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Introduction
▶ QCD phase diagram

▶ Finite isospin chemical potential µI - no sign problem
▶ Strong magnetic field B - no sign problem

1
1D’Elia et al ’22
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Magnetic catalysis at T = 0

▶ The magnitude of a condensate or order parameter is enhanced by the presence of an external
magnetic field B if the condensate is already present for zero magnetic field 2

▶ Order parameter either fundamental ⟨ϕ⟩ (Higgs) or composite ⟨ψ̄ψ⟩ (quark condensate)

▶ An external magnetic field induces symmetry breaking and the appearence of a condensate when the
symmetry is intact for B = 0

▶ Dynamical symmetry breaking by a magnetic field 3

▶ Operators ϕ and ψ̄ψ are singlets under U(1) gauge transformations, e.g. neutral Higgs in SM or σ in
QM model

2Klevansky and Lemmer ’89, Suganuma and Tatsumi ’91, Klimenko ’92, Gusynin et al ’94, Ebert and Klimenko ’00
3Klimenko ’92
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Magnetic catalysis at T = 0
▶ NJL model

L = iΨ̄γµDµΨ+
1

2
G

[
(Ψ̄Ψ)2 + (Ψ̄iγ5Ψ)2

]
,

M = −G⟨Ψ̄Ψ⟩

▶ Mean-field effective potential and gap equation

V0+1 =
M2

2G
− 2

∫
d4p

(2π)4
log

[
p2 +M2

]
,

M

4G
= M

∫
d4p

(2π)4
1

p2 +M2
,

M

[
4π2

G
−M2 + Λ2 log

Λ2

M2

]
= 0 .

▶ M = 0 always a solution. For G > Gc = 4π2

Λ2 also nontrivial solution
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Magnetic catalysis at T = 0
▶ Constant magnetic field B changes spectrum to

E2
n = p2z +M2 + |qB|(2n+ 1− s)

▶ Gap equation

1

2G
=

|qB|
2π

∑
s=±1

∞∑
n=0

∫
d2p

(2π)2
1

p20 + E2
n

,

0 =
4π2

G
− Λ2 +M2 log

Λ2

M2
− 2|qB|

[
ζ1,0(0, x) + x−

1

2
(2x− 1) log x

]
,

x =
M2

2|qB|

▶ Solution for G < Gc

M2 =
|qB|
π

exp

[
−

1

|qB|

(
4π2

G
− Λ2

)]
▶ Dynamical symmetry breaking
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Dimensional reduction?

▶ E2
n = p2z +M2 + |qB|(2n+ 1− s)

▶ Decoupling of heavy modes in for large fields. LLL approximation

M2 = Λ2 exp

[
−

4π2

G|qB|

]
▶ For very strong fields, the system undergoes DR, d→ d− 2

▶ Not in disagreement with Coleman-Weinberg theorem

▶ The functional form of the gap equation is as in BCS theory and the nonlinear sigma model in 1+1
dimensions.

▶ For weak fields, this picture is incorrect
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Magnetic catalysis at T = 0

▶ Magnetic catalysis in models (QM and NJl), χPT, and on the lattice 4
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▶ Mean-field calculations involve functional determinants and Hurwitz Zeta-functions.

▶ Magnetic catalysis also beyond mean field

4Bali et al ’12, Lenz et al ’23
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Lattice calculations
▶ Partition function and quark condensate 5

Z(B) =

∫
dAµe

−Sg det(D/(B) +m) ,

⟨Ψ̄Ψ⟩ =
∂

∂m
logZ(B) =

1

Z(B)

∫
dAµe

−Sg det(D/(B) +m)Tr(D/(B) +m)−1 .

▶ Expansion around B = 0

⟨Ψ̄Ψ⟩val =
1

Z(0)

∫
dAµe

−Sg det(D/(0) +m)Tr(D/(B) +m)−1 ,

⟨Ψ̄Ψ⟩sea =
1

Z(B)

∫
dAµe

−Sg det(D/(B) +m)Tr(D/(0) +m)−1 .

▶ In models, the functional determinant is reminiscent of valence effect. Sea effect has no meaning

5Bruckmann ’12
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Lattice calculations

⟨Ψ̄Ψ⟩val = ⟨Tr(D/(B) +m)−1⟩0 ,

⟨Ψ̄Ψ⟩ =
〈
e−∆Sf (B) Tr(D/(B) +m)

〉
0
/
〈
e−∆Sf (B)

〉
0
,

∆Sf (B) = log det(D/(B) +m)− log det(D/(0) +m) .

▶ Can these contributions be disentangled? Yes, up to |eB| = (500MeV)2 6
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6D’Elia and Negro ’11
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Lattice calculations
⟨Ψ̄Ψ⟩val = ⟨Tr(D/(B) +m)−1⟩0 ,

▶ Valence effect and the Banks-Casher relations 7

7Bruckmann ’13
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Magnetic catalysis at finite temperature
▶ Expect Tc to increase with magnetic field
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▶ Qualitatively same behavior in all models, also beyond mean field 8

8JOA, Naylor, and Tranberg ’15, Lenz et al ’23
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Inverse magnetic catalysis at finite temperature 9

▶ Two (slightly) different meanings

▶ A condensate, for example ⟨Ψ̄Ψ⟩, decreases with the magnetic field at a fixed temperature
▶ The transition temperature itself is a decreasing function of the magnetic field
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9D’Elia et al ’18
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Inverse magnetic catalysis at finite temperature 10
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10Bruckmann et al ’13, D’Elia et al ’18
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Improvement of models

▶ B-dependent Polyakov-loop potential

▶ B and T -dependent coupling G

▶ B-dependent coupling from B-dependent masses at T = 0 11
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11Endrodi and Marko ’20
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Conclusion and Outlook

▶ Magnetic catalysis at T = 0 is robust

▶ Magnetic catalysis at finite temperature in systems without gauge fields also seems to be robust

▶ Tc decreasing as a function of eB for all pion masses

▶ Inverse magnetic catalysis for small pion masses

▶ Deconfinement catalysis?

▶ Models fail - probably due lack of sea effect
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