An hyperfine view to the TPE

A. Antognini CREMA collaboration

Paul Scherrer Institute ETH, Zurich

From the 2S-2P to HFS measurements

Aldo Antognini

ECT*, Trento 06.07.2018

Hyperfine splitting theory and goals

Measure

the 1S-HFS in μ p with 1-2 ppm accuracy

Goals

- TPE contribution with 3x10⁻⁴ rel. accuracy
- Zemach radius and polarisability contributions

$\Delta E_{\rm HFS}^{\rm th} = 183.788(7) + 1.0040 \Delta E_{\rm TPE} \,[{\rm meV}]$

Pineda & Peset (2017)

06.07.2018

The principle of the μp HFS experiment

- Laser pulse: $\mu p(F=0) \longrightarrow \mu p(F=1)$
- Collision: $\mu p(F=1) + H_2 \longrightarrow H_2 + \mu p(F=0) + E_{kin}$
- Diffusion: the faster μp reach the target walls
- Resonance: plot number of X-rays vs. frequency

The principle of the μp HFS experiment

- Laser pulse: $\mu p(F=0) \rightarrow \mu p(F=1)$
- Collision: $\mu p(F=1) + H_2 \longrightarrow H_2 + \mu p(F=0) + E_{kin}$
- Diffusion: the faster μp reach the target walls
- Resonance: plot number of X-rays vs. frequency

06.07.2018

• muon beam

thermalisation

- laser excitation
- diffusion

X-ray detection

- Stopping probability & Target • Length : 1-3 mm • Pressure : 0.5-2 bar
 - Temperature : 30-50 K

Stopping probability: 10-20 %

- Stopped μ⁻ form μp in highly excited state
- During the de-excitation to the ground state, the µp win kinetic energy
- μp thermalise through collision with H₂ gas
- A considerable fraction of µp reach the target walls prior the laser pulse

06.07.2018

• muon beam

- target
- thermalisation

laser excitation

diffusion

Optical Bloch equations $\frac{d\rho_{11}}{dt} = -\frac{d\rho_{22}}{dt},$ $\frac{d\rho_{22}}{dt} = -\frac{i}{2} \left(\varpi \rho_{12} e^{i(\omega_r - \omega)t} - \varpi^* \rho_{12}^* e^{-i(\omega_r - \omega)t} \right) - \Gamma \rho_{22},$ $\frac{d\rho_{12}}{dt} = \frac{i\varpi^*}{2} (1 - 2\rho_{22}) e^{-i(\omega_r - \omega)t} - \frac{\Gamma'}{2} \rho_{12},$

06.07.2018

X-ray detection

9

• muon beam

- target
- thermalisation

- laser excitation
- diffusion

X-ray detection

Thermalised µp close to the target wall may diffuse to to the target walls in the signal time window,

⇒ intrinsic background

Signal and background simulations for optimistic laser fluence

ECT* Trento

X-ray emission in the μ Au de-excitation

Transition (n→n')	Energy	Probability		
<u>2</u> →1	5.6 MeV	90%		
3→2	2.4 MeV	84%		
4→3	0.9 MeV	76%		

• target

Aldo Antognini

06.07.2018

• muon beam

Requirements:

- ▶ X-ray detection eff. > 50%
- False identification of $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$ as X-ray < 1x10⁻³

Beam line background suppression (to be investigated)

target

thermalisation

laser excitation

diffusion

X-ray detection

Aldo Antognini

The challenge: the laser system

Simulations of cavity started...

Challenges

- Wavelength: 6.7 μm
- Cryogenic temperatures
- Large laser fluence
- Toroidal geometry

(sparse laser technology)

- (coating stability?)
- (damage threshold, laser energy, reflectivity)

Summary of systematic

ECT* Trento 06.07.2018

HFS contributions and uncertainties

$$\Delta E_{\rm TPE} = \Delta E_{\rm Z} + \Delta E_{\rm Recoil} + \Delta E_{\rm pol}$$

Aldo Antognini

ECT* Trento

06.07.2018

Two main ways to the TPE

Dispersion relation+ data: $g_1(x,Q^2), g_2(x,Q^2), F_1, G_E...$

Chiral EFT Chiral + dispersion Carlson, Vanderhaeghen, Martynenko, Tomalak, Pascalutsa

Pascalutsa, Pineda, Peset Hagelstein

pion-production cross section:

06.07.2018

ECT*, Trento

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74, 2852 (2014).

