Vector polarizability

QED theory of hyperfine structure

Krzysztof Pachucki

University of Warsaw

Nucleon Spin Structure at Low Q: A Hyperfine View ECT Trento, July 2-6, 2018

Introduction ●○○	QED theory of hfs in H	Vector polarizability	Li hfs
QED theory o	f compound parti	cles	

- Proton radius puzzle: how come r_{ρ} from (electronic) H differs by 4% from that of μ H?
- High precision test of the lepton universality by comparison of hfs in eH and μH, and as well as in other systems
- QED of point particles with the anomalous magnetic moment is not renormalizable
- Nontrivial QED expansion the for finite size particles
- One can not separate QED from the nuclear structure effects in hfs
- Little progress in accurate calculation of nuclear structure effects for nuclei ≠ p
- Cancellation between elastic and inelastic contributions
- Several misconceptions and missing contributions: (inelastic) three photon exchange

Vector polarizability

Measurements of atomic properties

Measurement of transition frequencies can be very accurate [Garching, 2013]

- $\nu (1S 2S)_{\rm H} = 2466\,061\,413\,187\,018(11)\,{\rm Hz}$
- sensitive to the nuclear size and to the nuclear polarizability
- from $\nu (1S 2S)_{H-D}$: $r_d^2 r_p^2 = 3.82007(65) \text{ fm}^2$

Another example: hydrogen(-like) hyperfine splitting:

•
$$\nu(H) = 1\,420\,405\,751.768(1)$$
 Hz, $\frac{\nu_{exp} - \nu_{QED}}{\nu_F} = -33$ ppm

•
$$\nu(D) = 327\,384\,352.522\,2(17)$$
 Hz, $\frac{\nu_{exp} - \nu_{OED}}{\nu_{F}} = 138$ ppm

•
$$\nu({}^{3}\text{He}^{+}) = -8\,665\,649\,867(10)$$
 Hz, $\frac{\nu_{exp} - \nu_{QED}}{\nu_{F}} = -213$ ppm

Proton charge radius puzzle

•
$$\delta_{\rm fs} E = (2 \pi \alpha/3) \phi^2(0) \langle r_\rho^2 \rangle$$

- H(2S 4P) by Maisenbacher *et al*, Garching (2017), $r_p = 0.8335(95)$ fm, (in agreement with μ H)
- H(1S 3S) by Fleurbaey *et al*, Paris (2018), $r_p = 0.877(13)$ fm, (in agreement with the previous *e*H)
- *H*(1*S* 3*S*) by Matveev *et al*, Garching, announced on PSAS (2018), *r_p* = ... fm, (in agreement with μH)
- If the hydrogen spectroscopy gets into an agreement with μH, what is the impact on interpretation of e-p scattering data and on hfs predictions ?

QED theory of hfs in H

Vector polarizability

Li hfs

QED theory of hfs in H

- $E_{\rm hfs} = E_{\rm hfs}(\alpha, m/M, r_E, g_N, \ldots)$
- power expansion in α at constant values of nuclear parameters (which in principle depend on α)
- $E_{\rm hfs}(\alpha) = E^{(4)} + E^{(5)} + E^{(6)} + E^{(7)} + o(\alpha^8)$
- $E^{(4)}$ corresponds to 1γ , $E^{(5)}$ corresponds to 2γ , $E^{(6)}$ corresponds to 3∞ , γ , and so on
- a convenient collection of expansion terms involve α and Z α, to distinguish exchange from self-energy photons

QED theory of hfs in H

Vector polarizability

Li hfs 00

Nonrecoil, point nucleus QED

•
$$E_{\rm hfs}(\alpha, Z\alpha) = E_{\rm hfs}(Z\alpha) + \alpha E_{\rm hfs}^{(1)}(Z\alpha) + \alpha^2 E_{\rm hfs}^{(2)}(Z\alpha) + O(\alpha^3)$$

•
$$E_F = \frac{8}{3} (Z \alpha)^4 (1 + \kappa) \frac{\mu^3}{mM} c^2$$
, for both $s = 1/2$.

• The electrom magnetic moment anomaly to all orders $\delta E_{\rm hfs} = a_e E_F$

•
$$E_{\rm hfs} = \langle \bar{\psi} | e \, \vec{\gamma} \cdot \vec{A}_I | \psi \rangle = E_F \left(1 + \frac{3}{2} \, (Z \, \alpha)^2 + \frac{17}{8} \, (Z \, \alpha)^4 + \dots \right)$$

• $E_{\rm hfs}^{(1)} = e^2 \, \int \frac{d^4 k}{(2 \, \pi)^4 \, i} \, \frac{1}{k^2} \delta_{\rm hfs} \langle \bar{\psi} | \gamma^\mu \, \frac{1}{g - k - \gamma^0 \, V - m} \gamma_\mu | \psi \rangle$

$$E_{\rm hfs}^{(1)} = E_F \left[lpha \left(Z \, lpha
ight) \left(\ln 2 - \frac{13}{4}
ight) + lpha \left(Z \, lpha
ight)^2 \ldots
ight]$$
, beyond amm

•
$$E_{\rm hfs}^{(2)} = E_F \, \alpha^2 \, (Z \, \alpha) \dots$$
, beyond amm

• all α^3 corrections (in external field approximation) are known

Int	rod	uc	tio	n
00	oc			

Nonrecoil, finite size nucleus

- \vec{A}_l and V includes finite nuclear size (elastic formfactors only) and all initial formulas hold
- The leading order (in α) correction is given by the Zemach radius $\delta_Z E^{(5)} = -2(Z\alpha) m r_Z E_F$, where $r_Z = \int d^3r d^3r' \rho_E(r) \rho_M(r') |\vec{r} \vec{r}'|$
- O(Z α)³ finite size correction are obtained numerically (Indelicato)
- radiative finite size corrections ~ *E_F* α (*Z* α)... (KP, Eides, Martynenko)

Recoil, finite size, nuclear pola	rizability	
Introduction QED theory of hts in H 000 000●	0000000	Li hts 00

- Complete treatment of the two-photon exchange $\sim (Z \alpha) E_F$: $\delta E = \delta_Z E + \delta_R E + \delta_{pol} E = \Delta E_F$, for μ H: $\Delta = -6201(20)ppm$ (Tomalak 2017), (many works, next talks)
- three photon exchange with recoil

$$\delta E = (Z\alpha)^2 \frac{\mu^2}{mM} \tilde{E}_F \left\{ \left[2(1+\kappa) + \frac{7\kappa^2}{4} \right] \ln(Z\alpha)^{-1} - \left[8(1+\kappa) - \frac{\kappa(12-11\kappa)}{4} \right] \ln 2 + \frac{65}{18} + \frac{\kappa(11+31\kappa)}{36} \right\}$$

- radiative recoil $\sim \alpha (Z \alpha) \frac{m}{M} E_F$ only estimations for H: 10⁻⁷ E_F
- three photon inelastic contribution and the radiative loop on the nucleon line are unknown for H and μ H, needs to be estimated !
- lack of correct calculation of nuclear polarizability correction to hfs in μD !

Hyperfine splitting with compound nucleus

$$E_{\rm F} = -\frac{2}{3} \langle \psi | \vec{\mu} \cdot \vec{\mu}_e \, \delta^3(\mathbf{r}) | \psi \rangle = \frac{Z \, e^2}{6} \, \frac{\psi^2(0)}{M \, m} \, g \, \vec{S} \cdot \vec{\sigma}$$

For deuterium

$$\frac{\left(\nu_{exp}-\nu_{QED}\right)}{\nu_{F}}=138\,\text{ppm},$$

Zemach correction

$$\frac{\delta E_{\text{Zemach}}}{E_{\text{hfs}}} = \frac{2 \,\alpha \,m}{\pi^2} \,\int \frac{d^3 k}{k^4} \left[\frac{G_E(-k^2) \,G_M(-k^2)}{1+\kappa} - 1 \right] = -2 \,\alpha m \,r_Z$$

does not properly accounts for the nuclear size effect, except for hydrogen ...

