Low Q² Spin Moments of Neutron and ³He From JLab E97-110

Jian-ping Chen, Jefferson Lab, For the JLab E97-110 Collaboration ECT* Workshop on Nucleon Spin at Low Q: A Hyperfine View, Trento, July 2-6, 2018

- Introduction: Moments of Spin Structure Function
 g₁: GDH Sum Rule, γ₀ Spin Polarizability
 g₂: B-C Sum Rule, δ_{LT} Spin Polarizability
- JLab E97-110 experiment @ Hall A : Setup and Polarized ³He target
 g₁ and g₂, GDH sum, B-C Sum, γ₀ and δ_{LT} on neutron at very low Q²
 g₁ and g₂, GDH and g₀ on ³He at very low Q²
- Summary

Thanks A. Deur, C. Peng, V. Solkosky, ... for helping with slides

Nucleon Structure and Strong Interaction/QCD

- Nucleon Structure: discoveries
 - -- anomalous magnetic moment (1943 Nobel)
 - -- elastic: form factors (1961 Nobel)
 - -- DIS: parton distributions (1990 Nobel)
- Strong interaction, running coupling ~1
 - -- asymptotic freedom (2004 Nobel)
 - perturbation calculation works at high energy
 - -- interaction significant at intermediate energy quark-gluon correlations
 - -- interaction strong at low energy confinement
- A major challenge in fundamental physics: -- Understand QCD in all regions, including strong (confinement) region
- Theoretical Tools: pQCD, Lattice QCD, ChPT, Sum Rules, ...

Moments of Spin Structure Functions

Sum Rules, Polarizabilities

Sum Rules

Gerasimov-Drell-Hearn (GDH) Sum Rule

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha \left(\frac{\kappa}{M}\right)^2$$

- > Circularly polarized photons incident on a longitudinally polarized target.
- > $\sigma_{1/2}$ ($\sigma_{3/2}$) Photoabsorption cross sections.
- **>** Relate spin structure to anomalous magnetic moment κ.
- Solid theoretical predictions based on general principles
 - Lorentz invariance, gauge invariance \rightarrow low energy theorem
 - unitarity → optical theorem
 - casuality \rightarrow unsubtracted dispersion relation

applied to forward Compton amplitude

- Proton: verified (<10%): Mainz, Bonn, LEGS.
- Deuteron, ³He
 Mainz, Bonn, LEGS, HiGS

	$M[{\sf GeV}]$	Spin	κ	$I_{ m GDH}[\mu \ {\sf b}]$
Proton	0.938	$\frac{1}{2}$	1.79	-204.8
Neutron	0.940	$\frac{1}{2}$	-1.91	-233.2
Deuteron	1.876	1	-0.14	-0.65
Helium-3	2.809	$\frac{1}{2}$	-8.38	-498.0

Generalized GDH sum rule

Sum rule valid at all Q²:
$$\frac{16\alpha\pi^2}{Q^2} \int_0^1 g_1 dx = 2\alpha\pi^2 S_1_{R}$$

We can measure $\int g_1 dx$ at different Q² and compute *Compton amplitude* using different techniques:

⇒ Study "strong" (non-perturbative) QCD and transition from hadronic to partonic description of strong force.

Experiment Summary (Q² > 0)

Observable	H target	D target	³ He target
$g_1, g_2, \Gamma_1 \& \Gamma_2$	SLAC	SLAC	SLAC
at high Q^2			JLAB E97-117
	JLAB SANE		JLAB E01-012
			JLAB E06-014
$g_1 \And \Gamma_1$ at high Q^2	SMC	SMC	
COMPASS	HERMES	HERMES	HERMES
RHIC-Spin	JLAB EG1	JLAB EG1	
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010
			JLab E97-103
Γ_1 at low Q^2	SLAC	SLAC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
$\Gamma_1, Q^2 << 1 \mathrm{GeV}^2$	JLab EG4	JLab EG4	JLab E97-110
$\Gamma_2, Q^2 << 1 \text{ GeV}^2$	JLab E08-027		JLab E97-110

Q²=0 Mainz, Bonn, LEGS, HIGS

1st Moments of Spin Structure Functions g_1 and g_2

GDH Sum Rule Burkhardt - Cottingham Sum Rule

(Before E97-110)

E94-010: Neutron spin structure moments and sum rules at Low Q²

Spokespersons: G. Cates, J. P. Chen, Z.-E. Meziani

PhD Students: A. Deur, P. Djawotho, S. Jensen, I. Kominis, K. Slifer

- Q² evolution of spin moments and generalized GDH sum, 0.1 < Q² < 0.9 (GeV²)
- transition from quark-gluon to hadron. Test χ PT calculations

