− 2G〈ψ̄ψ〉 (14)

this equation is true also for the AMM 6= 0.
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(MFIR/VMR) vs (nMFIR)

Figure: Average quark condensate as a function of eB with the Fermi-Dirac (top) and Lorentzian (bottom)
regularizations. Blue bands are the results with different parameter values.
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Avancini, Farias, Scoccola,Tavares, Phys. Rev. D 99, 116002 (2019)
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Thermodynamical Potential with AMM6= 0
The thermodynamic potential of the SU(2) NJL model at T = 0 with quark AMM is given by

Ω =
(M− m)2

4G
+ Ωmag(M, B), (15)

where Ωmag is the magnetic contribution given by

Ωmag(M, B) = −Nc
∑

f =u,d

|Bf |
∞∑

n=0

∑
s=±1

∫ ∞
−∞

dp3

4π2 Ef
n,s , Bf ≡ qf eB, s = ±1 (16)

in which n are the Landau levels and the quark energy dispersion relation is defined as

Ef
n,s =

√
p2

3 + (Mf
n,s − saf B)2, Mf

n,s =
√
|Bf |(2n + 1− sf s) + M2. (17)
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Thermodynamical Potential with AMM6= 0
Using the gamma function integral representation, one may write:

1
An =

1
Γ(n)

∫ ∞
0

dττ n−1e−τA . (18)

We can rewrite the magnetic part of the thermodynamic potential, Eq. (16) as

Ωmag(M, B) =
Nc

8π2

∑
f =u,d

∫ ∞
0

dτ
τ 3 e−τM2

Ff (τ), (19)

where we have defined

Ff (τ) = e−τ(af B)2
τ |Bf |

∑
n=0

∑
s=±1

e−τ(|Bf |(2n+1−sf s)−2saf BMf
n,s). (20)
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Thermodynamical Potential with AMM6= 0
It is possible to rewrite the function Ff (τ) in the following way

Ff (τ) = e−τ(af B)2
τ |Bf |

[
sf sinh(τ2af BM) + F(2)

f (τ)
]

(21)

where the function F(2)(τ) is

F(2)
f (τ) =

∞∑
k=0

(2af B)2k

(2k)!
(−1)kτ 2kDk(τ), (22)

The function Dk(τ) is given by

Dk(τ) = (−1)k(M2)k
k∑

n=0

(
k
n

)
(−1)n

(
|Bf |
M2

)n dn

d(τ |Bf |)n coth(|Bf |τ). (23)
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Mass-Dependent Regularization
Consider the Taylor expansion of the function Ff (τ) around τ = 0 up to the orderO(τ 2) as

F0
f (τ) = 1 + (af B)2τ + Rf (Bf ,M)τ 2 +O(τ 3), τ � 1, (24)

where the coefficient of τ 2 is mass-dependent and given by

Rf (Bf ,M) =
|Bf |2

3
− (af B)4

6
+ 2(af B)2M2 + sf 2|Bf |(af B)M. (25)

To regularize the effective potential, we will apply the VMR prescription

Ωmag(B,M) = [Ωmag(B,M)− ΩVD(B,M)] + ΩVD(B,M)

→ Ωmag
R (B,M) + ΩVM(B,M). (26)
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Mass-Dependent Regularization

Assuming:

Ωmag(B,M) → Ωmag
R (B,M) + ΩVM(B,M), (27)

where

ΩVD(B,M) =
Nc

8π2

∑
f =u,d

∫ ∞
0

dτ
τ 3 e−τM2

F0
f (τ).

ΩVM(B,M) =
Nc

8π2

∑
f =u,d

∫ ∞
1

Λ2

dτ
τ 3 e−τM2

F0
f (τ). (28)

19 / 30
Tavares , Avancini , Farias , Cardoso ArXiv: 2309.04055 [hep-ph]
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What do we know in the AMM= 0 case?