Li hts COO Leading nuclear structure correction to hfs

$$\delta E_{\rm hfs} = \frac{i}{2} \int \frac{d\omega}{2\pi} \int \frac{d^3k}{(2\pi)^3} \frac{1}{(\omega^2 - k^2)^2} \left(\delta^{ik} - \frac{k^i \, k^k}{\omega^2} \right) \left(\delta^{jl} - \frac{k^j \, k^l}{\omega^2} \right) t^{jj} \, T^{kl} \, \psi^2(0)$$

where

$$t^{ji} = e^{2} \left[\langle \bar{u}(p) | \gamma^{j} \frac{1}{\not{p} - \not{k} - m} \gamma^{i} | u(p) \rangle + \langle \bar{u}(p) | \gamma^{i} \frac{1}{\not{p} + \not{k} - m} \gamma^{j} | u(p) \rangle \right]$$
$$= e^{2} i \omega \epsilon^{ijk} \sigma^{k} \frac{2 (\omega^{2} - k^{2})}{(\omega^{2} - 2 m \omega - k^{2}) (\omega^{2} + 2 m \omega - k^{2})}$$

p is the momentum at rest, T^{kl} is the corresponding virtual Compton scattering amplitude off the nucleus.

One splits the nuclear structure correction δE_{hfs} into three parts:

$$\delta E_{\rm hfs} = \delta E_{\rm Low} + \delta E_{\rm Zemach} + \delta E_{\rm pol}.$$

Introduction	QED theory of hfs in H	Vector polarizability	Li hfs
		000000	
√DT			

The main idea behind this expansion is the existence of an expansion parameter in the effective nuclear Hamiltonian, namely the ratio of the characteristic momentum Q of a nucleon to its mass m_p , which is about 0.10 – 0.15 in typical nuclei.

 δE_{Low} is the leading correction to hfs of order $Z \alpha m r_N$, [Friar, 2005].

$$\delta E_{\text{Low}} = \frac{\alpha}{16} \psi^2(0) \,\vec{\sigma} \, \sum_{a \neq b} \frac{e_a \, e_b}{m_b} \left\langle 4 \, r_{ab} \, \vec{r}_{ab} \times \vec{p}_b + \frac{g_b}{r_{ab}} \left[\vec{r}_{ab} \, (\vec{r}_{ab} \cdot \vec{\sigma}_b) - 3 \, \vec{\sigma}_b \, r_{ab}^2 \right] \right\rangle$$

 $\delta \textit{E}_{\text{Zemach}}$ is a coherent sum of Zemach radii from all nucleons

$$\delta E_{\text{Zemach}} = \frac{e^2}{6} \frac{\psi^2(0)}{m_{\rho} m} \vec{\sigma} \cdot (-2 \alpha m) \left\langle \sum_{a} g_a \vec{s}_a r_{aZ} \right\rangle.$$

The proton and neutron Zemach radius are 1.086(12) fm and -0.042 fm respectively.

 $\delta E_{\rm pol}$ accounts for all the nuclear structure corrections, which are Q/m_p smaller than the leading $\delta E_{\rm Low}$ contribution.