Aldo Antognini

18

TPE: dispersion based approach

$$\begin{split} & \mathsf{Elastic part (Zemach)} \\ & \Delta_{Z} = \frac{8Z\alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q^{2}} \left[\frac{G_{E}(Q^{2})G_{M}(Q^{2})}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_{r}R_{Z}, \\ & \mathsf{Distler, Bernauer} \\ \\ & \mathsf{Recoil finite-size} \\ & \Delta_{\mathrm{recoil}} = \frac{Z\alpha}{\pi(1+\kappa)} \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q} \left\{ \frac{8mM}{Q} \frac{G_{M}(Q^{2})}{Q^{2}} \left(2F_{1}(Q^{2}) + \frac{F_{1}(Q^{2}) + 3F_{2}(Q^{2})}{(v_{l}+1)(v+1)} \right) \\ & - \frac{8m_{r}G_{M}(Q^{2})G_{E}(Q^{2})}{Q} - \frac{m}{M} \frac{5+4v_{l}}{(1+v_{l})^{2}} F_{2}^{2}(Q^{2}) \right\}. \end{split}$$

Aldo Antognini

Alternative approach

$$\Delta_{Z} = \frac{4\alpha m_{r}Q_{0}}{3\pi} \left(-r_{E}^{2} - r_{M}^{2} + \frac{r_{E}^{2}r_{M}^{2}}{18}Q_{0}^{2} \right) + \frac{8\alpha m_{r}}{\pi} \int_{Q_{0}}^{\infty} \frac{\mathrm{d}Q}{Q^{2}} \left(\frac{G_{M}\left(Q^{2}\right)G_{E}\left(Q^{2}\right)}{\mu_{P}} - 1 \right)$$

Tomalak

Polarisability

$$\Delta_{\text{pol.}} = \frac{Z\alpha m}{2\pi(1+\kappa)M} \left[\delta_1 + \delta_2\right] =$$

with:

$$\begin{split} \delta_{1} &= 2 \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q} \left(\frac{5 + 4v_{l}}{(v_{l}+1)^{2}} \left[4I_{1}(Q^{2})/Z^{2} + F_{2}^{2}(Q^{2}) \right] + \frac{8M^{2}}{Q^{2}} \int_{0}^{x_{0}} \mathrm{d}x \, g_{1}(x, Q^{2}) \\ &\left\{ \frac{4}{v_{l} + \sqrt{1 + x^{2}\tau^{-1}}} \left[1 + \frac{1}{2(v_{l}+1)(1 + \sqrt{1 + x^{2}\tau^{-1}})} \right] - \frac{5 + 4v_{l}}{(v_{l}+1)^{2}} \right\} \right), \\ &= 2 \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q} \left(\frac{5 + 4v_{l}}{(v_{l}+1)^{2}} \left[4I_{1}(Q^{2})/Z^{2} + F_{2}^{2}(Q^{2}) \right] - \frac{32M^{4}}{Q^{4}} \int_{0}^{x_{0}} \mathrm{d}x \, x^{2}g_{1}(x, Q^{2}) \\ &\left\{ \frac{1}{(v_{l} + \sqrt{1 + x^{2}\tau^{-1}})(1 + \sqrt{1 + x^{2}\tau^{-1}})(1 + v_{l})} \left[4 + \frac{1}{1 + \sqrt{1 + x^{2}\tau^{-1}}} + \frac{1}{v_{l} + 1} \right] \right\} \right) \end{split}$$
 Need also g_{1}, g_{2}
$$\delta_{2} &= 96M^{2} \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q^{3}} \int_{0}^{x_{0}} \mathrm{d}x \, g_{2}(x, Q^{2}) \left\{ \frac{1}{v_{l} + \sqrt{1 + x^{2}\tau^{-1}}} - \frac{1}{v_{l} + 1} \right\} \cdot \quad \text{Hagelstein, Pascalutsa, Carlson, Martynenko, Tomalak Faustov, Vanderhaegen....}$$

ECT* Trento 06.07.2018

TPE contribution on the market

	Δ , (ppm)	Δ_{Z}	$\Delta^{\mathrm{p}}_{\mathrm{R}}$	$\Delta_Z + \Delta_R^p$	Δ_0^{pol}	$\Delta_{ m HFS}$
	this work, $\mu H r_E, r_M^W$	-7415(84)	844(7)	-6571(87)	364(89)	-6207(127)
alak	this work, electron r_E , r_M^W	-7487(95)	844(7)	-6643(98)	364(89)	-6279(135)
Tom	this work, $\mu H r_E, r_M^e$	-7333(48)	846(6)	-6486(49)	364(89)	-6122(105)
	this work, electron r_E , r_M^e	-7406(56)	847(6)	-6559(57)	364(89)	-6195(109)
	Hagelstein et al. $[59]$				-61^{+70}_{-52}	
	Peset et al. $[29]$					-6247(109)
	Carlson et al. $[28, 39]$	-7587	835	-6752(180)	351(114)	-6401(213)
	Martynenko et al. $[38]$	-7180		-6656	410(80)	-6246(342)
	Pachucki [7]	-8024		-6358	0(658)	-6358(658)