We have simply, in the τ ∼ 0 region

Ff (τ) = |Bf |τ coth(|Bf |τ)

∼ 1 +
(|Bf |τ)2

3
, τ � 1. (29)

The term proportional to B2 is mass-indepedent, and we do not have any additional physics in
the gap equation, ∂Ω/∂M = 0 .
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Mass-Indepedent Regularization

Remembering the function F(2)
f (τ)

F(2)
f =

∞∑
k=0

k∑
n=0

(
k
n

)
(2af BτM)2k

(2k)!
(−1)n

(
|Bf |
M2

)n

D̄n(τ)

= coth(|Bf |τ)[cosh(αf |Bf |τ) + εταf |Bf | sinh(α|Bf |τ)]

= coth(|Bf |τ)[cosh(αf |Bf |τ)], εα→ 0 (30)

where ε = δM/M0 represents how much M changes in relation to M0 ≡ M(B = 0, T = 0). We
assume |Bf |/M2

0 � 1, so the n = 0 term is dominant.
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Mass-indepedent Regularization

It is easy to show that the function Ff (τ) is now given by

Ff (τ) = e−τ(af B)2
τ |Bf |

[
cosh((αf + 1)|Bf |τ)

sinh(|Bf |τ |)

]
.

The thermodynamical potential is then given by

Ω =
Nc

8π2

∑
f

∫ ∞
0

dτ
τ 3 e−τK

2
0,f

[
τ |Bf |

cosh(cf |Bf |τ)

sinh(|Bf |τ |)

]
,

(31)

where we have defined cf = af + 1 andK0,f =
√

M2 + (af B)2.
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Mass-indepedent Regularization
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Mass-indepedent Regularization

It is easy to show that the function Ff (τ) is now given by

Ff (τ) = e−τ(af B)2
τ |Bf |

[
cosh((αf + 1)|Bf |τ)

sinh(|Bf |τ |)

]
.

The expansion of F0
f (τ) is then, given by

F0
f (τ) = 1 +

(Bf τ)2

6
(

3c2
f − 1

)
+O(τ 3). (32)

which is a mass-independent contribution.
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Parameters
The parameter set is given by:

Λ G m 〈uu〉1/3 fπ mπ

591.6 MeV 2.404/Λ2 5.7233 MeV −241 MeV 92.4 MeV 138 MeV

Table: Parameters of the 3D sharp cutoff Ref. [Farias, R.L.S, Tavares, W.R. et al. Eur. Phys. J. C (2022)
82:674 ].

Λ G m 〈uu〉1/3 fπ mπ

886.62 MeV 4.001/Λ2 7.383 MeV −220 MeV 92.4 MeV 138 MeV

Table: Parameters of the PT Regularization Ref. [Tavares , Avancini , Farias , Cardoso ArXiv: 2309.04055
[hep-ph].

Obs: The values ofκf are given in dimensions of [GeV]−1 .
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nVMR vs VMR results: eB 6= 0 with AMM6= 0
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nVMR vs VMR results: eB 6= 0 with AMM6= 0

κ=0
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κ [2]≠ 0
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Thermodynamical potential
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Figure: Left: Thermodynamical potential with MI regularization. Right: Thermodynamical potential
with MD regularization.
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Summary and conclusions
Summary:
I We evaluate the thermodynamical potential with AMM6= 0 and have compared our

results, in the VMR scheme, for effective quark masses and thermodyniamical potential
with non-MFIR results.

I We observe that MD terms in the ultraviolet limite of the model induce possible artificial
first-order phase transitions, IMC at T ∼ 0 and several oscillations in physical quantities.

I Our results are valid for regions where eB < M2
0, which is compatible with the ideias

behind the Schwinger ansatz.
Future perspectives:
I Evaluation of quark AMM as a function of temperature and magnetic fields in the VMR (or

MFIR) scheme.
I Thermodynamics, deconfinement transition and so on;
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Thanks for your attention!
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I Rafael Pacheco (Ph.D student in UFSC)
I Rodrigo M. Nunes (Ph.D student in UFSM)
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