CHIRAL EFT CALCULATIONS OF PROTON STRUCTURE EFFECTS IN (MUONIC) HYDROGEN

Franziska Hagelstein, AEC Bern in collaboration with Vadim Lensky & Vladimir Pascalutsa, JGU Uni Mainz

Outline

- Proton-polarizability effects in the hyperfine splitting of hydrogen and muonic hydrogen
 - pion-nucleon loops (LO ChPT)
 - Δ-exchange (NLO)
- * Zemach radius extractions

N

Compton scattering (CS):

N

cross section:

photon energy and virtuality: ν , Q^2 Bjorken variable: $x = Q^2/2M\nu$ $\tau = Q^2/4M^2$ proton structure functions: $f_1(x, Q^2), f_2(x, Q^2), g_1(x, Q^2), g_2(x, Q^2)$

Proton Structure in e-p Scattering

N

photoabsorption cross section:

N = Bc

elastic

Compton scattering (CS):

photon energy and virtuality: ν , Q^2 Bjorken variable: $x = Q^2/2M\nu$ $\tau = Q^2/4M^2$ proton structure functions: $f_1(x, Q^2), f_2(x, Q^2), g_1(x, Q^2), g_2(x, Q^2)$

elastic structure functions: Sachs form factors: G_E , G_M Dirac & Pauli form factors: F_1 , F_2

$$\begin{aligned} f_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, G_M^2(Q^2) \, \delta(1-x) \\ f_2^{\text{el}}(x,Q^2) &= \frac{1}{1+\tau} \left[G_E^2(Q^2) + \tau G_M^2(Q^2) \right] \delta(1-x) \\ g_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, F_1(Q^2) \, G_M(Q^2) \, \delta(1-x) \\ g_2^{\text{el}}(x,Q^2) &= -\frac{\tau}{2} \, F_2(Q^2) \, G_M(Q^2) \, \delta(1-x) \end{aligned}$$

Proton Structure in e-p Scattering

photoabsorption cross section:

 γ^* elastic N

Compton scattering (CS):

photon energy and virtuality: ν , Q^2 Bjorken variable: $x = Q^2/2M\nu$ $\tau = Q^2/4M^2$

proton polarizabilities: $\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} \mathrm{d}x \, x^2 \big[g_1 + g_2\big](x, Q^2)$ proton structure functions: $f_1(x, Q^2), f_2(x, Q^2), g_1(x, Q^2), g_2(x, Q^2)$

elastic structure functions: Sachs form factors: G_E , G_M Dirac & Pauli form factors: F_1 , F_2

$$\begin{aligned} f_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, G_M^2(Q^2) \, \delta(1-x) \\ f_2^{\text{el}}(x,Q^2) &= \frac{1}{1+\tau} \left[G_E^2(Q^2) + \tau G_M^2(Q^2) \right] \delta(1-x) \\ g_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, F_1(Q^2) \, G_M(Q^2) \, \delta(1-x) \\ g_2^{\text{el}}(x,Q^2) &= -\frac{\tau}{2} \, F_2(Q^2) \, G_M(Q^2) \, \delta(1-x) \end{aligned}$$

Proton Structure in e-p Scattering

photoabsorption cross section:

Compton scattering (CS):

photon energy and virtuality: ν , Q^2 Bjorken variable: $x = Q^2/2M\nu$ $\tau = Q^2/4M^2$

proton polarizabilities: $\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} \mathrm{d}x \, x^2 \left[g_1 + g_2\right](x, Q^2)$ proton structure functions:

$$f_1(x, Q^2), f_2(x, Q^2),$$

elastic

Hyperfine splitting (HFS)

 $g_1(x,Q^2), g_2(x,Q^2)$

elastic structure functions: Sachs form factors: G_E , G_M Dirac & Pauli form factors: F_1 , F_2

$$\begin{aligned} f_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, G_M^2(Q^2) \, \delta(1-x) \\ f_2^{\text{el}}(x,Q^2) &= \frac{1}{1+\tau} \left[G_E^2(Q^2) + \tau G_M^2(Q^2) \right] \delta(1-x) \\ g_1^{\text{el}}(x,Q^2) &= \frac{1}{2} \, F_1(Q^2) \, G_M(Q^2) \, \delta(1-x) \\ g_2^{\text{el}}(x,Q^2) &= -\frac{\tau}{2} \, F_2(Q^2) \, G_M(Q^2) \, \delta(1-x) \end{aligned}$$

Structure Effects through 2y

proton structure effects at subleading orders arise through multi-photon processes

" "blob" corresponds to forward doubly-virtual Compton scattering (VVCS):

$$\begin{split} T^{\mu\nu}(q,p) &= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \overline{T_1(\nu,Q^2)} + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} \, q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} \, q^{\nu} \right) \overline{T_2(\nu,Q^2)} \\ &- \frac{1}{M} \gamma^{\mu\nu\alpha} q_{\alpha} \overline{S_1(\nu,Q^2)} - \frac{1}{M^2} \left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha} \right) \overline{S_2(\nu,Q^2)} \end{split}$$

ECT* Workshop "A Hyperfine View", 05.07.2018

Ground-State HFS

1S HFS in electronic hydrogen

- measurements of the 1S HFS in muonic hydrogen planned by the CREMA, FAMU and J-PARC / Riken-RAL collaborations
- Zemach radius contains information about both electric and magnetic distributions → can help to *pin down the magnetic properties* of the proton

