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From the 2S-2P to HFS measurements
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• 2S-2P μp
• 2S-2P μd
• 2S-2P  μ3He, μ4He
• 1S-HFS μp

• From 2S-2P
   → charge radii

• From HFS
   → Zemach radius  
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Hyperfine splitting theory and goals

Measure for the  first time the 1S-HFS in µp and µHe+

the 1S-HFS  in µp 
with 1-2 ppm accuracy

- TPE contribution with 3x10-4 rel. accuracy
- Zemach radius and polarisability contributions

GoalsMeasure

�Eth
HFS = 183.788(7) + 1.0040�ETPE [meV]

Pineda & Peset (2017)
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The principle of the 𝛍p HFS experiment
(1) Formation

µp atom
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(2) Laser excitation (3) Detection
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• Laser pulse: µp(F=0)�!µp (F=1)
• Collision: µp(F=1)+ H2 �! H2 +µp(F=0) + Ekin

• Di↵usion: the faster µp reach the target walls
• Resonance: plot number of X-rays vs. frequency
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

𝝅E5 area 𝝅E5 beam line

• Muon rate (11 MeV/c, D=10 mm):    500 1/s 
• Electron background                   :      large   
• Rate and bg not fully understood 
• Improvement of separator ongoing        

Preliminary measurements using “compact muon beam”
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

Target window 

• Length            :  1-3      mm 
• Pressure         :  0.5-2   bar     
• Temperature   :  30-50  K

Stopping probability:  10-20 %

Stopping probability  & Target

cavity H2

μ−
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

• Stopped μ- form μp in 
highly excited state

• During the de-excitation 
to the ground state, the 
μp win kinetic energy

• μp thermalise through 
collision with H2 gas

• A considerable fraction 
of μp  reach the target 
walls prior the laser 
pulse

μp density distribution in target  

μp kinetic energy evolution
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

Laser spectroscopy of the ground state hyperfine structure in

muonic hydrogen and helium

Pedro Amaro, José Paulo Santos

February 7, 2017

1 Introduction

In this report, we evaluate several quantities of interest for the upcoming experiments of the CREMA
collaboration, which are focused on measuring the ground-sate hyperfine structure of muonic hydrogen,
as well as helium-3. Starting from the Bloch equations, we evaluate the excitation rate, probability of
excitation and saturation fluencies for several transitions. Analytical values are provided under assump-
tion of a constant laser intensity field and stable populations of states, as well as numerical results for a
given time window.

2 Theoretical description

2.1 Optical Bloch equations
In calculating the optical excitation of a two-state system, it is often used the density matrix ⇢ defined
as [1]

⇢ =

✓
⇢11 ⇢12
⇢21 ⇢22

◆
, (1)

where the diagonal terms ⇢11 = N1/N = |C1(t)|2 and ⇢22 = N2/N = |C2(t)|2 contain the population
fraction in first and second states. Here, C2(t) and C2(t) are the complex coefficients of the linear
superposition of the total time-dependent wavefunction. The offdiagonal terms, or coherences, are given
in terms of these coefficients by ⇢12 = C1(t)C2(t)⇤ = ⇢⇤21.

Equations of motion for the matrix elements ⇢ can be found by solving the time-dependent Schoedinger
equation, which are given by [1]

d⇢11
dt

= �d⇢22
dt

,

d⇢22
dt

= � i

2

⇣
$⇢12e

i(!r�!)t �$⇤⇢⇤12e
�i(!r�!)t

⌘
� �⇢22 ,

d⇢12
dt

=

i$⇤

2

(1� 2⇢22)e
�i(!r�!)t � �

0

2

⇢12 , (2)

1

Optical Bloch equations
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion
  

therm
alised μp

Transport cross section 
μp(F=0)+H2 → μp(F=0)+H2

laser excited μp

R =

r
vt

�transN

μp diffusion radius
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

Signal and background simulations for optimistic laser fluence
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Thermalised μp close to 
the target wall may 
diffuse to to the target 
walls in the signal time  
window,

 intrinsic background

(only diffusion BG)
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

X-ray emission in the µAu de-excitation

Z

µ-

X	ray
O(MeV)

e

e

X-ray

X-ray

X-ray

μp

Transition (n→n’) Energy Probability
2→1 5.6 MeV 90%
3→2 2.4 MeV 84%
4→3 0.9 MeV 76%

µp + Au ! (µAu)⇤ + p
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The experimental principle
• muon beam

• target

• thermalisation

• X-ray detection

• laser excitation

• diffusion

cavity H2

μ−

X-ray detector

X-ray detection eff.  > 50%

False identification of                            as X-ray < 1x10-3 

Beam line background suppression (to be investigated)

µ� ! e� ⌫̄e ⌫µ

Requirements:
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The challenge: the laser system
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Thin-disk laser
500 mJ, 500 Hz, 500 ns delay 

single frequency

OPO+OPAs

2 kW pump
969 nm

cw diode

1030 nm

cw diode
1785 nm

staged approach
5 mJ 
6.7 μm 

1030 nm

SHG
Thin-disk laser

500 mJ, 500 Hz, 500 ns delay 
single frequency

OPO+OPAs

2 kW pump
969 nm

cw diode

1030 nm

cw diode
930 nm

staged approach
50 mJ 
930 nm 

1030 nm

515 nm

µp

µHeThin-disk laser technology 

Parametric down-conversion stages

Multi-pass enhancement cavity• delay time: 1 μs
• stochastic trigger
• energy: 5 mJ    (Pump 500 mJ)
• repetition rate: 200 1/s
• wavelength: 6.7 μm
• line width: < 100 MHz

Challenges
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Simulations of cavity started…

Wavelength:  6.7 μm            (sparse laser technology)
Cryogenic temperatures       (coating stability?)
Large laser fluence               (damage threshold, laser energy, reflectivity)
Toroidal geometry

Challenges
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Summary of systematic

=0
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HFS contributions and uncertainties

�E
TPE

= �E
Z

+�E
Recoil

+�E
pol

�Eth
HFS = �EFermi

h
1+ �EQED +�EhVP +�Eweak +�ETPE +�Emesons

i

Double counting ?

=182.6 meV

?
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Two main ways to the TPE
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Dinur, Ji, Barnea, 

Carlson,  
Vanderhaeghen,
Martynenko,
Tomalak,
Pascalutsa

Dispersion relation+ data: 
g1(x,Q2), g2(x,Q2), F1, GE…

Chiral Dynamics (LO)

pion-production cross section:

(A) (B) (C)

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74, 2852 (2014).

1. Proton-Polarizability Contribution at Order ↵5

Eur. Phys. J. C (2014) 74:2852 Page 3 of 10 2852

Fig. 1 The two-photon
exchange diagrams of elastic
lepton–nucleon scattering
calculated in this work in the
zero-energy (threshold)
kinematics. Diagrams obtained
from these by crossing and
time-reversal symmetry are
included but not drawn

(b) (c)(a)

(d) (e) (f)

(g) (h) (j)

of two scalar amplitudes:

T µν(P, q) = −gµν T1(ν
2, Q2) + Pµ Pν

M2
p

T2(ν
2, Q2), (5)

with P the proton 4-momentum, ν = P ·q/Mp, Q2 = −q2,
P2 = M2

p. Note that the scalar amplitudes T1,2 are even
functions of both the photon energy ν and the virtuality Q.
Terms proportional to qµ or qν are omitted because they
vanish upon contraction with the lepton tensor.

Going back to the energy shift one obtains [12]:

"EnS = αem φ2
n

4π3mℓ

1
i

∫
d3q

∞∫

0

dν

× (Q2 − 2ν2) T1(ν
2, Q2) − (Q2 + ν2) T2(ν

2, Q2)

Q4[(Q4/4m2
ℓ) − ν2] . (6)

In this work we calculate the functions T1 and T2 by
extending the BχPT calculation of real Compton scatter-
ing [26] to the case of virtual photons. We then split the
amplitudes into the Born (B) and non-Born (NB) pieces:

Ti = T (B)
i + T (NB)

i . (7)

The Born part is defined in terms of the elastic nucleon form
factors as in, e.g. [13,27]:

T (B)
1 = 4παem

Mp

[
Q4(FD(Q2)+FP (Q2))2

Q4−4M2
pν

2 −F2
D(Q2)

]

, (8a)

T (B)
2 = 16παem Mp Q2

Q4 − 4M2
pν

2

[

F2
D(Q2)+ Q2

4M2
p

F2
P (Q2)

]

. (8b)

In our calculation the Born part was separated by subtract-
ing the on-shell γ N N pion loop vertex in the one-particle-
reducible VVCS graphs; see diagrams (b) and (c) in Fig. 1.

Focusing on the O(p3) corrections (i.e., the VVCS amplitude
corresponding to the graphs in Fig. 1) we have explicitly ver-
ified that the resulting NB amplitudes satisfy the dispersive
sum rules [28]:

T (NB)
1 (ν2, Q2)

= T (NB)
1 (0, Q2) + 2ν2

π

∞∫

ν0

dν′ σT (ν′, Q2)

ν′2 − ν2 , (9a)

T (NB)
2 (ν2, Q2)

= 2
π

∞∫

ν0

dν′ ν′ 2 Q2

ν′2 + Q2

σT (ν′, Q2) + σL(ν′, Q2)

ν′2 − ν2 , (9b)

with ν0 = mπ + (m2
π + Q2)/(2Mp) the pion-production

threshold, mπ the pion mass, and σT (L) the tree-level cross
section of pion production off the proton induced by trans-
verse (longitudinal) virtual photons, cf. Appendix B. We
hence establish that one is to calculate the ‘elastic’ con-
tribution from the Born part of the VVCS amplitudes and
the ‘polarizability’ contribution from the non-Born part,
in accordance with the procedure advocated by Birse and
McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (6) we
obtain the following value for the polarizability correction:

"E (pol)
2S = −8.16 µeV. (10)

This is quite different from the corresponding HBχPT result
for this effect obtained by Nevado and Pineda [11]:

"E (pol)
2S (LO-HBχPT) = −18.45 µeV. (11)

We postpone a detailed discussion of this difference till
Sect. 4.

123

Figure VI.2.: The two-photon-exchange diagrams with chiral loops. Figure taken from Ref. [177].

Anticipating the result of this Section, the NLO BChPT prediction of the order-↵5 proton-
polarizability contribution to the LS in µH evaluates to:

Epol.
LS (µH) = 4.9+2.0

�1.3 µeV, (VI.3)

where the contribution of the subtraction function equals:

Esubtr.
LS (µH) = �5.8 ± 2.3 µeV, (VI.4a)

Einel.
LS (µH) = 10.7+2.3

�2.1 µeV. (VI.4b)

The latter compares best to the result of Ref. [175]. In general, the BChPT prediction compares
in a satisfactory manner with the dispersive calculations, see Fig. VI.1.

Based on the elastic FF parametrization of Bradford et al. [316], the Born contribution of
TPE amounts to:

EBorn
LS (µH) = 22.9 ± 1.7 µeV, (VI.5)

where we estimated the error by taking the spread of di↵erent FF fits [112, 113]. Our final result
for the forward TPE e↵ect then reads:

ETPE
LS (µH) = 27.8+2.6

�2.1 µeV. (VI.6)

In the following, we present the individual contributions from chiral loops and the �-exchange.
Afterwards, we will compare to HBChPT and dispersive calculations. Tables VI.3 and VI.4
summarize relevant calculations of the TPE corrections to the µH LS performed by various
authors.

1.1. Chiral Loops

In the �-expansion of ChPT, the LO polarizability contribution is given by the TPE diagrams
with chiral loops, shown in Fig. VI.2. They were calculated in Ref. [177] with the results given in
Table VI.3. Note that the VVCS structures in Figures IV.2 and VI.2 di↵er due to a redefinition
of the nucleon field,1 which is described in Ref. [58, Section 3.1].

Alarcón et al. [177] established the LEX in Eq. (VI.1) as a very good approximation for the
TPE polarizability e↵ect in the LS. The high-energy contribution to their result was found

1
N ! ⇠N with ⇠ = exp (igA⇡a⌧a�5

/2f⇡)

155

2γ exchange with pion-nucleon loops:

Franziska Hagelstein, AEC Uni Bern

Eh⇡Ni pol.
LS (µH) = 8.2+2.5

�1.2 µeV

Eh⇡Ni pol.
HFS (2S, µH) = 0.85+0.85

�1.08 µeV
<latexit sha1_base64="76PkRai1uBqfmEpSzp4rHfEh7Hk="></latexit><latexit sha1_base64="76PkRai1uBqfmEpSzp4rHfEh7Hk="></latexit><latexit sha1_base64="76PkRai1uBqfmEpSzp4rHfEh7Hk="></latexit><latexit sha1_base64="76PkRai1uBqfmEpSzp4rHfEh7Hk="></latexit>

Chiral EFT
Chiral + dispersion

Pascalutsa,
Pineda, Peset
Hagelstein
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TPE: dispersion based approach

1. Structure E↵ects Through Forward Two-Photon Exchange

We are interested in the proton-structure correction, which in turn splits into three terms: Zemach
radius, recoil, and polarizability contributions:

�structure = �Z + �recoil + �pol. . (V.31)

Let us now specify the decomposition of the structure-dependent correction into the three terms of
Eq. (V.31). An examination of di↵erent decompositions of the TPE e↵ect can be found in Ref. [409].
The formalism presented by us is consistent with the choice of Carlson et al. [409].

1.6.1. Born Contribution

As stated earlier, the master formulae in Section V.1.2 contain all the structure e↵ects to order
(Z↵)5, i.e., also the Fermi energy, which has to be subtracted in the following. The TPE Born
contribution to the HFS splits into the Zemach radius contribution [269]:

�Z =
8Z↵mr

⇡

ˆ 1

0

dQ

Q2



GE(Q2)GM (Q2)

1 + 
� 1

�

⌘ �2Z↵mrRZ, (V.32)

and a recoil-type of correction:

�recoil =
Z↵

⇡(1 + )

ˆ 1

0

dQ

Q

⇢

8mM

vl + v

GM (Q2)

Q2

✓

2F1(Q
2) +

F1(Q2) + 3F2(Q2)

(vl + 1)(v + 1)

◆

�8mr GM (Q2)GE(Q2)

Q
� m

M

5 + 4vl
(1 + vl)2

F 2
2 (Q2)

�

. (V.33)

In contrast to the Zemach radius term, the recoil corrections are not zero in the static limit of the
elastic FFs.

1.6.2. Polarizability Contribution

In the polarizability contribution, we separate contributions due to the spin-dependent structure
functions g1 and g2:

�pol. =
Z↵m

2⇡(1 + )M
[�1 + �2] = �1 + �2, (V.34a)

with:

�1 = 2

ˆ 1

0

dQ

Q

✓

5 + 4vl
(vl + 1)2

⇥

4I1(Q
2)/Z2 + F 2

2 (Q2)
⇤

+
8M2

Q2

ˆ x0

0
dx g1(x, Q2) (V.34b)

⇢

4

vl +
p

1 + x2⌧�1



1 +
1

2(vl + 1)(1 +
p

1 + x2⌧�1)

�

� 5 + 4vl
(vl + 1)2

�◆

,

= 2

ˆ 1

0

dQ

Q

✓

5 + 4vl
(vl + 1)2

⇥

4I1(Q
2)/Z2 + F 2

2 (Q2)
⇤

� 32M4

Q4

ˆ x0

0
dx x2g1(x, Q2) (V.34c)

⇢

1

(vl +
p

1 + x2⌧�1)(1 +
p

1 + x2⌧�1)(1 + vl)



4 +
1

1 +
p

1 + x2⌧�1
+

1

vl + 1

��◆

,

�2 = 96M2
ˆ 1

0

dQ

Q3

ˆ x0

0
dx g2(x, Q2)

⇢

1

vl +
p

1 + x2⌧�1
� 1

vl + 1

�

. (V.34d)
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In the polarizability contribution, we separate contributions due to the spin-dependent structure
functions g1 and g2:
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1. Structure E↵ects Through Forward Two-Photon Exchange

We are interested in the proton-structure correction, which in turn splits into three terms: Zemach
radius, recoil, and polarizability contributions:

�structure = �Z + �recoil + �pol. . (V.31)

Let us now specify the decomposition of the structure-dependent correction into the three terms of
Eq. (V.31). An examination of di↵erent decompositions of the TPE e↵ect can be found in Ref. [409].
The formalism presented by us is consistent with the choice of Carlson et al. [409].

1.6.1. Born Contribution

As stated earlier, the master formulae in Section V.1.2 contain all the structure e↵ects to order
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�Z =
8Z↵mr

⇡

ˆ 1

0

dQ

Q2



GE(Q2)GM (Q2)

1 + 
� 1

�

⌘ �2Z↵mrRZ, (V.32)

and a recoil-type of correction:

�recoil =
Z↵

⇡(1 + )

ˆ 1

0

dQ

Q

⇢

8mM

vl + v

GM (Q2)

Q2

✓

2F1(Q
2) +

F1(Q2) + 3F2(Q2)

(vl + 1)(v + 1)

◆

�8mr GM (Q2)GE(Q2)

Q
� m

M

5 + 4vl
(1 + vl)2

F 2
2 (Q2)

�

. (V.33)

In contrast to the Zemach radius term, the recoil corrections are not zero in the static limit of the
elastic FFs.

1.6.2. Polarizability Contribution

In the polarizability contribution, we separate contributions due to the spin-dependent structure
functions g1 and g2:

�pol. =
Z↵m

2⇡(1 + )M
[�1 + �2] = �1 + �2, (V.34a)

with:

�1 = 2

ˆ 1

0

dQ

Q

✓

5 + 4vl
(vl + 1)2

⇥

4I1(Q
2)/Z2 + F 2

2 (Q2)
⇤

+
8M2

Q2

ˆ x0

0
dx g1(x, Q2) (V.34b)

⇢

4

vl +
p

1 + x2⌧�1



1 +
1

2(vl + 1)(1 +
p

1 + x2⌧�1)

�

� 5 + 4vl
(vl + 1)2

�◆

,

= 2

ˆ 1

0

dQ

Q

✓

5 + 4vl
(vl + 1)2

⇥

4I1(Q
2)/Z2 + F 2

2 (Q2)
⇤

� 32M4

Q4

ˆ x0

0
dx x2g1(x, Q2) (V.34c)

⇢

1

(vl +
p

1 + x2⌧�1)(1 +
p

1 + x2⌧�1)(1 + vl)



4 +
1

1 +
p

1 + x2⌧�1
+

1

vl + 1

��◆

,

�2 = 96M2
ˆ 1

0

dQ

Q3

ˆ x0

0
dx g2(x, Q2)

⇢

1

vl +
p

1 + x2⌧�1
� 1

vl + 1

�

. (V.34d)

147

4

�p
R =

↵

⇡µ

P

1̂

0

dQ2

Q

2

⇢
[2 + ⇢ (⌧

l

) ⇢ (⌧
P

)]F
D

(Q2) + 3⇢ (⌧
l

) ⇢ (⌧
P

)F
P

(Q2)
p
⌧

P

p
1 + ⌧

l

+
p
⌧

l

p
1 + ⌧

P

� 4m
r

Q

G

E

�
Q

2
��

⇥G

M

�
Q

2
�
� ↵

⇡µ

P

m

M

1̂

0

dQ

Q

⇢(⌧
l

) (⇢(⌧
l

)� 4)F 2
P

�
Q

2
�
, (5)

�pol =
2↵

⇡µ

P

1̂

0

dQ2

Q

2

1̂

⌫

inel
thr

d⌫
�

⌫

�

[2 + ⇢ (⌧
l

) ⇢ (⌧̃)] g1 (⌫�, Q2)� 3⇢ (⌧
l

) ⇢ (⌧̃) g2 (⌫�, Q2) /⌧̃p
⌧̃

p
1 + ⌧

l

+
p
⌧

l

p
1 + ⌧̃

+
↵

⇡µ

P

m

M

1̂

0

dQ

Q

⇢(⌧
l

) (⇢(⌧
l

)� 4)F 2
P

�
Q

2
�
, (6)

with the photon energy ⌫

�

and the photon virtuality Q

2. F
D

(Q2), F
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(Q2), G
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(Q2), G
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are the Dirac, Pauli, Sachs electric and magnetic proton form factors (FFs), g1 (⌫�, Q2)

and g2 (⌫�, Q2) are the spin-dependent inelastic proton structure functions. The following
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In the following sections, we evaluate the contributions of Eqs. (4)-(6) separately per-

forming the low-energy expansion in the region of low photon virtuality.

A. Zemach and recoil correction evaluation

The Zemach correction can be evaluated accounting for the measured values of the proton

charge and magnetic radii. We split the Q-integration in the Zemach contribution at the

small enough scale Q0 and exploit the radii expansion at low Q

2 [47], thus
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with the approximate value Q0 ⇠ 0.1� 0.2 GeV and the definition of the proton radii:
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C. Comparison with literature

In Table IV 2 we compare our results for di↵erent HFS contributions to the previous

evaluations of Refs. [7, 28, 29, 37–40, 59], where we have subtracted the recoil correction of

order ↵

2 [28, 39], the radiative correction to the Zemach contribution [28, 29, 39] and the

convention conversion correction of Ref. [28] when it is needed [37, 38]. The absolute value

of the Zemach contribution is smaller than results of previous estimates [28, 39, 61] based

on the existing form factors parametrizations before the A1/MAMI data, which has a larger

value of the magnetic form factor at low-Q2 region. The recoil correction is in reasonable

agreement with other estimates [28, 59]. The polarizability correction is in good agreement

with dispersive calculations, though all dispersive results are in contradiction to the ChPT

prediction.

�, (ppm) �Z �p
R �Z +�p

R �pol
0 �HFS

this work, µH r
E

, rW
M

�7415(84) 844(7) �6571(87) 364(89) �6207(127)

this work, electron r
E

, rW
M

�7487(95) 844(7) �6643(98) 364(89) �6279(135)

this work, µH r
E

, re
M

�7333(48) 846(6) �6486(49) 364(89) �6122(105)

this work, electron r
E

, re
M

�7406(56) 847(6) �6559(57) 364(89) �6195(109)

Hagelstein et al. [59] �61+70
�52

Peset et al. [29] �6247(109)

Carlson et al. [28, 39] �7587 835 �6752(180) 351(114) �6401(213)

Martynenko et al. [38] �7180 �6656 410(80) �6246(342)

Pachucki [7] �8024 �6358 0(658) �6358(658)

TABLE IV: Two-photon exchange contribution to the S-level hyperfine splitting in µH.

We finish the comparison to previous results for the total HFS correction in Fig. 4. The

di↵erence from Refs. [28, 39] is mainly due to the smaller value of the Zemach radius in our

evaluation. The smaller value of the polarizability contribution in Refs. [40, 59] causes the

largest discrepancy to our results.

2 The errors of �Z, �
p
R, �

pol
0 , �Z + �p

R and �HFS are strongly correlated. Therefore, we evaluate them

separately.

Tomalak
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m
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ak

TPE contribution on the market
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TPE: from H to μp
Recently predictions of the TPE 
contribution has been achieved 
scaling the results from the TPE 
measured in H with mr and correcting 
for small deviations from this scaling. 

Pineda & Peset
Tomalak

(
�Eth

HFS(H) = �Eth
QED(H) +�ETPE(H)

�Eth
HFS(H) = �Eexp

HFS(H)
=) �ETPE(H)

�ETPE(H) =) �Eth
TPE(µp) = scaling(�ETPE(H)) + "

Extract hydrogen TPE 

Scale TPE from H to μp

HFS in H measured with 
7x10-13 rel. acc.
TPE contribution in H: 50 ppm 
of HFS

Model independent
Smaller uncertainties than 
from “direct “calculations
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Recent values of the TPE
using TPE from H
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Recent values of the TPE
using TPE from H
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Meson exchanges 

106 A.E. Dorokhov et al. / Physics Letters B 776 (2018) 105–110

Fig. 1. Muon–proton interaction induced by mesonic exchange.

Fig. 2. Coupling of axial-vector mesons to two photons.

muonic hydrogen. The potential of hyperfine interaction has the 
following form [14]:

!V hf s
B = 8παµp

3mµmp
(SpSµ)δ(r) −

αµp(1 + aµ)

mµmpr3

[
(SpSµ) − 3(Spn)(Spn)

]
+

αµp

mµmpr3

[
1 + mµ

mp
− mµ

2mpµp

]
(LSp)

(1)

where mµ , Sµ and mp , Sp are masses and spins of muon and pro-
ton, correspondingly, µp is the proton magnetic moment. The po-
tential (1) gives the main contribution of order α4 to the hyperfine 
structure of muonic atom. Precision calculation of the hyperfine 
structure of the spectrum, which is necessary for a comparison 
with experimental data, requires the consideration of various cor-
rections to the vacuum polarization, nuclear structure and recoil, 
and relativistic corrections [14–17]. We calculate further the con-
tribution to HFS which is determined by the axial-vector f1(1285), 
a1(1260) and f1(1420) meson exchanges shown in Fig. 1 (right).

The coupling of the axial-vector meson to two photon state is 
possible through anomalous triangle diagram, shown in Fig. 2. The 
general structure of this vertex takes the form [18–20]:

T µνα = 4π iα ερστα

{[
ν

(
A3kτ

1 − Ã3kτ
2

)
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2 A4kτ
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−k2
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2 kρ

1 kσ
2 gτν
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2kρ

1 kσ
2 gτµ − Ã4kµ

1 kρ
1 kσ

2 gτν
}
. (2)

where Ai ≡ Ai(t2, k2
1, k2

2), Ãi ≡ Ai(t2, k2
2, k

2
1). Another form of the 

tensor describing the transition from initial state of two virtual 
photons with four-momenta k1, k2 to an axial-vector meson A
( J P C = 1++) with the mass M A is presented in [21]1:

T µνα = 4π iαερστα

×
[

Rµρ(k1,k2)Rνσ (k1,k2)(k1 − k2)
τ ν F (0)

Aγ ∗γ ∗(k2
1,k2

2) +

1 The only difference between our expression (3) and their work is related to the 
normalized factor 1/M2

A used in [21].
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, (3)

ν = (k1k2) = 1
2
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1 − k2
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2
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= −gµν + 1
X
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.

The relation between Ai , Ãi and form factors in (3) is the fol-
lowing:

F (1)
Aγ ∗γ ∗(t2,k2

1,k2
2) = ν

X

[
k2

2( Ã3 − A4) + ν( Ã4 − A3)
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, (4)
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The form factors F (0)
Aγ ∗γ ∗ (k2

1, k
2
2) and F (1)

Aγ ∗γ ∗ (k2
1, k

2
2) entering in (3)

are dependent on the squares of the 4-momenta of virtual pho-
tons. With increasing k2

1, k2
2, these functions must decrease rapidly 

to ensure the ultraviolet convergence of the loop integral in the 
interaction amplitude.

We should mention that in the opposite to the case of pion 
coupling to two photons, axial-vector meson can not decay into 
two real photons, according to the Landau–Yang theorem [22,23]. 
Nevertheless, the coupling of 1++ mesons to two photons is still 
possible in the case when one or both photons are virtual. For 
small values of relative momenta of particles in the initial and final 
states and small value of transfer momentum t between muon and 
proton, the transition amplitude presented in (2) takes a simple 
form

T µνα = 8π iαεµνατ kτ k2 F (0)
AV γ ∗γ ∗(t2,k2,k2), (5)

where k = k1 = −k2. To extract HFS part of the interaction in the 
case of the S-states the following projection operators are used for 
states with spin S = 0 and S = 1 [24]:

+̂S=0[u(0)v̄(0)]S=0 = 1 + γ 0

2
√

2
γ5,

+̂S=1[u(0)v̄(0)]S=1 = 1 + γ 0

2
√

2
ε̂, (6)

where εµ is the polarization vector of 3 S1 state. The amplitude 
of the muon–proton interaction presented in Fig. 1 (right) has the 
following structure:

iM = [l̄(q1),
(µ)
α l(p1)]Dαβ(t)[N̄(p2),

(p)
β N(q2)], (7)

where the vertex operator in the proton line is fixed by the Hamil-
tonian of nucleon-axial-vector meson interaction

H I (a1N N) = ga1 N N N̄τγµγ5Naµ
1 , (8)

for a1 exchange and

H I ( f1N N) = g f1 N N N̄γµγ5N f µ
1 (9)

VII. Hyperfine Splitting in Chiral Perturbation Theory
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4. Neutral-Pion-Exchange Contribution to the Hyperfine Splitting

l

N

� 0

(a) (b)

Figure VII.4.: Neutral-pion exchange in atomic bound states.

The neutral-pion exchange between a lepton (`) and a nucleon (N) is shown in Fig. VII.4. In
Feynman diagram (a) the pion couples directly to the lepton, while in diagram (b) it couples
through two photons.

We calculate the pion-exchange diagrams in the framework of ChPT. The pion coupling to the
nucleon is described by the Lagrangian in Eq. (IV.25a). The coupling of the pion to the lepton is
of pseudo-vector type, it can be described by the Lagrangian:

L⇡`` = �↵2g⇡``
2m

¯̀�µ�5` @µ⇡0, (VII.22)

where ` is the lepton field and m is the mass of the lepton. Other relevant Feynman rules are given
in Appendix IV.A.

Let us first focus on diagram (a) and later generalize to include diagram (b). In Chapter II, we
derived the Breit potential from OPE. In the same fashion, we can get the pion-exchange potential.
In momentum-space, we find:

V⇡0(q) =
�

2Ek 2Ek0 2Ep 2Ep0
��1/2 ⇥

ū(k0)�⇡``(q) u(k)
⇤ 1

q2 � m2
⇡

⇥

N(p0)�⇡NN (q) N(p)
⇤

,

Figure VII.5.: Leading contributions to the ⇡`` interaction.
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Cancellation:
contribution is very small

Unanticipated large 
contributions. Needs to 
be verified by 
independent group.
Already accounted in 
TPE?
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Uncertainties and scanning range

Large BG/Signal ratio
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Uncertainties and scanning range

Large scan range



Aldo Antognini ECT* Trento       06.07.2018 29

Uncertainties and scanning range

Need to search the line with 
steps of 0.1 GHz 

      (2 ppm of HFS)
8 hours per step

   Search time must be 
< 50 days

BUT ∓3σ range = 0.17 meV
                          = 930 ppm  
                          = 42 GHz  
    450 points
    160 days (80% up time)
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Conclusions: wish list to find the line

QED

check QED contributions in H to 
improve the TPE(H)
higher-order QED corrections in μp     
Summary of all contributions would 
be very helpful  (at 1 ppm level).

A TPE contribution with an 
accuracy of 25 ppm of HFS 
is needed to find the line

Zemach radius

improve determination of 
Zemach radius, mainly through 
magnetic FF
Study correlations Rz vs Rp

Polarisability contribution

re-evaluate the pol contribution 
given the new g1 and g2 data
improve chPT prediction also in 
view of interpretation of HFS 
measurement
subtraction term really absent?

Is the meson exchange already included in 
the TPE computed with dispersion relations?