1^{st} moment of g_1 on neutron

GDH integral on neutron

E97-110: Small Angle GDH on the Neutron (³He)

Spokesmen: J.-P. Chen, A. Deur, F. Garibaldi

PhD Students: V. Solkosky, J. Singh, J. Yuan, C. Peng, N. Ton

- Measurement of spin moments at low Q², 0.02 to 0.24 GeV² for the neutron and ³He
- Covering an unmeasured region of kinematics to test Chiral Perturbation theory calculations
- Complements data from experiment E94-010
- Both neutron and ³He results nearly finalized,

publications in draft form

 The lowest Q² data (first period) still to be finalized

Experimental Considerations/Difficulties

- unpolarized proton at intermediate Q²: easy to measure
- Iongitudinal polarized proton at intermediate Q²: not too hard?
 need low Q², need transverse polarization, need neutron
- longitudinal polarized proton at low Q2: harder (Marco's talk)
- transverse polarized proton at low Q²: difficult (Karl's talk)
- neutron often more difficult:

short life time \rightarrow no stable neutron target deuteron target \rightarrow n ~ d – p

³He target \rightarrow n ~ ³He – 2p

need subtract proton contributions and nuclear effect

E97-110 Experimental Setup

Low Q² → Reach Forward Angle: Septum Magnet

Effective Polarized Neutron Target

- No free neutron target due to its short life time
 - Light nuclei are used as effective neutron targets Polarized ³He ground state is dominated by Sstate
 - At S-state, spins of two protons cancel, 3He \sim n

Spin exchange Optical Pumping for ³He

Meta-stability Exchange Optical Pumping

History/Progress in Polarized ³He

Spin-Exchange Optical Pumping
 1960: Bouchiat/Carver/Varnum (Princeton), PRL 5, 373 (1960)
 2.8 atm ³He, optically pumped 0.001 mm partial pressure of Rb, P=0.01% we have observed enhance ment of the nuclear polarization by a factor of 10⁴ above the initial Boltzmann distribution of 10⁻⁸.

Now: 10 atm ³He, Rb-K optical pumping, P > 70% (JLab/UVa/W&M...)

Meta-stability Exchange Optical Pumping
 1963: Colegrove/Schearer/Walters (Texas Instruments), PR, 132, 2561 (1963)
 ~0.001 atm ³He, achieved ~40% polarization

The highest polarization measured by nuclear magnetic resonance was $40\pm5\%$ in a 5 cm-diam Pyrex sphere with the He³ gas pressure at 1 mm Hg.

Now: ~1 atm ³He, mass production with MEOP, P > 70% (Mainz)

Polarized Luminosity and Polarization

 Luminosity
 Internal targets (storage ring) 10³¹
 Polarized external (fixed) targets Solid (p/d) 10³⁵
 Gas (³He) 10³⁶ (JLab)

World highest luminosity/FOM

Polarization (in-beam)
 P_{3He} ~ 80% (60%) (JLab)
 P_H ~ 90% (70%)
 P_D ~ 70% (40%)

$$FOM = P_b^2 * P_t^2 * f^2 * L$$

JLab Polarized ³He Target

✓ Effective pol neutron target

✓ longitudinal, transverse(and vertical)

 ✓ Luminosity=10³⁶ (1/s) (highest in the world)
 upgrade : x2 (stage I)
 additional x3 (stage II)

✓ High in-beam polarization
 60% (>70% no beam)

✓ 13 completed experiments
 9 approved with 12 GeV (A/C)

JLab Polarized ³He Target System

Rb-K Hybrid Optical Pumping for ³He

Figure-of-Merit History for High Luminosity Polarized ³He

Application of Polarized ³He: Medical Imaging

³He Spin density MRI

Courtesy of W. Heil, Univ. Mainz

Courtesy of T. Altes et al., University of Virginia

> Inhaled Bronchodilator Asymptomatic Asthmatic

E97-110 Kinematic Coverage

2844.8

E97-110 Preliminary Results on Neutron g1 Moment

Plots by V. Sulkosky (UVa)

$$\Gamma_1 = \int_0^{x_0} g_1(x, Q^2) dx$$

Additional data available: Analyze the lowest Q² points (first period) (on-going. N. Ton, UVa).

Generalized GDH Integral

B-C Sum Rule: First Moment of g₂

$\Gamma_2^n(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$

Spin Polarizabilities

Higher Moments of Spin Structure Functions

Higher Moments: Generalized Spin Polarizabilities

- generalized forward spin polarizability γ_0 generalized L-T spin polarizability δ_{LT}

$$\gamma_{0}(Q^{2}) = \left(\frac{1}{2\pi^{2}}\right) \int_{v_{0}}^{\infty} \frac{K(Q^{2},v)}{v} \frac{\sigma_{TT}(Q^{2},v)}{v^{3}} dv$$
$$= \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2} [g_{1}(Q^{2},x) - \frac{4M^{2}}{Q^{2}} x^{2} g_{2}(Q^{2},x)] dx$$

$$\delta_{LT}(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{v_0}^{\infty} \frac{K(Q^2, v)}{v} \frac{\sigma_{LT}(Q^2, v)}{Qv^2} dv$$
$$= \frac{16\alpha M^2}{Q^6} \int_{0}^{x_0} x^2 [g_1(Q^2, x) + g_2(Q^2, x)] dx$$

Neutron Spin Polarizabilities and the δ_{LT} Puzzle

PRD 67:016001(2003)

PRD 67:076008(2003)

Theoretical Developments and the δ_{LT} Puzzle

- HBχPT: recent: Lensky, Alarcon & Pascalutsa,
 PRC 90 055202 (2014)
- RB χ PT: properly including Δ contribution, Bernard et al., PRD 87 (2013)
- **Neutron Proton** Proton Neutron ŶΟ (10^{-4} fm^4) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 3.0 2.5 δ_{I} $\delta_{\rm LT} \, (10^{-4} \ {\rm fm}^4)$ 2.0 1.5 1.0 1.0 0.5 0.5 0.00.0^L.... 0.05 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.25 0.100.300.20 0.30 Q^2 (GeV²) Q^2 (GeV²)
- Effect from axial anomaly,
 N. Kochelev and Y. Oh,
 PRD 85, 016012 (2012)

Spin Polarizabilities Preliminary E97-110 (and Published E94-010)

Disagreement between data and both ChPT calculations

 Δ resonance is supposed to be suppressed for δ_{LT} , More robust prediction

Summary on Spin Moments of the Neutron

- E97-110 covered $0.02 < Q^2 < 0.24$ (GeV²)
- Results near final for $0.04 < Q^2 < 0.24$
- Comparisons with ChPT calculations

First moments of g_1 , g_2 and GDH sum Spin polarizabilities: γ_0 and δ_{LT} lowest Q² behavior! ?

• First period data cover $0.02 < Q^2 < 0.04$, analysis not complete yet. Expect results by the end of the year.

Moments of ³He Spin Structure

GDH Sum and γ_{TT} for ³He

Inclusive Electron Scattering Spectrum

Nucleon target

- elastic region
- resonance region
- DIS region

Nuclear target

- nuclear resonances
- quasi-elastic region

34

Quasi-elastic Scattering

- Elastic electron scattering off a quasi-free nucleon inside the ³He nucleus
 - Approximately centered at $v=Q^{\uparrow 2}/M^{\downarrow}T$, with $M^{\downarrow}T$ the nuclear target mass
 - Broadened peak as compared to elastic peak, due to the Fermi motion
 - Final states include 2-body, 3-body
 - 2-body breakup threshold at $\nu \approx 5.5$ MeV

- Can be well calculated
 - Realistic nucleon-nucleon interaction potentials
 - Plane wave impulse approximation (high Q12)
 - Nonrelativistic Faddeev calculations (low Q12)

GDH (Real Photon) Measurements

- Proton, verified: Mainz, Bonn (LEGS)
- Neutron (with deuteron/³He), in progress: Mainz, HIGS, ...
- Measurements on Deuteron and ³He

	$M[{\sf GeV}]$	Spin	κ	$I_{ m GDH}[\mu \ { m b}]$
Proton	0.938	$\frac{1}{2}$	1.79	-204.8
Neutron	0.940	$\frac{1}{2}$	-1.91	-233.2
Deuteron	1.876	1	-0.14	-0.65
Helium-3	2.809	$\frac{1}{2}$	-8.38	-498.0

Before E97110: E94-010 Results on Generalized GDH Sum

Neutron

Helium-3

E97-110 at Jefferson Lab

- Inclusive measurement
 - 3He (e, e)X at small scattering angles
 - Focus on low Q12
- Covered quasi-elastic region and resonance region
 - Unpolarized cross sections
 - Differences of polarized cross sections (Parallel + Perpendicular)

Spokespersons: J.-P. Chen, A. Deur, F. Garibaldi Graduate students: J. