An hyperfine view to the TPE

A. Antognini CREMA collaboration

Paul Scherrer Institute
ETH, Zurich

From the $2 \mathrm{~S}-2 \mathrm{P}$ to HFS measurements

- From 2S-2P
\rightarrow charge radii
- From HFS
\rightarrow Zemach radius

Hyperfine splitting theory and goals

Measure
the 1S-HFS in $\mu \mathrm{p}$
with 1-2 ppm accuracy

Goals

- TPE contribution with $3 \times 10^{-4} \mathrm{rel}$. accuracy
- Zemach radius and polarisability contributions

$$
\Delta E_{\mathrm{HFS}}^{\mathrm{th}}=183.788(7)+1.0040 \Delta E_{\mathrm{TPE}}[\mathrm{meV}]
$$

The principle of the μ p HFS experiment

(1) Formation

(2) Laser excitation

$\mu \mathrm{p}$ atom
(3) Detection

The principle of the μ p HFS experiment

(1) Formation

(2) Laser excitation

$\mu \mathrm{p}$ atom
(3) Detection

- Laser pulse: $\mu \mathrm{p}(\mathrm{F}=0) \longrightarrow \mu \mathrm{p}(\mathrm{F}=1)$
- Collision: $\mu \mathrm{p}(\mathrm{F}=1)+\mathrm{H}_{2} \longrightarrow \mathrm{H}_{2}+\mu \mathrm{p}(\mathrm{F}=0)+E_{\text {kin }}$
- Diffusion: the faster $\mu \mathrm{p}$ reach the target walls
- Resonance: plot number of X-rays vs. frequency

The experimental principle

- muon beam
- target
- thermalisation
- laser excitation
- diffusion
- X-ray detection
π E5 area

Preliminary measurements using "compact muon beam"
$\begin{array}{ll}\text { - Muon rate }(11 \mathrm{MeV} / \mathrm{c}, \mathrm{D}=10 \mathrm{~mm}): & 500 \mathrm{1} / \mathrm{s} \\ \text { - Electron background } & : \\ \text { large }\end{array}$
$\begin{array}{ll}\text { - Muon rate }(11 \mathrm{MeV} / \mathrm{c}, \mathrm{D}=10 \mathrm{~mm}): & 500 \mathrm{t} / \mathrm{s} \\ \text { - Electron background } & \text { large }\end{array}$

- Rate and bg not fully understood
- Improvement of separator ongoing

π E5 beam line

The experimental principle

- muon beam
- target
- thermalisation
- laser excitation
- diffusion
- X-ray detection

Stopping probability \& Target

- Length : 1-3 mm
- Pressure : 0.5-2 bar
- Temperature : 30-50 K

The experimental principle

- muon beam
- target
- thermalisation
- laser excitation
- diffusion
- X-ray detection
$\mu \mathrm{p}$ density distribution in target

- Stopped μ^{-}form μ in highly excited state
- During the de-excitation to the ground state, the $\mu \mathrm{p}$ win kinetic energy
- $\mu \mathrm{p}$ thermalise through collision with H_{2} gas
- A considerable fraction of μ p reach the target walls prior the laser pulse

The experimental principle

- muon beam
- target
- thermalisation
- laser excitation
- diffusion
- X-ray detection

Optical Bloch equations

$$
\begin{aligned}
\frac{d \rho_{11}}{d t} & =-\frac{d \rho_{22}}{d t} \\
\frac{d \rho_{22}}{d t} & =-\frac{i}{2}\left(\varpi \rho_{12} e^{i\left(\omega_{r}-\omega\right) t}-\varpi^{*} \rho_{12}^{*} e^{-i\left(\omega_{r}-\omega\right) t}\right)-\Gamma \rho_{22} \\
\frac{d \rho_{12}}{d t} & =\frac{i \varpi^{*}}{2}\left(1-2 \rho_{22}\right) e^{-i\left(\omega_{r}-\omega\right) t}-\frac{\Gamma^{\prime}}{2} \rho_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Laser pulse time (ns) }
\end{aligned}
$$

Laser transition probability

The experimental principle

-muon beam

- target
- thermalisation
- laser excitation

- diffusion
- X-ray detection
$\mu \mathrm{p}$ diffusion radius

$$
R=\sqrt{\frac{v t}{\sigma_{\text {trans }} N}}
$$

The experimental principle

- muon beam
- target
- thermalisation
- laser excitation
- diffusion
- X-ray detection

Thermalised μ p close to the target wall may diffuse to to the target walls in the signal time window, \Rightarrow intrinsic background

Signal and background simulations for optimistic laser fluence

The experimental principle

\author{

- muon beam
}
- target

X-ray emission in the $\mu \mathrm{Au}$ de-excitation

Iransition $\left(n \rightarrow n^{\prime}\right)$	Energy	Probability
$2 \rightarrow 1$	5.6 MeV	90%
$3 \rightarrow 2$	2.4 MeV	84%
$4 \rightarrow 3$	0.9 MeV	76%

- thermalisation

$$
\mu \mathrm{p}+\mathrm{Au} \rightarrow(\mu \mathrm{Au})^{*}+\mathrm{p}
$$

- laser excitation
- diffusion
- X-ray detection

The experimental principle

- muon beam
- target

Requirements:

- X-ray detection eff. $>50 \%$
- False identification of $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$ as X-ray $<1 \times 10^{-3}$
- Beam line background suppression (to be investigated)
- thermalisation
- laser excitation
- diffusion
- X-ray detection

The challenge: the laser system

Thin-disk laser technology

Parametric down-conversion stages

Challenges

- delay time: $1 \mu \mathrm{~s}$
- stochastic trigger
- energy: 5 mJ (Pump 500 mJ)
- repetition rate: 200 1/s
- wavelength: $6.7 \mu \mathrm{~m}$
- line width: < 100 MHz

Simulations of cavity started...

Challenges

- Wavelength: $6.7 \mu \mathrm{~m}$
- Cryogenic temperatures
- Large laser fluence
- Toroidal geometry
(sparse laser technology)
(coating stability?)
(damage threshold, laser energy, reflectivity)

Summary of systematic

HFS contributions and uncertainties

$\Delta E_{\mathrm{HFS}}^{\mathrm{th}}=\Delta E_{\mathrm{Fermi}}\left[1+\delta E_{\mathrm{QED}}+\delta E_{\mathrm{hVP}} \quad+\delta E_{\mathrm{weak}} \quad+\delta E_{\mathrm{TPE}} \quad+\delta E_{\mathrm{mesons}}\right]$

$$
\Delta E_{\mathrm{TPE}}=\Delta E_{\mathrm{Z}}+\Delta E_{\mathrm{Recoil}}+\Delta E_{\mathrm{pol}}
$$

Two main ways to the TPE

Dispersion relation+data: $\mathbf{g}_{1}\left(\mathbf{x}, \mathbf{Q}^{2}\right), \mathbf{g}_{2}\left(\mathbf{x}, \mathbf{Q}^{2}\right), F_{1}, G_{E} \ldots$

Chiral EFT
Chiral + dispersion

Carlson,
Vanderhaeghen,
Martynenko,
Tomalak,
Pascalutsa
Pascalutsa,
Pineda, Peset
Hagelstein

TPE: dispersion based approach

Elastic part (Zemach)

$\Delta_{\mathrm{Z}}=\frac{8 Z \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right] \equiv-2 Z \alpha m_{r} R_{\mathrm{Z}}$,
Distler, Bernauer

Recoil finite-size

$$
\begin{aligned}
\Delta_{\text {recoil }}=\frac{Z \alpha}{\pi(1+\kappa)} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q} & \left\{\frac{8 m M}{v_{l}+v} \frac{G_{M}\left(Q^{2}\right)}{Q^{2}}\left(2 F_{1}\left(Q^{2}\right)+\frac{F_{1}\left(Q^{2}\right)+3 F_{2}\left(Q^{2}\right)}{\left(v_{l}+1\right)(v+1)}\right)\right. \\
& \left.-\frac{8 m_{r} G_{M}\left(Q^{2}\right) G_{E}\left(Q^{2}\right)}{Q}-\frac{m}{M} \frac{5+4 v_{l}}{\left(1+v_{l}\right)^{2}} F_{2}^{2}\left(Q^{2}\right)\right\}
\end{aligned}
$$

Alternative approach

$$
\begin{aligned}
\Delta_{\mathrm{z}} & =\frac{4 \alpha m_{r} Q_{0}}{3 \pi}\left(-r_{E}^{2}-r_{M}^{2}+\frac{r_{E}^{2} r_{M}^{2}}{18} Q_{0}^{2}\right) \\
& +\frac{8 \alpha m_{r}}{\pi} \int_{Q_{0}}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left(\frac{G_{M}\left(Q^{2}\right) G_{E}\left(Q^{2}\right)}{\mu_{P}}-1\right)
\end{aligned}
$$