2γ in HFS

$$\frac{E_{\rm HFS}(nS)}{E_F(nS)} = \frac{4m}{1+\kappa} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{1}{Q^4 - 4m^2\nu^2} \left\{ \frac{\left(2Q^2 - \nu^2\right)}{Q^2} S_1(\nu, Q^2) + \frac{3\nu}{M} S_2(\nu, Q^2) \right\}$$

with $u_{
m el} = Q^2/2M$

$$S_{1}(\nu,Q^{2}) = S_{1}^{\text{Born}}(\nu,Q^{2}) + \frac{2\pi\alpha}{M}F_{2}^{2}(Q^{2}) + \frac{16\pi\alpha M}{Q^{2}}\int_{0}^{x_{0}} dx \frac{g_{1}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \Delta_{1} - \Delta_{1}$$

$$\nu S_{2}(\nu,Q^{2}) = \nu S_{2}^{\text{Born}}(\nu,Q^{2}) + \frac{64\pi\alpha M^{4}\nu^{2}}{Q^{6}}\int_{0}^{x_{0}} dx \frac{x^{2}g_{2}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \Delta_{2}$$

using dispersion relation & optical theorem

* (non-Born) polarizability + (Born) elastic 2γ contributions

* S₁ and S₂ fulfil unsubtracted dispersion relations

Polarizability Effect on the HFS

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2 \right] & \text{with } v = \sqrt{1+1/\tau_l}, v_l = \sqrt{1+1/\tau_l}, \tau_l = Q^2/4m^2 \text{ and } \tau = Q^2/4M^2 \\ \Delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\frac{5+4v_l}{(v_l+1)^2} \left[4I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x,Q^2) \right. \\ & \times \left\{ \frac{1}{(v_l+\sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})(1+v_l)} \left[4 + \frac{1}{1+\sqrt{1+x^2\tau^{-1}}} + \frac{1}{v_l+1} \right] \right\} \right) \\ \Delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x,Q^2) \left\{ \frac{1}{v_l+\sqrt{1+x^2\tau^{-1}}} - \frac{1}{v_l+1} \right\} \end{split}$$

$$I_1(Q^2) = \frac{2M^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$$
$$I_1^{\text{non-pol}}(Q^2) = I_A^{\text{non-pol}}(Q^2) = -\frac{1}{4}F_2^2(Q^2)$$

I₁(Q²) is not a pure polarizability

- proton-polarizability effect on the HFS is completely constrained by empirical information
- a ChPT calculation will put the reliability of dispersive calculations (and ChPT) to the test

wave function at the origin

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

$$\frac{\text{dispersion relation}}{\& \text{ optical theorem:}} \quad T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 \mathrm{d}x \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+} \\ T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$

* two approaches: model-independent <u>ChPT</u> and data-driven <u>dispersive calculations</u>

wave function at the origin

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

$$\frac{\text{dispersion relation}}{\text{\& optical theorem:}} \quad T_1(\nu, Q^2) = \overline{T_1(0, Q^2)} + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 \mathrm{d}x \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+} \\ T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$

* two approaches: model-independent <u>ChPT</u> and data-driven <u>dispersive calculations</u>

> **Caution:** in the dispersive approach the T₁(0,Q²) subtraction function is modelled!

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2) / Q^2 = 4\pi \beta_{M1}$$

modelled Q² behavior: $\overline{T}_1(0,Q^2) = 4\pi\beta_{M1}Q^2/(1+Q^2/\Lambda^2)^4$

 BChPT result is in good agreement with dispersive calculations

Disp. Rel. (Pachucki '99) (Martynenko '06) (Carlson-Vanderhaeghen	'11)			· · · · · · · ·		· · · · · ·	
Disp. Rel. + ΗΒχΡΤ (Birse-McGovern '12)					⊢ +	4	
Finite-Energy SR (Gorchtein et al. '13)			ŀ	+			
HBχPT LO (Nevado-Pineda '08)		ŀ	+		1		
HBχPT NLO (Peset-Pineda '14)		+					
<mark>ΒχΡΤ LO</mark> (Alarcon et al. '14)					⊢ +		
<mark>BχPT LO+∆</mark> (Hagelstein et al. '18)					F	+1	
-35	-30	-25	-20	-15	-10	-5	0
		ΔE ^{pol} [μeV]					

 BChPT result is in good agreement with dispersive calculations

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

* LO BChPT prediction:

 $E_{\rm LS}^{\rm (LO) \, pol.}(\mu {\rm H}) = 8^{+3}_{-1} \, \mu {\rm eV}$

 BChPT result is in good agreement with dispersive calculations

* LO BChPT prediction:

 $E_{\rm LS}^{\rm (LO) \, pol.}(\mu {\rm H}) = 8^{+3}_{-1} \, \mu {\rm eV}$

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

* LO + Δ prediction:

 $\Delta E^{(\text{LO}+\Delta) \text{ pol.}}(2S, \mu \text{H}) = 7.3^{+2.7}_{-1.5} \,\mu\text{eV}$

V. Lensky, FH, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 97 (2018) 074012

Chiral Dynamics (LO)

$$\begin{split} E_{\rm HFS}^{\rm \langle LO\rangle \, pol.}(2S,{\rm H}) &= [0.04 + 0.05] \, \, {\rm peV} \\ &\approx 0.09(20) \, {\rm peV} \\ E_{\rm HFS}^{\rm \langle LO\rangle \, pol.}(2S,\mu{\rm H}) &= [0.65 + 0.20] \, \, \mu{\rm eV} \\ &\approx 0.85(1.08) \, \mu{\rm eV} \end{split}$$

ECT* Workshop "A Hyperfine View", 05.07.2018

High-Energy Contributions

* contribution from beyond the scale at which ChPT as an effective theory is safely applicable ($Q_{max} > m_{\rho} = 775$ MeV) is too large especially for Δ_1 , but also for Δ_2

Comparison of Lamb Shift and HFS

* 2γ master formulae for Lamb shift and HFS:

 $\Delta E^{\rm TPE}(nS) = 8\pi\alpha m \,\phi_n^2 \, \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}q}{(2\pi)^3} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

$$\frac{E_{\rm HFS}(nS)}{E_F(nS)} = \frac{4m}{1+\kappa} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{1}{Q^4 - 4m^2\nu^2} \left\{ \frac{\left(2Q^2 - \nu^2\right)}{Q^2} S_1(\nu, Q^2) + \frac{3\nu}{M} S_2(\nu, Q^2) \right\}$$

symmetric and antisymmetric VVCS tensors:

$$T_{S}^{\mu\nu}(q,p) = -g^{\mu\nu}T_{1}(\nu,Q^{2}) + \frac{p^{\mu}p^{\nu}}{M^{2}}T_{2}(\nu,Q^{2})$$
$$T_{A}^{\mu\nu}(q,p) = -\frac{1}{M}\gamma^{\mu\nu\alpha}q_{\alpha}S_{1}(\nu,Q^{2}) + \frac{Q^{2}}{M^{2}}\gamma^{\mu\nu}S_{2}(\nu,Q^{2})$$

Lamb shift

HFS

HFS in terms of σ_{LT} and σ_{TT}

* decomposition into Δ_{LT} and Δ_{TT} is more reasonable because it receives much smaller contributions from above $Q_{max} > m_{\rho} = 775$ MeV

$$\begin{split} \Delta_{\text{pol.}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_{LT} + \Delta_{TT} \right] \\ \Delta_{LT} &= \frac{4M}{\alpha \pi^2} \frac{x^2}{Q^2} \frac{1}{v_l + \sqrt{1+x^2\tau^{-1}}} \frac{1}{x^2 + \tau} \\ &\times \left[1 - \frac{1}{(1+v_l)(1+\sqrt{1+x^2\tau^{-1}})} \right] \sigma_{LT}(x,Q^2) \\ \Delta_{TT} &= \frac{4M^2}{\alpha \pi^2} \frac{x}{Q^3} \frac{1}{1+v_l} \left[\frac{2\tau}{x^2 + \tau} \right] \\ &+ \frac{1}{(v_l + \sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})} \right] \sigma_{TT}(x,Q^2) \end{split}$$

* Heavy-baryon expansion of the leading pion-cloud contribution:

$$\begin{split} \overline{S}_1(0,Q^2) \stackrel{HB}{=} &-\frac{3\alpha g_A^2}{16f_\pi^2} m_\pi \left[1 - (1+\tau_\pi) \frac{\arctan\sqrt{\tau_\pi}}{\sqrt{\tau_\pi}} \right] \\ \overline{S}_2(0,Q^2) \stackrel{HB}{=} 0 \\ \frac{\mathrm{d}}{\mathrm{d}\nu} \overline{S}_2(\nu,Q^2)|_{\nu=0} \stackrel{HB}{=} \frac{\alpha g_A^2}{4\pi f_\pi^2} \frac{M^3}{m_\pi^2} \left[\frac{1}{\tau_\pi} - \sqrt{1 + 1/\tau_\pi} \frac{\operatorname{arcsinh}\sqrt{\tau_\pi}}{\tau_\pi} \right] \end{split}$$

expanded in m_π/M with fixed $\tau_\pi = Q^2/4m_\pi^2$

* Heavy-baryon expansion of the leading pion-cloud contribution:

$$\begin{split} \overline{S}_1(0,Q^2) \stackrel{HB}{=} &-\frac{3\,\alpha\,g_A^2}{16f_\pi^2}\,m_\pi \left[1 - (1+\tau_\pi)\frac{\arctan\sqrt{\tau_\pi}}{\sqrt{\tau_\pi}}\right]\\ \overline{S}_2(0,Q^2) \stackrel{HB}{=} 0\\ \frac{\mathrm{d}}{\mathrm{d}\nu} \overline{S}_2(\nu,Q^2)|_{\nu=0} \stackrel{HB}{=} \frac{\alpha\,g_A^2}{4\pi f_\pi^2}\frac{M^3}{m_\pi^2} \left[\frac{1}{\tau_\pi} - \sqrt{1 + 1/\tau_\pi}\,\frac{\mathrm{arcsinh}\sqrt{\tau_\pi}}{\tau_\pi}\right] \end{split}$$

expanded in m_{π}/M with fixed $\tau_{\pi} = Q^2/4m_{\pi}^2$

* Low-energy expansion:

$$\begin{split} \frac{\overline{S}_1(0,Q^2)}{Q^2}\Big|_{Q^2 \to 0} &= \frac{\alpha \, g_A^2}{32 f_\pi^2} \frac{1}{m_\pi} \\ \frac{\mathrm{d}}{\mathrm{d}\nu} \overline{S}_2(\nu,0)\Big|_{\nu=0} &= -\frac{\alpha g_A^2}{12\pi f_\pi^2} \frac{M^2}{m_\pi^2} + \frac{11\alpha g_A^2}{32 f_\pi^2} \frac{M}{m_\pi} \end{split}$$

* Heavy-baryon expansion of the leading pion-cloud contribution:

$$\begin{split} \overline{S}_1(0,Q^2) \stackrel{HB}{=} &-\frac{3\alpha g_A^2}{16f_\pi^2} m_\pi \left[1 - (1+\tau_\pi) \frac{\arctan\sqrt{\tau_\pi}}{\sqrt{\tau_\pi}} \right] \\ \overline{S}_2(0,Q^2) \stackrel{HB}{=} 0 \\ \frac{\mathrm{d}}{\mathrm{d}\nu} \overline{S}_2(\nu,Q^2)|_{\nu=0} \stackrel{HB}{=} \frac{\alpha g_A^2}{4\pi f_\pi^2} \frac{M^3}{m_\pi^2} \left[\frac{1}{\tau_\pi} - \sqrt{1 + 1/\tau_\pi} \frac{\operatorname{arcsinh}\sqrt{\tau_\pi}}{\tau_\pi} \right] \end{split}$$

expanded in m_π/M with fixed $\tau_\pi = Q^2/4m_\pi^2$

* Low-energy expansion:

$$\frac{\overline{S}_{1}(0,Q^{2})}{Q^{2}}\Big|_{Q^{2}\to0} = \frac{\alpha g_{A}^{2}}{32f_{\pi}^{2}} \frac{1}{m_{\pi}} \qquad \text{LO HB term cancels} \\ \frac{d}{d\nu} \overline{S}_{2}(\nu,0)\Big|_{\nu=0} = -\frac{\alpha g_{A}^{2}}{12\pi f_{\pi}^{2}} \frac{M^{2}}{m_{\pi}^{2}} + \frac{11\alpha g_{A}^{2}}{32f_{\pi}^{2}} \frac{M}{m_{\pi}} \qquad \text{from S}_{1}(0,Q^{2})$$