Tomalak

TPE contribution on the market

	Δ , (ppm)	$\Delta_{\rm Z}$	$\Delta^{\mathrm{p}}_{\mathrm{R}}$	$\Delta_Z + \Delta_R^p$	Δ_0^{pol}	$\Delta_{ m HFS}$
	this work, $\mu H r_E, r_M^W$	-7415(84)	844(7)	-6571(87)	364(89)	-6207(127)
ıalak	this work, electron r_E, r_M^W	-7487(95)	844(7)	-6643(98)	364(89)	-6279(135)
Tom	this work, $\mu H r_E, r_M^e$	-7333(48)	846(6)	-6486(49)	364(89)	-6122(105)
	this work, electron r_E , r_M^e	-7406(56)	847(6)	-6559(57)	364(89)	-6195(109)
	Hagelstein et al. $[59]$				-61^{+70}_{-52}	
	Peset et al. $[29]$					-6247(109)
	Carlson et al. $[28, 39]$	-7587	835	-6752(180)	351(114)	-6401(213)
	Martynenko et al. $[38]$	-7180		-6656	410(80)	-6246(342)
	Pachucki [7]	-8024		-6358	0(658)	-6358(658)

Tomalak

All dispersive approaches needs to be re-evaluated with the new g₁ and g₂ data

TPE contribution on the market

	Δ , (ppm)	$\Delta_{\rm Z}$	$\Delta^{\mathrm{p}}_{\mathrm{R}}$	$\Delta_{\rm Z} + \Delta_{\rm R}^{\rm p}$	Δ_0^{pol}	$\Delta_{ m HFS}$
	this work, $\mu H r_E, r_M^W$	-7415(84)	844(7)	-6571(87)	364(89)	-6207(127)
ıalak	this work, electron r_E, r_M^W	-7487(95)	844(7)	-6643(98)	364(89)	-6279(135)
Tom	this work, $\mu H r_E, r_M^e$	-7333(48)	846(6)	-6486(49)	364(89)	-6122(105)
	this work, electron r_E , r_M^e	-7406(56)	847(6)	-6559(57)	364(89)	-6195(109)
	Hagelstein et al. $[59]$				-61^{+70}_{-52}	
	Peset et al. $[29]$					-6247(109)
	Carlson et al. $[28, 39]$	-7587	835	-6752(180)	351(114)	-6401(213)
	Martynenko et al. $[38]$	-7180		-6656	410(80)	-6246(342)
	Pachucki [7]	-8024		-6358	0(658)	-6358(658)

Interesting tension between dispersion-based and ChPT predictions

Tomalak

TPE: from H to µp

Recently predictions of the TPE contribution has been achieved scaling the results from the TPE measured in H with m_r and correcting for small deviations from this scaling.

Extract hydrogen TPE

$$\Delta E_{\rm HFS}^{\rm th}(H) = \Delta E_{\rm QED}^{\rm th}(H) + \Delta E_{\rm TPE}(H)$$
$$\Delta E_{\rm HFS}^{\rm th}(H) = \Delta E_{\rm HFS}^{\rm exp}(H)$$

Scale TPE from H to μp

Pineda & Peset Tomalak

$$\implies \Delta E_{\rm TPE}(H)$$

- HFS in H measured with 7x10⁻¹³ rel. acc.
- TPE contribution in H: 50 ppm of HFS

 $\Delta E_{\text{TPE}}(H) \implies \Delta E_{\text{TPE}}^{\text{th}}(\mu p) = \text{scaling}(\Delta E_{\text{TPE}}(H)) + \varepsilon$ $\bullet \text{ Model independent}$ $\bullet \text{ Smaller uncertainties than from "direct "calculations"}$

Aldo Antognini

ECT* Trento 06.07.2018

Recent values of the TPE

ECT* Trento 06.07.2018 24

Recent values of the TPE

ECT* Trento 06.07.2018 25

Meson exchanges

Hagelstein & Pascalutsa, arXiv 1511.0430

Cancellation: contribution is very small

Unanticipated large contributions. Needs to be verified by independent group. Already accounted in TPE?

06.07.2018

Trento

Dorokhov et al., PLB 776, 105 (2018)

Uncertainties and scanning range

Large BG/Signal ratio

Uncertainties and scanning range

Uncertainties and scanning range

Conclusions: wish list to find the line

QED

- check QED contributions in H to improve the TPE(H)
- higher-order QED corrections in µp
- Summary of all contributions would be very helpful (at 1 ppm level).

Is the meson exchange already included in the TPE computed with dispersion relations?

Zemach radius

- improve determination of Zemach radius, mainly through magnetic FF
- Study correlations R_z vs R_p

Polarisability contribution

- re-evaluate the pol contribution given the new g₁ and g₂ data
- improve chPT prediction also in view of interpretation of HFS measurement
- subtraction term really absent?

A TPE contribution with an accuracy of 25 ppm of HFS is needed to find the line