Tomalak

Polarisability

$\Delta_{\text {pol. }}=\frac{Z \alpha m}{2 \pi(1+\kappa) M}\left[\delta_{1}+\delta_{2}\right]=$
with:

$$
\begin{aligned}
\delta_{1}= & 2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left(\frac{5+4 v_{l}}{\left(v_{l}+\right)^{2}}\left[4 I_{1}\left(Q^{2}\right) / Z^{2}+F_{2}^{2}\left(Q^{2}\right)\right]+\frac{8 M^{2}}{Q^{2}} \int_{0}^{x_{0}} \mathrm{~d} x g_{1}\left(x, Q^{2}\right)\right. \\
& \left.\left\{\frac{1}{v_{l}+\sqrt{1+x^{2} \tau^{-1}}}\left[1+\frac{1}{2\left(v_{l}+1\right)\left(1+\sqrt{1+x^{2} \tau^{-1}}\right)}\right]-\frac{5+4 v_{l}}{\left(v_{l}+1\right)^{2}}\right\}\right), \\
= & 2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left(\frac{5+4 v_{l}}{\left(v_{l}+1\right)^{2}}\left[4 I_{1}\left(Q^{2}\right) / Z^{2}+F_{2}^{2}\left(Q^{2}\right)\right]-\frac{32 M^{4}}{Q^{4}} \int_{0}^{x_{0}} \mathrm{~d} x x^{2} g_{1}\left(x, Q^{2}\right)\right. \\
& \left.\left\{\frac{1}{\left(v_{l}+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+v_{l}\right)}\left[4+\frac{1}{1+\sqrt{1+x^{2} \tau^{-1}}}+\frac{1}{v_{l}+1}\right]\right\}\right)
\end{aligned}
$$

Need also g_{1}, g_{2}

$$
\delta_{2}=96 M^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{3}} \int_{0}^{x_{0}} \mathrm{~d} x g_{2}\left(x, Q^{2}\right)\left\{\frac{1}{v_{l}+\sqrt{1+x^{2} \tau^{-1}}}-\frac{1}{v_{l}+1}\right\} . \begin{aligned}
& \text { Hagelstein, Pascalutsa, Carlson, Martynenko, Tomalak } \\
& \text { Faustov, Vanderhaegen.... }
\end{aligned}
$$

TPE contribution on the market

Tomalak

TPE contribution on the market

	$\Delta,(\mathrm{ppm})$	Δ_{Z}	$\Delta_{\mathrm{R}}^{\mathrm{p}}$	$\Delta_{\mathrm{Z}}+\Delta_{\mathrm{R}}^{\mathrm{p}}$	$\Delta_{0}^{\mathrm{pol}}$	$\Delta_{\text {HFS }}$
	this work, $\mu \mathrm{H} r_{E}, r_{M}^{W}$	-7415(84)	844(7)	$-6571(87)$	$364(89)$	$-6207(127)$
	this work, electron r_{E}, r_{M}^{W}	-7487(95)	844(7)	-6643(98)	$364(89)$	-6279(135)
	this work, $\mu \mathrm{H} r_{E}, r_{M}^{e}$	-7333(48)	846(6)	-6486(49)	$364(89)$	$-6122(105)$
	this work, electron r_{E}, r_{M}^{e}	-7406(56)	847(6)	$-6559(57)$	$364(89)$	-6195(109)
	Hagelstein et al. [59]				-61_{-52}^{+70}	
Peset et al. [29]						-6247(109)
Carlson et al. [28, 39]		-7587	835	-6752(180)	$351(114)$	-6401(213)
Martynenko et al. [38]		-7180		-6656	410 (80)	$-6246(342)$
Pachucki [7]		-8024		-6358	0(658)	-6358(658)

All dispersive approaches needs to be re-evaluated with the new g_{1} and g_{2} data

TPE contribution on the market

	$\Delta,(\mathrm{ppm})$	Δ_{Z}	$\Delta_{\mathrm{R}}^{\mathrm{p}}$	$\Delta_{\mathrm{Z}}+\Delta_{\mathrm{R}}^{\mathrm{p}}$	$\Delta_{0}^{\mathrm{pol}}$	$\Delta_{\text {HFS }}$
	this work, $\mu \mathrm{H} r_{E}, r_{M}^{W}$	-7415(84)	844(7)	-6571(87)	364(89)	-6207(127)
	this work, electron r_{E}, r_{M}^{W}	-7487(95)	844(7)	$-6643(98)$	364(89)	-6279(135)
	this work, $\mu \mathrm{H} r_{E}, r_{M}^{e}$	-7333(48)	846(6)	$-6486(49)$	364(89)	-6122(105)
	this work, electron r_{E}, r_{M}^{e}	-7406(56)	847(6)	-6559(57)	364(89)	-6195(109)
	Hagelstein et al. [59]				-61_{-52}^{+70}	
	Peset et al. [29]					-6247(109)
	Carlson et al. [28, 39]	-7587	835	-6752(180)	351(114)	-6401(213)
	Martynenko et al. [38]	-7180		-6656	410(80)	-6246(342)
	Pachucki [7]	-8024		-6358	0(658)	-6358(658)

Interesting tension between dispersion-based and ChPT predictions

TPE: from H to $\mu \mathrm{p}$

Recently predictions of the TPE contribution has been achieved scaling the results from the TPE measured in H with m_{r} and correcting for small deviations from this scaling.

Pineda \& Peset

Tomalak

Extract hydrogen TPE

$\Longrightarrow \quad \Delta E_{\text {TPE }}(H)$

- HFS in H measured with 7×10^{-13} rel. acc.
TPE contribution in $\mathrm{H}: 50 \mathrm{ppm}$ of HFS

Scale TPE from H to $\mu \mathrm{p}$
$\left\{\begin{array}{l}\Delta E_{\mathrm{HFS}}^{\mathrm{th}}(H)=\Delta E_{\mathrm{QED}}^{\mathrm{th}}(H)+\Delta E_{\mathrm{TPE}}(H) \\ \Delta E_{\mathrm{HFS}}^{\mathrm{th}}(H)=\Delta E_{\mathrm{HFS}}^{\mathrm{exp}}(H)\end{array}\right.$

$$
\Delta E_{\mathrm{TPE}}(H) \quad \Longrightarrow \quad \Delta E_{\mathrm{TPE}}^{\mathrm{th}}(\mu p)=\operatorname{scaling}\left(\Delta E_{\mathrm{TPE}}(H)\right)+\varepsilon
$$

- Model independent
- Smaller uncertainties than from "direct "calculations

Recent values of the TPE

using TPE from H

$$
\begin{aligned}
& \longmapsto \quad \text { Tomalak, dispersion }+\mathrm{hfs}(\mathrm{H})+\text { higher order (2018) } \\
& \longmapsto \quad \text { Tomalak, dispersion }+\operatorname{hfs}(\mathrm{H})(2018)
\end{aligned}
$$

Cartsometat. (2000)

-7000	-1.25	-1.20			

Recent values of the TPE

using TPE from H

$$
\begin{aligned}
& \longmapsto \quad \text { Tomalak, dispersion }+\mathrm{hfs}(\mathrm{H})+\text { higher order (2018) } \\
& \longmapsto \quad \text { Tomalak, dispersion }+\operatorname{hfs}(\mathrm{H})(2018)
\end{aligned}
$$

Carlson et al. (2008)

Meson exchanges

Cancellation: contribution is very small

Hagelstein \& Pascalutsa, arXiv 1511.0430

Unanticipated large contributions. Needs to be verified by independent group. Already accounted in TPE?

Dorokhov et al., PLB 776, 105 (2018)

Uncertainties and scanning range

Large BG/Signal ratio

Uncertainties and scanning range

Uncertainties and scanning range

Conclusions: wish list to find the line

QED

- check QED contributions in H to improve the TPE(H)
- higher-order QED corrections in $\mu \mathrm{p}$
- Summary of all contributions would be very helpful (at 1 ppm level).

Is the meson exchange already included in the TPE computed with dispersion relations?

Zemach radius

- improve determination of Zemach radius, mainly through magnetic FF
- Study correlations R_{z} vs R_{p}

Polarisability contribution

- re-evaluate the pol contribution given the new g_{1} and g_{2} data
- improve chPT prediction also in view of interpretation of HFS measurement
- subtraction term really absent?

A TPE contribution with an accuracy of 25 ppm of HFS is needed to find the line

