NUCLEON SPIN STRUCTURE AT LOW Q:裉
 A HYPERFINE VIEW

ZEMACH MOMENTS OF THE PROTON FROM ELECTRON SCATTERING

Michael O. Distler for the AI Collaboration, Institut für Kernphysik, Gutenberg-Universität Mainz

EGT* workshop, $02-06$ July 2018 , Trento, Italy

OUTLINE

- very brief introduction
- Mainz Microtron (MAMI)
- e.m. form factors from electron scattering
- global analysis of elastic scattering world data
- Zemach radius
- conclusion

INTRODUCTION

- The cross section

$$
\frac{\left(\frac{d \sigma}{d \Omega}\right)}{\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}}=\frac{1}{\varepsilon(1+\tau)}\left[\varepsilon G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)\right]
$$

- with

$$
\tau=\frac{Q^{2}}{4 m_{p}^{2}}, \quad \varepsilon=\left(1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right)^{-1}
$$

- Fourier-transform of $G_{E}, G_{M} \Rightarrow{ }^{\text {spatial distribution }}$ (Breit frame)

$$
\left\langle r_{E}^{2}\right\rangle=-\left.6 \hbar^{2} \frac{\mathrm{~d} G_{E}}{\mathrm{~d} Q^{2}}\right|_{Q^{2}=0}\left\langle r_{M}^{2}\right\rangle=-\left.6 \hbar^{2} \frac{\mathrm{~d}\left(G_{M} / \mu_{p}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

TIMELINE - ROSENBLUTH PROTON CROSS SECTION DATA

\circ	Andivahis	\circ	Borkowski	\circ	Janssens
\circ	\circ Rock	Rartel	\circ	Bosted	\circ
Litt	\circ	Sill			
\circ Berger	\circ	Christy	\circ	Price	\circ
\circ	Simon				
\circ	Bernauer	\circ Goitein	\circ Qattan	\circ	
			4		

TIMELINE - POLARIZED FORM FACTOR RATIO: GE/GM

unpolarized	\circ	MacLachlan	\circ	Punjabi	\circ
Crawford	\circ	Meziane	\circ	Ron	\circ
Dieterich	\circ	Milbrath	\circ	Zhan	\circ
Gayou	\circ	Pospischil	\circ		
Jones	\circ	Puckett	\circ		

FORM FACTOR RATIO @ HIGH Q2

MAINZ MICROTRON (MAMI)

MEASURED SETTINGS

Spectrometer A limit Spectrometer B limit MAMI min. $\mathrm{E}=180 \mathrm{MeV}$ MAMI-C max. $\mathrm{E}=1.53 \mathrm{GeV}$
ε

- MAMI-B max. $\mathrm{E}=855 \mathrm{MeV}$

Spectrometer A
Spectrometer B Spectrometer C
| 422 settings

CROSS SECTIONS

CROSS SECTIONS / STANDARD DIPOLE

CROSS SECTIONS + SPLINE FIT

CROSS SECTIONS: 180 MEV

ELECTRIC FORM FACTOR

- Spline
+ stat. error
+ exp. syst. error
+ theo. syst. error
F.-W. fit
- - Arrington et al.
- F.-W. 2003

부 Christy et al.
H** Simon et al.
$\boldsymbol{H} \boldsymbol{H}$ Price et al.
rer Berger et al.
r- Hanson et al.
Borkowski et al.
Hanssens et al.
i*- Murphy et al.

ELECTRIC FORM FACTOR - LOW Q2

- Spline
+ stat. error
+ exp. syst. error
+ theo. syst. error
F.-W. fit
- - Arrington et al.
- F.-W. 2003
- Christy et al.

H* Simon et al.
Her Price et al.
-r Berger et al.
Her Hanson et al.
Horkowski et al.
Hanssens et al.
T- Murphy et al

MAGNETIC FORM FACTOR

FORM FACTOR RATIO

- Spline
- - Arr. et al. w/o TPE
- - Arr. et al. w/ TPE
-- F.-W. 2003
-

H* Gayou et al.
Her Milbrath et al.
1-r Punjabi et al.
-r Jones et al.
\xrightarrow{H} Pospischil et al.
H- Dieterich et al.
T- Ron et al.
F-1 (updated)
F- Zhan et al.

MAGNETIC FORM FACTOR

WHAT TO DO ABOUT THE DISCREPANCY?

Dismiss the Mainz data?

- Let's make predictions and check if they are consistent with other recent experiments.