QED theory of hfs in H

Vector polarizability

Interaction of nucleus with the electromagnetic field

Universal interaction Hamiltonian

$$\begin{aligned} H_{\text{int}} &= \frac{\vec{\Pi}^2}{2M} + Z \, e \, A^0 - \frac{Z \, e}{2M} \, g \, \vec{S} \cdot \vec{B} + \frac{Z \, e}{4M^2} \, (g-1) \, \vec{S} \cdot \left(\vec{\Pi} \times \vec{E} - \vec{E} \times \vec{\Pi} \right) \\ &- \left[\sum_a \frac{e_a}{2 \, m_a} \left(\vec{l}_a + g_a \, \vec{s}_a \right) - \frac{Z \, e}{2M} \, g \, \vec{S} \right] \cdot \vec{B} \\ &- \sum_a e_a \, \vec{x}_a \left(\vec{E} + \frac{1}{2M} \, \vec{\Pi} \times \vec{B} - \frac{1}{2M} \, \vec{B} \times \vec{\Pi} \right) \\ &+ \sum_a \left\{ -\frac{e_a}{2} \left(x_a^i \, x_a^j - x_a^2 \, \delta^{ij} / 3 \right) E_{,j}^i - \left[\frac{e_a}{2 \, m_a} (g_a - 1) - \frac{Z \, e}{2M} \right] \vec{s}_a \times \vec{x}_a \cdot \partial_t \vec{E} \\ &- \frac{e_a}{6 \, m_a} \left(l_a^j \, x_a^i + x_a^i \, l_a^j \right) B_{,i}^j - \frac{e_a}{2 \, m_a} \, g_a \, x_a^i \, s_a^j \, B_{,i}^j + \frac{Z \, e}{6 \, M} \left(\vec{l}_a \times \vec{x}_a - \vec{x}_a \times \vec{l}_a \right) \cdot \partial_t \vec{E} \right\} \end{aligned}$$

does not depend on the internal nucleon interactions

 Introduction
 QED theory of hfs in H
 Vector polarizability
 Li hfs

 000
 0000
 0000000
 00

Vector polarizability

We will identify the antisymmetric part of T^{ij} with the vector polarizability

$$\alpha^{ij}=(T^{ij}-T^{ji})/2.$$

For small photon momenta the elastic part of the vector polarizability is

$$\alpha^{ij} = i \, \epsilon^{ijk} \, \frac{(Z \, e)^2}{M^2 \, \omega} \left[\omega^2 \, S^k \, (g-1) - \vec{k}^2 \, S^k \, g/2 - k^k \, (\vec{k} \cdot \vec{S}) \, g \, (g-2)/4 \right]$$

and the corresponding correction to the hyperfine splitting $\delta \textit{E}_{\rm hfs}$ is

$$\delta E_{\rm hfs} = e^2 \left(Z \, e \right)^2 \psi^2(0) \, \frac{\vec{\sigma} \cdot \vec{S}}{M^2} \, \frac{1}{64 \, \pi^2} \left[\ln\left(\frac{2 \, \Lambda}{m}\right) \left(g^2 - 4 \, g - 12\right) + \frac{1}{6} \left(g^2 + 124 \, g + 4\right) \right] \tag{1}$$

Other contributions are obtained from $H_{\rm int}$

QED theory of hfs in H

Vector polarizability

Vector polarizability correction to hfs

$$\begin{split} \delta E_{\text{pol}} &= \frac{e^2}{64 \, \pi^2} \, \psi^2(0) \, \sigma^k \left\{ -12 \, i \, \epsilon^{ijk} \left\langle D^j \ln D^j \right\rangle \\ &+ 4 \, i \, \epsilon^{ijk} \left\langle \left(\mu^i - \langle \mu^i \rangle\right) \ln \left(\mu^j - \langle \mu^j \rangle\right) \right\rangle - \frac{3 \, i}{M^2} \, \epsilon^{ijk} \left\langle Q^{i\, \prime} \ln Q^{j\, \prime} \right\rangle \\ &+ \frac{4 \, i}{M} \sum_a \left[\frac{e_a}{m_a} \left(\frac{g_a}{3} + 1 \right) + \frac{Z \, e}{M} \right] \left\langle Q^j \ln x_a^j \, s_a^k - \text{h.c.} \right\rangle \\ &+ \frac{2 \, i}{M} \sum_a \left[\frac{e_a}{m_a} + \frac{3 \, Z \, e}{4 \, M} \right] \left\langle Q^i \ln \left(l_a^k \, x_a^i + x_a^i \, l_a^k\right) - \text{h.c.} \right\rangle \\ &- \frac{16}{M^2} \, \epsilon^{ijk} \left\langle D^j \ln Q^j \right\rangle - \frac{14}{M^2} \left\langle \vec{D} \times \vec{Q} \right\rangle^k + \left(\frac{Z \, e}{M} \right)^2 S^k \left[\frac{3}{2} \, g^2 + 26 \, g - 10 \right] \\ &- \sum_a \left(\frac{e_a}{m_a} \right)^2 \left\langle s_a^k \right\rangle \left[\frac{3}{2} \, g_a^2 + 26 \, g_a - 10 \right] \right\} + \sum_a \frac{e^2}{6 \, m \, m_a} \, \psi^2(0) \, \vec{\sigma} \left\langle \vec{s}_a \right\rangle \delta g_a, \end{split}$$