* Heavy-baryon expansion of the leading pion-cloud contribution:

$$\begin{split} \overline{S}_1(0,Q^2) \stackrel{HB}{=} &-\frac{3\alpha g_A^2}{16f_\pi^2} m_\pi \left[1 - (1+\tau_\pi) \frac{\arctan\sqrt{\tau_\pi}}{\sqrt{\tau_\pi}} \right] \\ \overline{S}_2(0,Q^2) \stackrel{HB}{=} 0 \\ \frac{\mathrm{d}}{\mathrm{d}\nu} \overline{S}_2(\nu,Q^2)|_{\nu=0} \stackrel{HB}{=} \frac{\alpha g_A^2}{4\pi f_\pi^2} \frac{M^3}{m_\pi^2} \left[\frac{1}{\tau_\pi} - \sqrt{1 + 1/\tau_\pi} \frac{\operatorname{arcsinh}\sqrt{\tau_\pi}}{\tau_\pi} \right] \end{split}$$

expanded in m_{π}/M with fixed $\tau_{\pi} = Q^2/4m_{\pi}^2$

* Low-energy expansion:

$$\begin{aligned} \frac{\overline{S}_{1}(0,Q^{2})}{Q^{2}}\Big|_{Q^{2}\to0} &= \frac{\alpha g_{A}^{2}}{32f_{\pi}^{2}} \underbrace{\frac{1}{m_{\pi}}}_{m_{\pi}} \\ \frac{d}{d\nu} \overline{S}_{2}(\nu,0)\Big|_{\nu=0} &= -\frac{\alpha g_{A}^{2}}{12\pi f_{\pi}^{2}} \underbrace{\frac{M^{2}}{m_{\pi}^{2}}}_{m_{\pi}^{2}} + \frac{11\alpha g_{A}^{2}}{32f_{\pi}^{2}} \underbrace{\frac{M}{m_{\pi}}}_{m_{\pi}} \end{aligned} \qquad \begin{aligned} \text{LO HB term cancels} \\ \text{from S}_{1}(0,Q^{2}) \end{aligned}$$

* leading chiral logarithms A. Pineda, Phys. Rev. C 67 (2003) 025201

- * S₂ contribution to the HFS is suppressed by ν
- * approximate HFS formula in terms of S₁(0,Q²):

$$\frac{\Delta E(nS)}{E_{\rm F}(nS)} = \frac{1}{2\pi^3 m} \frac{1}{1+\kappa} \int_0^\infty \mathrm{d}Q \, Q \int_0^\pi \mathrm{d}\chi \, \frac{\sin^2 \chi}{\tau_l + \cos^2 \chi} S_1(0,Q^2)$$

Successfull Nucleon-To- $\Delta(1232)$ Transition $\begin{cases} \Gamma_{\gamma N \to \Delta}^{\alpha \mu} = \sqrt{\frac{3}{2}} \frac{e(M + M_{\Delta})}{M[(M + M_{\Delta})^2 + Q^2]} \{g_M \gamma^{\alpha \mu \kappa \lambda} p'_{\kappa} q_{\lambda} + g_E(p' \cdot q g^{\alpha \mu} - q^{\alpha} p'^{\mu}) \} \}$

expressed through <u>Jones-Scadron form factors</u> G*_M, G*_E and G*_C, which in turn obey large-N_c relations with the nucleon FFs:

 $+\frac{g_C}{M_{\Lambda}}\left(q^2g^{\alpha\mu}\not\!\!p'-q^2p'^{\mu}\gamma^{\alpha}+p'\cdot q\,q^{\mu}\gamma^{\alpha}-q^{\alpha}q^{\mu}\not\!\!p'\right)\right\}\gamma_5$

$$g_{M} = G_{M}^{*}(Q^{2}) - G_{E}^{*}(Q^{2})$$

$$g_{E} = -\frac{Q_{+}^{2}}{\omega_{-}^{2} + Q^{2}} \left[\frac{\omega_{-}}{M_{\Delta}} G_{E}^{*}(Q^{2}) + \frac{Q^{2}}{2M_{\Delta}^{2}} G_{C}^{*}(Q^{2}) \right]$$

$$g_{C} = \frac{Q_{+}^{2}}{\omega_{-}^{2} + Q^{2}} \left[G_{E}^{*}(Q^{2}) - \frac{\omega_{-}}{2M_{\Delta}} G_{C}^{*}(Q^{2}) \right]$$

H. F. Jones and M. D. Scadron, Annals Phys. 81 (1973) 1

$$G_M^*(Q^2) = \sqrt{2} C_M^* F_{2p}(Q^2) \text{ with } C_M^* = \frac{3.02}{\sqrt{2} \kappa_p}$$
$$G_E^*(Q^2) = \left(\frac{M}{M_\Delta}\right)^{3/2} \frac{M_\Delta^2 - M^2}{2\sqrt{2} Q^2} G_{En}(Q^2)$$
$$G_C^*(Q^2) = \frac{4M_\Delta^2}{M_\Delta^2 - M^2} G_E^*(Q^2)$$

V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. D 76 (2007) 111501

 strictly speaking not `model-independent' because we use e.m. nucleon FF parametrizations
 → model-dependence is very small

Empirical Situation for Transition FFs

Δ-Pole and Non-Pole

	$M1^2$				Total		
	Δ -pole	non-pole	sum	Δ -pole	non-pole	sum	10041
this work	-31.93	31.82	-0.12	-0.12	0.05	-0.06	-0.29
Faustov et al. '98			-0.12				-0.12
Buchmann '09				-0.16			-0.16

- * two types of contributions: *non-pole* and Δ -*pole*
- both types of contributions are required to satisfy the <u>Burkhardt-</u> <u>Cottingham sum rule</u>:

$$\int_0^1 \mathrm{d}x \, g_2(x, Q^2) = 0$$

 large cancellation into the total result weakens the dominance of G_M*

2γ with Δ -Excitation (NLO)