RECOIL POLARIMETRY

This result was a prediction!
Jan C. Bernauer et al., PRL I 05, 24200 I (20 I 0), arXiv: I 007.5076 X. Zhan et al. , Phys.Lett. B705 (201I) 59-64, arXiv:I I 02.03 I 8 J. Arrington et al. , Phys. Rev. C76 (2007) 035205, arXiv:0707. I 86 I

INCLUSION OF THE WORLD DATA

- Extend data base with world data \Longrightarrow Cross check, extend Q^{2} reach
- Take cross sections from Rosenbluth exp's
- Sidestep unknown error correlation
- Update / standardize radiative corrections
- One normalization parameter per source (Andivahis: 2)
- Two models:
- Splines with variable knot spacing \Longrightarrow Adapt knot density to data density
- Padé-Expansion
\Longrightarrow Low(er) flexibility, for comparison
L. Andivahis et al.,

Phys. Rev. D50, 5491 (1994).
F. Borkowski et al.,

Nucl. Phys. B93, 461 (1975).
F. Borkowski et al.,

Nucl.Phys. A222, 269 (1974).
P. E. Bosted et al.,

Phys. Rev. C 42, 38 (1990).
M. E. Christy et al.,

Phys. Rev. C70, 015206 (2004)
M. Goitein et al.,

Phys. Rev. D 1, 2449 (1970).
T. Janssens et al.,

Phys. Rev. 142, 922 (1966).
J. Litt et al.,

Phys. Lett. B31, 40 (1970).
L. E. Price et al.,

Phys. Rev. D4, 45 (1971).
I. A. Qattan et al.,

Phys. Rev. Lett. 94, 142301 (2005).
S. Rock et al.,

Phys. Rev. D 46, 24 (1992).
A. F. Sill et al.,

Phys. Rev. D 48, 29 (1993).
G. G. Simon et al.,

Nucl. Phys. A 333, 381 (1980).
S. Stein et al.,

Phys. Rev. D 12, 1884 (1975).
R. C. Walker et al.,

Phys. Rev. D 49, 5671 (1994).

IT WORKS!

INCLUSION OF THE WORLD DATA

construction of the error bands

- Spline model has variable knot spacing
- Vary knots, refit, record χ^{2}.
- Select the 68\% best tries.
- Construct envelope of models.

Band will cover at least 68% of all model variations!

FORM FACTOR RATIO GE/GM

FORM FACTOR RATIO GE/GM

Difference between polarization data and Rosenbluth data Add polarization data as a constraint to the fit: $\Rightarrow \Delta \mathcal{X}^{2}=216$ for 67 new data points!

$$
Q^{2}\left[(\mathrm{GeV} / \mathrm{c})^{2}\right]
$$

TWO PHOTON EXCHANGE A PARAMETRISATION

- Available data is sparse
- Mostly Q^{2} dependence
- Few data on ε dependence
- Only possible to fit simple model
- In addition to Feshbach Coulomb-correction!

$$
\delta=a \cdot(1-\varepsilon) \cdot \log \left(1+b \cdot Q^{2}\right)
$$

FORM FACTOR RATIO GE/GM

ELECTRIC AND MAGNETIC RADIUS

Final result from flexible models

$$
\begin{aligned}
& \left\langle r_{E}^{2}\right\rangle^{\frac{1}{2}}=0.879 \pm 0.005_{\text {stat. }} \pm 0.004_{\text {syst. }} \pm 0.002_{\text {model }} \pm 0.004_{\text {group }} \mathrm{fm}, \\
& \left\langle r_{M}^{2}\right\rangle^{\frac{1}{2}}=0.777 \pm 0.013_{\text {stat. }} \pm 0.009_{\text {syst. }} \pm 0.005_{\text {model }} \pm 0.002_{\text {group }} \mathrm{fm} .
\end{aligned}
$$

Results with world data

$$
\begin{array}{ccc}
& \left\langle r_{E}^{2}\right\rangle^{\frac{1}{2}} & \left\langle r_{M}^{2}\right\rangle^{\frac{1}{2}} \\
\text { + Rosenbluth data } & 0.878 & 0.772 \\
\text { +Rosenbluth and Polarization data } & 0.878 & 0.769
\end{array}
$$

MEASUREMENT OF THE TWO-PHOTON EXCHANGE CONTRIBUTION AT VEPP-3

Phenomenological fit agrees with data

$2^{\text {nd }}$ prediction

Rachek, I.A. et al., Phys.Rev.Lett. I | 4 (20|5) 062005, arXiv: | 4 | | 7372

HARD TWO-PHOTON CONTRIBUTION: DETERMINED BY THE OLYMPUS EXPERIMENT

Phenomenological fit agrees with data of OLYMPUS and CLAS
 more predictions

B.S. Henderson et al., PRL | | 8, $09250 \mid$ (20|7), arXiv: | $6|\mid .04685$

CLAS: D. Rimal et al., Phys. Rev. C 95, 06520 I (20|7), arXiv: I 603.003I 5

ZEMACH MOMENTS

- Definition of the Zemach moments:

$$
\begin{gathered}
\left\langle r^{n}\right\rangle_{(2)}=\int d^{3} r r^{n} \rho_{(2)}(r) \\
\rho_{(2)}(r)=\int d^{3} r_{2} \rho_{\text {charge }}\left(\left|\vec{r}-\overrightarrow{r_{2}}\right|\right) \rho_{\text {charge or magnetic }}\left(r_{2}\right)
\end{gathered}
$$

- Zemach radius in momentum space:

$$
\langle r\rangle_{(2), e m}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left(G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)-1\right)
$$

- More on Zemach moments:

MOD, J.C. Bernauer,Th.Walcher: Phys. Lett. B696,343,20II, arXiv:IOII.I86I

ZEMACH MOMENTS FOR THE EXPONENTIAL (DIPOLE) MODEL

- Form factors, density distributions as functions

$$
\text { of } R=\sqrt{\left\langle r^{2}\right\rangle}
$$

$$
\begin{aligned}
G(q)= & \left(1+\frac{1}{12}\left(\frac{q R}{\hbar c}\right)^{2}\right)^{-2} \\
\rho(r)= & \frac{3 \sqrt{3}}{\pi R^{3}} \exp \left[-2 \sqrt{3} \frac{r}{R}\right] \\
\rho_{(2)}(r)= & \frac{3 \sqrt{3}}{8 \pi R^{5}}\left(4 r^{2}+2 \sqrt{3} r R+R^{2}\right) \\
& \times \exp \left[-2 \sqrt{3} \frac{r}{R}\right] \\
\left\langle r^{4}\right\rangle= & \frac{5}{2} R^{4} \\
\left\langle r^{6}\right\rangle= & \frac{35}{3} R^{6} \\
\langle r\rangle_{(2)}= & \frac{35}{16 \sqrt{3}} R \\
\left\langle r^{3}\right\rangle_{(2)}= & \frac{35 \sqrt{3}}{16} R^{3}
\end{aligned}
$$

$$
\langle r\rangle_{(2), e m}=\frac{3 R_{\mathrm{E}}^{4}+9 R_{\mathrm{E}}^{3} R_{\mathrm{M}}+11 R_{\mathrm{E}}^{2} R_{\mathrm{M}}^{2}+9 R_{\mathrm{E}} R_{\mathrm{M}}^{3}+3 R_{\mathrm{M}}^{4}}{2 \sqrt{3}\left(R_{\mathrm{E}}+R_{\mathrm{M}}\right)^{3}}
$$

PROTON STRUCTURE FROM MUONIC HYDROGEN

$r_{\mathrm{e}}=0.84 \mathrm{fm}, r_{\mathrm{m}}=0.87 \mathrm{fm} \quad$ Bernauer fit (solid) and $r_{\mathrm{e}}=0.90 \mathrm{fm}, r_{\mathrm{m}}=0.82 \mathrm{fm} \quad r_{\mathrm{e}}=0.88 \mathrm{fm}, r_{\mathrm{m}}=0.78 \mathrm{fm}$

ZEMACH MOMENTS FOR THE EXPONENTIAL (DIPOLE) MODEL

$$
\text { Zemach Integrand } \quad\langle r\rangle_{(2), e m}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left(G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)-1\right)
$$

- Ye, Z. et al., Phys. Lett. B777 (20I8) 8-I5, arXiv:I707.09063
- Bernauer, J. C. et al.: Phys. Rev. C90 (2014) OI5206, arXiv:I307.6227
- Arrington, J. et al.: Phys.Rev. C76 (2007) 035205, arXiv:0707.I86I
- Friedrich, J. and Walcher, T.: Eur.Phys.J. Al7 (2003) 607-623, hep-ph/0303054

ZEMACH MOMENTS

$$
\langle r\rangle_{(2), e m}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left(G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)-1\right)
$$

	$\mathrm{R}_{\mathrm{E}} / \mathrm{fm}$	RM / fm	$<r>(2)$.em / fm	(Dipol formula)
MAMI2014	0,878	0,768	1,043	1,041
Ye2018	0,879	0,85 I	1,070	1,093
MOD20II	0,879	0,777	1,045	1,047
Arr2007	0,846	0,861	1,080	1,096

CONCLUSIONS

- the MAMI data set gives a Zemach radius

$$
\langle r\rangle_{(2), \mathrm{em}}=1.043(2) \mathrm{fm}
$$

- the analysis of Ye et al. (20|8) gives

$$
\langle r\rangle_{(2), \mathrm{em}}=1.070 \mathrm{fm}
$$

- there is a strong correlation between the RMS radii and the Zemach radius
- only data for $\mathrm{q}<0.8 \mathrm{MeV} / \mathrm{c}$ is relevant for the Zemach radius

PROTON STRUCTURE FROM MUONIC HYDROGEN

$r_{\mathrm{e}}=0.84 \mathrm{fm}, r_{\mathrm{m}}=0.87 \mathrm{fm} \quad$ Bernauer fit
$r_{\mathrm{e}}=0.90 \mathrm{fm}, r_{\mathrm{m}}=0.82 \mathrm{fm}$

CONFORMAL MAPPING ANALYTICITY VS. EXPERIMENTAL REALITY

$$
z\left(t, t_{\mathrm{cut}}, t_{0}\right)=\frac{\sqrt{t_{\mathrm{cut}}-t}-\sqrt{t_{\mathrm{cut}}-t_{0}}}{\sqrt{t_{\mathrm{cut}}-t}+\sqrt{t_{\mathrm{cut}}-t_{0}}}
$$

FIXING THE NORMALISATION

6 beam energies constrained by Rosenbluth formular

3 I normalisation sets approx. 50 data points each constrained by overlap