where $\text{Ln} = \ln[2(H_N - E_N)/m], \vec{D} = \sum_a e_a \vec{x}_a, \vec{Q} = \sum e_a \vec{q}_a/m_a, Q^{ij} = \sum_a e_a [x_a^i q_a^j + q_a^j x_a^j - (\vec{x}_a \vec{q}_a + \vec{q}_a \vec{x}_a) \delta^{ij}/3]/m_a.$

QED theory of hfs in H

Vector polarizability

Vector polarizability correction to deuterium hfs

$$\begin{split} \delta E_{\text{pol}} &= \frac{e^2}{64 \, \pi^2} \, \psi^2(0) \, \sigma^k \left\{ -12 \, i \, \epsilon^{ijk} \, \langle e \, R^i / 2 \, \ln[2 \, (H - E) / m] \, e \, R^j / 2 \rangle \right. \\ &\left. - S^k \left[\frac{e \, (g_p - g_n)}{2 \, m_p} \right]^2 \, \langle \ln[2 \, (H_S - E) / m] \, \rangle \right. \\ &\left. + \frac{4 \, S^k}{m_p} \left(\frac{g_p - g_n}{3} + 1 \right) \, \langle e \, R^i / 2 \, (H_T - E) \, \ln[2 \, (H_T - E) / m] \, e \, R^i / 2 \rangle \right. \\ &\left. + S^k \left(\frac{e}{m_p} \right)^2 \left[\frac{1}{4} \left(\frac{3}{2} \, g_d^2 + 26 \, g_d - 10 \right) - \frac{1}{2} \left(\frac{3}{2} \, (g_p^2 + g_n^2) + 26 \, g_p - 10 \right) \right] \right. \\ &\left. + \frac{e^2}{12 \, m \, m_p} \, \psi^2(0) \, \vec{\sigma} \, \vec{S} \, (\delta g_p + \delta g_n), \end{split}$$

where $\vec{R} = \vec{r_p} - \vec{r_n}$ and H_T and H_S are nonrelativistic proton-neutron Hamiltonians in the triplet and singlet states respectively.

QED theory of hfs in H

Vector polarizability

Li hfs ●O

Li: ground state hyperfine structure

Fermi contact interaction

$$H_{\rm hfs} = \frac{2 g_N Z \alpha}{3 m M} \sum_a \vec{l} \cdot \vec{\sigma}_a \pi \, \delta^3(r_a) \, .$$

Finite nuclear size effect:

$$H_{\rm size} = -H_{\rm hfs} \, \mathbf{2} \, \mathbf{Z} \, \alpha \, \mathbf{m} \, \mathbf{r}_{\mathbf{Z}}$$

where

$$r_Z = \int d^3 r \, d^3 r' \, \rho_E(r) \, \rho_M(r') \, |\vec{r} - \vec{r}'|$$

QED theory of hfs in H

Vector polarizability

Lihfs ⊙●

Li: hyperfine structure

	⁷ Li[MHz]	⁶ Li[MHz]
$A^{(4)}$	401.65408(21)	152.08369(11)
$A_{\rm rec}^{(5)}$	-0.00414	-0.00180
A ⁽⁶⁾	0.260 08(2)	0.09848(1)
$A^{(7)}$	-0.0102(13)	-0.0039(5)
A _{the} (point nucleus)	401.8998(13)	152.1765(5)
A _{exp}	401.7520433(5)	152.136839(2)
$(A_{\rm exp} - A_{\rm the})/A_{\rm exp}$	-368(3) ppm	-261(3) ppm
r _Z	3.25(3) fm	2.30(3) fm
r _E	2.390(30) fm	2.540(28) fm

significant dependence of r_Z on the isotope