* the Δ -contribution to the Lamb shift is small compared to the leading order πN -loops

expected since
$$\mathcal{B}_{M1}$$
 is suppressed

- * the Δ -contribution to the HFS is even (slightly) larger than the leading order πN -loops
 - dominance of G_M* is weakened by cancelations between Δ-pole and nonpole terms

$$E_{\rm HFS}^{\langle\Delta\text{-exch.}\rangle \text{ pol.}}(2S, {\rm H}) = [0.31 - 0.52] \text{ peV}$$

$$\approx -0.2(2) \text{ peV}$$

$$E_{\rm HFS}^{\langle\Delta\text{-exch.}\rangle \text{ pol.}}(2S, \mu {\rm H}) = [1.26 - 2.41] \mu {\rm eV}$$

$$\approx -1.2(8) \mu {\rm eV}$$

 $E_{\rm LS}^{\langle\Delta\text{-exch.}\rangle\,{\rm pol.}}(\mu{\rm H}) = -0.95 \pm 0.95\,\mu{\rm eV}$

Empirical Model for $\Delta(1232)$

G. Eichmann and G. Ramalho, hep-ph/1806.04579 (2018)

$LO + \Delta BChPT: pol. contr.$

$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,{\rm H}) = -0.1(3) \, \rm peV$$
$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,\mu{\rm H}) = -0.3(1.4) \, \mu \rm eV$$

$LO + \Delta BChPT: pol. contr.$

$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,{\rm H}) = -0.1(3) \, \rm peV$$
$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,\mu{\rm H}) = -0.3(1.4) \, \mu \rm eV$$

 $E_{\rm HFS}^{\rm (LO) \ pol.}(2S,{\rm H}) = [0.04 + 0.05] \ {\rm peV}$ $\approx 0.09(20) \ {\rm peV}$

 $E_{\rm HFS}^{\rm (LO) \ pol.}(2S,\mu {\rm H}) = [0.65 + 0.20] \ \mu {\rm eV}$ $\approx 0.85(1.08) \ \mu {\rm eV}$

- * pion-cloud contribution:
 - LO BChPT
 - cancelation of leading terms in S₁(0,Q²)

$LO + \Delta BChPT: pol. contr.$

$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,{\rm H}) = -0.1(3) \, \rm peV$$
$$E_{\rm HFS}^{\langle \rm LO+\Delta\rangle \, pol.}(2S,\mu{\rm H}) = -0.3(1.4) \, \mu \rm eV$$

 $E_{\rm HFS}^{\langle \rm LO \rangle \, pol.}(2S, {\rm H}) = [0.04 + 0.05] \, {\rm peV}$ $\approx 0.09(20) \, {\rm peV}$

 $E_{\rm HFS}^{\rm (LO) \ pol.}(2S,\mu {\rm H}) = [0.65 + 0.20] \ \mu {\rm eV}$ $\approx 0.85(1.08) \ \mu {\rm eV}$

$$E_{\rm HFS}^{\langle\Delta\text{-exch.}\rangle \text{ pol.}}(2S, \mathbf{H}) = [0.31 - 0.52] \text{ peV}$$
$$\approx -0.2(2) \text{ peV}$$

$$E_{\rm HFS}^{\langle\Delta\text{-exch.}\rangle \text{ pol.}}(2S,\mu \text{H}) = [1.26 - 2.41] \ \mu \text{eV}$$
$$\approx -1.2(8) \ \mu \text{eV}$$

- * pion-cloud contribution:
 - LO BChPT
 - cancelation of leading terms in S₁(0,Q²)
- Δ-exchange:
 - strictly speaking not `modelindependent' - we use large N_c relations with e.m. nucleon FF parametrizations

HFS in Terms of Polarizabilities

$$\frac{E_{\rm HFS}^{\rm pol}(nS)}{E_F(nS)} \approx \frac{\alpha m}{\pi (1+\kappa)M} \int_0^\infty \frac{\mathrm{d}Q}{Q} \frac{1}{(1+v_l)^2} \left\{ (5+4v_l) \left[F_2^2(Q^2) + 4I_1(Q^2) \right] - \frac{6M^2Q^2}{\alpha} \,\delta_{LT}(Q^2) \right. \\ \left. + \frac{1+3v_l}{1+v_l} \left(\frac{M^2Q^2}{2\alpha} \,\gamma_0(Q^2) + \frac{32M^6}{Q^6} \int_0^{x_0} \mathrm{d}x \, x^4 \, g_2(x,Q^2) \right) \right\}$$

$$\overline{S}_{1}(\nu,Q^{2}) = \frac{2\pi Z^{2} \alpha}{M} F_{2}^{2}(Q^{2}) + \frac{16\pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{x_{0}} dx \frac{g_{1}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \\
= \frac{2\pi Z^{2} \alpha}{M} \left\{ \left[F_{2}^{2}(Q^{2}) + 4I_{1}(Q^{2}) \right] + \frac{32M^{4}\nu^{2}}{Q^{6}} \int_{0}^{x_{0}} dx \frac{x^{2}g_{1}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \right\}$$

- expansions in `polarizabilities' is not unique (two different options)
- up to and including second moments in x²

$$I_{1}(Q^{2}) = \frac{2M^{2}}{Q^{2}} \int_{0}^{x_{0}} dx \, g_{1}(x, Q^{2})$$

$$I_{A}(Q^{2}) = \frac{2M^{2}}{Q^{2}} \int_{0}^{x_{0}} dx \left[g_{1} - \frac{4M^{2}x^{2}}{Q^{2}}g_{2}\right](x, Q^{2})$$

$$\gamma_{0}(Q^{2}) = \frac{16M^{2}\alpha}{Q^{6}} \int_{0}^{x_{0}} dx \, x^{2} \left[g_{1} - \frac{4M^{2}x^{2}}{Q^{2}}g_{2}\right](x, Q^{2})$$

$$F_{LT}(Q^{2}) = \frac{16M^{2}\alpha}{Q^{6}} \int_{0}^{x_{0}} dx \, x^{2} \left[g_{1} + g_{2}\right](x, Q^{2})$$

HFS in Terms of Polarizabilities

Input		$I_1^{\text{pol.}}$		δ_{LT}	γ	0	x^4g_2 rem	ainder	tot	al
Simula $g_i \ (\kappa \approx 1.7905)$	5.33	5.33	0	-0.48	2.70	-0.57	-1.37	0.29	6.67	4.56
and FF	0		-0.48		-3.27		1.66		-2.10	
Background			0	-0.33	-2.45	0.53	1.09	-0.23		
0			-0.33		2.98		-1.32			
Resonances			0	0.19	5.23	-1.11	-2.46	0.52		
resonances			0.19		-6.35		2.98			
$\Lambda(1232)$			0.00	0.00	5.40	-1 15	-2.58	0.54		
			0	0.00	-6.55	1.10	3.13	0.04		
B√DT	1.73	73 [_0 40]	0	-2.65 [-0.70]	0.76 [3.15]	_0 17 [_0 66]	-0.79[-1.48]	0 17 [0 31]	1.69 [1.19]	_0.03[_1.64]
DχFI	0	13 [-0.49]	-2.65	5 –2.03 [–0.79]	-0.93[-3.81]	-0.17 [-0.00]	0.96~[1.78]	0.17 [0.31]	-2.62[-2.83]	0.00 [-1.04]
π -cloud	2.67	2.67	0	-3.06	-4.20	0.87	1.21	-0.25	-0.31	0.24
	0	2.01	-3.06		5.07		-1.46		0.55	
$\Lambda_{-exchange}$	-0.94	_0.94	0	0.41	4.96	-1.04	-2.00	0.42	2.01	_1 17
	0	-0.34	0.41	0.41	-6.00	-1.04	2.42	0.42	-3.17	-1.17

* empirical input for inelastic structure functions and elastic form factors from

- a) S. Simula, et al., Phys. Rev. D 65 (2002) 034017
- b) J. J. Kelly, Phys. Rev. C 70 (2004) 068202
- * large cancelations in the low energy region, $Q^2 \in \{0, 0.0452 \,\text{GeV}^2\}$, among F₂ and g₁ in the S₁ subtraction term: $\Delta_1(g_1 \& F_{2p}, \mu \text{H}) \approx 0.86$

 $\Delta_1(g_1, \mu \mathrm{H}) \approx -15.59$ $\Delta_1(F_2, \mu \mathrm{H}) \approx 16.45$

C. E. Carlson, V. Nazaryan, K. Griffioen, Phys. Rev. A **78** (2008) 022517

Charge Radius

$$R_E = \sqrt{\langle r^2 \rangle_E} = \sqrt{-6 \, G'_E(0)}$$

Proton radius puzzle

 $[R_{Ep}^{\mu \rm H} = 0.84087(39)\,\rm{fm}]$

[1] R. Pohl, A. Antognini et al., Nature 466, 213 (2010).
[2] A. Antognini et al., Science 339, 417 (2013).

5.6 σ discrepancy

 $[R_{Ep}^{\text{CODATA 2014}} = 0.8751(61) \,\text{fm}]$

[3] P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012).

Zemach Radius

$$R_{\rm Z} \equiv -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right]$$

 μ H extr. (Antognini '13) H extr. (Volotka '05) e-p scattering (Distler '11) e-p scattering (Friar '04) HB leading logs (Pineda '14) fit to H and μ H (this work) μ H extr. (this work) H extr. (this work)

Correlation between Radii

$$R_{\rm Z} = \langle r \rangle_E + \langle r \rangle_M - \frac{2}{\pi^2} \int_{t_0}^{\infty} \frac{\mathrm{d}t}{t} \frac{\mathrm{Im} \, G_M(t')}{1 + \kappa} \int_{t_0}^{\infty} \frac{\mathrm{d}t'}{t'} \frac{\mathrm{Im} \, G_E(t')}{\sqrt{t'} + \sqrt{t}}$$

$$\langle r \rangle_E = -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \Big[G_E(Q^2) - 1 \Big]$$
$$\langle r \rangle_M = -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \Big[\frac{G_M(Q^2)}{1 + \varkappa} - 1 \Big]$$

- R_E and R_Z both depend on the electric Sachs form factor G_E
- extractions of R_E and R_Z
 from µH should be
 consistent

Comparison with ep Scattering

ep scatt. ... : $R_E \approx 0.88 \text{ fm}$ $R_M \approx 0.78 \text{ fm}$ (Bernauer '14) $R_E \approx 0.90 \text{ fm}$ $R_M \approx 0.82 \text{ fm}$ (Friar '04)

 $R_E \approx 0.84$ fm from µH and ... : assuming $R_E = R_M$ µH spectr., $R_M \approx 0.87$ fm (Antognini '13) µH spectr., $R_M \approx 0.79$ fm (this work) combined fit H and µH, $R_M \approx 0.75$ fm (this work)

courtesy of M. Distler

Comparison to NRQED / HBChPT

Wilson coefficient c₄:

 $\frac{E_{\rm HFS}(nS)}{E_{\rm F}(nS)} = \frac{3\alpha}{2\pi(1+\kappa)} \frac{m}{M} c_4$

C. Peset, A. Pineda, Nucl. Phys. B **887** (2014) 69–111. C. Peset, A. Pineda, JHEP **04** (2017) 060.

* µH and H difference:

$$\begin{split} \Delta c_4 &= c_{4,\mathrm{pol}}^{\mu\mathrm{H}} - c_{4,\mathrm{pol}}^{\mathrm{H}} = \begin{cases} 0.17(9) & (\mathrm{LO}) \\ 0.07 & (\Delta) \\ 0.25(10) & (\mathrm{NLO}) \end{cases} & \text{Pineda et al. '14 and '17} \\ \Delta c_4 &= \begin{cases} 0.08(27) & (\mathrm{LO}) \\ 0.03(22) & (\Delta) \\ 0.11(55) & (\mathrm{LO} + \Delta) \end{cases} & \text{HageIstein et al. '18} \\ \Delta c_4 &= -0.27(1.53) \end{cases} & \text{Carlson et al. '08} \end{split}$$

Zemach Radius Fit to H and μ H

combined fit to experimental H and µH HFS:

 $E_{\text{HFS}}^{\text{exp.}}(2S, \mu \text{H}) = 22.8089(51) \text{ meV}$ $E_{\text{HFS}}^{\text{exp.}}(1S, \text{H}) = 5.874325922900(4) \,\mu \text{eV}$

HFS in Muonic Hydrogen

HFS in Normal Hydrogen

Reference	$\Delta_{\text{pol.}} \text{[ppm]}$	Δ_1	Δ_2	
Carlson et al. '08	1.88(0.07)(0.60)(0.20)	8.85(0.30)(2.67)(0.70)	-0.57()()(0.57)	
Faustov et al. '06	2.2(0.8)	11.5	-1.8	
B χ PT (this work)	-0.17(37)	2.06(1.28)	-2.82(1.02)	

 Δ₂ predictions based on MAID and most recent Hall B models are very different as compared to the Hall B 2007 model (talk by K. Slifer)

 tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)
 - e-p scattering data favour $R_M < R_E$ and hence a smaller R_Z

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)
 - e-p scattering data favour $R_M < R_E$ and hence a smaller R_Z
- * LO BChPT contribution from pion-nucleon loops is expected to be ~0

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)
 - e-p scattering data favour $R_M < R_E$ and hence a smaller R_Z
- * LO BChPT contribution from pion-nucleon loops is expected to be ~0
- * empirical information on spin structure functions is limited (especially for g₂)

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)
 - e-p scattering data favour $R_M < R_E$ and hence a smaller R_Z
- * LO BChPT contribution from pion-nucleon loops is expected to be ~0
- empirical information on spin structure functions is limited (especially for g₂)
- * the low-Q region is very important $-S_1(0,Q^2)$ subtraction function (I₁ and F₂)

- tension between Zemach radius extractions based on the BChPT prediction of the polarizability contribution to the HFS and dispersive results
 - changes the Zemach radius R_Z=1.006(9) fm (smaller, just like R_E)
 - e-p scattering data favour $R_M < R_E$ and hence a smaller R_Z
- * LO BChPT contribution from pion-nucleon loops is expected to be ~0
- empirical information on spin structure functions is limited (especially for g₂)
- * the low-Q region is very important $-S_1(0,Q^2)$ subtraction function (I₁ and F₂)
- further polarizability contributions from pseudo-scalar (axial-vector) mesons

Thank you for your attention !!!

Backup Slides

Proton Spin Structure Functions: g1

parametrizations:

S. Simula, et al., Phys. Rev. D 65 (2002) 034017Y. Prok, et al., Phys. Lett. B 672 (2009) 12

Proton Spin Structure Functions: g2

parametrizations:

S. Simula, et al., Phys. Rev. D 65 (2002) 034017Y. Prok, et al., Phys. Lett. B 672 (2009) 12

CS Amplitudes & Structure Functions

optical theorem:
unitarity

$$\operatorname{Im} T_1(\nu, Q^2) = \frac{4\pi^2 Z^2 \alpha}{M} f_1(x, Q^2)$$

$$\operatorname{Im} T_2(\nu, Q^2) = \frac{4\pi^2 Z^2 \alpha}{\nu} f_2(x, Q^2)$$

$$\operatorname{Im} S_1(\nu, Q^2) = \frac{4\pi^2 Z^2 \alpha}{\nu} g_1(x, Q^2)$$

$$\operatorname{Im} S_2(\nu, Q^2) = \frac{4\pi^2 Z^2 \alpha M}{\nu^2} g_2(x, Q^2)$$

dispersion relations: analyticity, crossing symmetries

$$T_{i}(\nu, Q^{2}) = \frac{2}{\pi} \int_{\nu_{el}}^{\infty} d\nu' \frac{\nu' \operatorname{Im} T_{i}(\nu', Q^{2})}{\nu'^{2} - \nu^{2} - i0^{+}}$$
$$S_{1}(\nu, Q^{2}) = \frac{2}{\pi} \int_{\nu_{el}}^{\infty} d\nu' \frac{\nu' \operatorname{Im} S_{1}(\nu', Q^{2})}{\nu'^{2} - \nu^{2} - i0^{+}}$$
$$\nu S_{2}(\nu, Q^{2}) = \frac{2}{\pi} \int_{\nu_{el}}^{\infty} d\nu' \frac{\nu'^{2} \operatorname{Im} S_{2}(\nu', Q^{2})}{\nu'^{2} - \nu^{2} - i0^{+}}$$

$$\begin{split} T_1(\nu,Q^2) &= \frac{2}{\pi} \int_{\nu_{\rm el}}^{\infty} \mathrm{d}\nu' \, \frac{\nu' \,\mathrm{Im} \, T_1(\nu',Q^2)}{\nu'^2 - \nu^2 - i0^+} = \frac{8\pi Z^2 \alpha}{M} \int_0^1 \frac{\mathrm{d}x}{x} \, \frac{f_1(x,Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+} \\ T_2(\nu,Q^2) &= \frac{2}{\pi} \int_{\nu_{\rm el}}^{\infty} \mathrm{d}\nu' \, \frac{\nu' \,\mathrm{Im} \, T_2(\nu',Q^2)}{\nu'^2 - \nu^2 - i0^+} = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{f_2(x,Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+} \\ S_1(\nu,Q^2) &= \frac{2}{\pi} \int_{\nu_{\rm el}}^{\infty} \mathrm{d}\nu' \, \frac{\nu' \,\mathrm{Im} \, S_1(\nu',Q^2)}{\nu'^2 - \nu^2 - i0^+} = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{g_1(x,Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+} \\ \nu S_2(\nu,Q^2) &= \frac{2}{\pi} \int_{\nu_{\rm el}}^{\infty} \mathrm{d}\nu' \, \frac{\nu'^2 \,\mathrm{Im} \, S_2(\nu',Q^2)}{\nu'^2 - \nu^2 - i0^+} = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{g_2(x,Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+} \end{split}$$

with $u_{\rm el} = Q^2/2M$

Compton Scattering Sum Rules

- Compton scattering (CS) amplitudes in terms of integrals of total photoabsorption cross sections
 - dispersion relations:

$$T_{1}(\nu,0) = -\frac{4\pi\alpha}{M} + \frac{2\nu^{2}}{\pi} \int_{0}^{\infty} d\nu' \frac{\sigma_{abs}(\nu')}{\nu'^{2} - \nu^{2} - i0^{+}}$$
$$S_{1}(\nu,0) = \frac{M}{\pi} \int_{0}^{\infty} d\nu' \frac{\nu' \Delta \sigma_{abs}(\nu')}{\nu'^{2} - \nu^{2} - i0^{+}}$$

Iow-energy expansion of CS amplitudes:

$$-\frac{1}{4\pi}T_1(\nu,0) = -\frac{Z^2\alpha}{M} + (\alpha_{E1} + \beta_{M1})\nu^2 + \left[\alpha_{E1\nu} + \beta_{M1\nu} + \frac{1}{12}(\alpha_{E2} + \beta_{M2})\right]\nu^4 + O(\nu^6)$$
$$-\frac{1}{4\pi}S_1(\nu,0) = -\frac{\alpha\varkappa^2}{2M} + M\gamma_0\nu^2 + M\bar{\gamma}_0\nu^4 + O(\nu^6)$$

Neutral-Pion Exchange

$$E_{\rm HFS}^{\langle \pi^0 \rangle}(2S, {\rm H}) = [0.65 - 1.12] \,\text{feV}$$

$$\approx -0.47(2) \,\text{feV}$$

$$E_{\rm HFS}^{\langle \pi^0 \rangle}(2S, \mu {\rm H}) = [0.20 - 0.13] \,\mu {\rm eV}$$

$$\approx 0.07(2) \,\mu {\rm eV}$$

$$\begin{split} E_{\rm HFS}^{\langle \pi^0 \rangle}(2S,\mu{\rm H}) &= -0.2\,\mu{\rm eV} & \text{Dorokhov et al.} \\ E_{\rm HFS}^{\langle \pi^0 \rangle}(2S,\mu{\rm H}) &= -0.09(6)\,\mu{\rm eV} & \text{Huong et al.} \\ E_{\rm HFS}^{\langle \pi^0 \rangle}(2S,\mu{\rm H}) &= -0.228\,\mu{\rm eV} & \text{Zhou et al.} \\ E_{\rm HFS}^{\langle \pi^0 \rangle}(2S,{\rm H}) &= -0.708\,{\rm feV} & \text{Zhou et al.} \end{split}$$

Neutral-Pion Exchange

dispersion relation for $F_{\pi\ell\ell}$ (Q²) coupling $g_{\pi\ell\ell}$ is extracted from $\pi^0 \rightarrow e^+ e^-$ decay width

- $\mathcal{O}(\alpha^6)$ contribution from off-forward scattering
- non-relativistic S-wave pion-exchange potential:

$$V_{\pi^0}^{(l=0)}(r) = -\frac{\alpha^2 g_{\pi\ell\ell} g_A}{12\pi m f_{\pi}} \Big(4\pi \delta(\mathbf{r}) - \frac{m_{\pi}^2}{r} e^{-m_{\pi}r} \Big) \mathbf{s} \cdot \mathbf{S}$$
$$E_{\rm HFS}^{\langle \pi^0 \rangle}(nS) = -E_{\rm F}(nS) \frac{g_A M m_r}{2\pi (1+\kappa) f_{\pi} m_{\pi}} \left[\alpha^2 g_{\pi\ell\ell} + \frac{\alpha^2 m}{2\pi^2 f_{\pi}} I\left(\frac{m_{\pi}}{2m}\right) \right]$$
$$I(\gamma) \equiv 2 \int_0^\infty \frac{\mathrm{d}\xi}{1+(\xi/\gamma)} \frac{\arccos \xi}{\sqrt{1-\xi^2}}$$

Goldberger-Treiman relation: $g_{\pi NN} = Mg_A/f_{\pi}$ with $g_A \approx 1.27$ and $f_{\pi} \approx 92.4$ MeV M. L. Goldberger and S.B. Treiman, Phys. Rev. **110**, 1178-1184 (1958); Phys. Rev. **111**, 354-361 (1958).

once-subtracted dispersion relation for the pion-lepton FF:

$$F_{\pi\ell\ell}(q^2) \equiv F_{\pi\ell\ell}(q^2, m_\ell^2, m_\ell^2) = F_{\pi\ell\ell}(0) + \frac{q^2}{\pi} \int_0^\infty \frac{\mathrm{d}s}{s} \frac{\mathrm{Im} F_{\pi\ell\ell}(s)}{s - q^2}$$
$$\mathrm{Im} F_{\pi\ell\ell}(s) = -\frac{\alpha^2 m_\ell}{2\pi f_\pi} \frac{\mathrm{arccosh}(\sqrt{s/2m_\ell})}{\sqrt{1 - 4m_\ell^2/s}}$$
$$F_{\pi\ell\ell}(0) = \frac{\alpha^2 m_\ell}{2\pi^2 f_\pi} \left(\mathcal{A}(\Lambda) + 3\ln\frac{m_\ell}{\Lambda}\right)$$
$$g_{\pi\ell\ell} = F(0, m_\ell^2, m_\ell^2)/\alpha^2$$
$$= \frac{m_\ell}{2\pi^2 f_\pi} \mathcal{A}(m_\ell)$$

S. Drell, Il Nuovo Cimento 11, 693-697 (1959).

• $\pi^0 \rightarrow e^+e^-$ decay width:

$$\Gamma(\pi^0 \to e^+ e^-) = \frac{m_\pi}{8\pi} \sqrt{1 - \frac{4m_e^2}{m_\pi^2}} \left| F_{\pi\ell\ell}(m_\pi^2, m_e^2, m_e^2) \right|^2$$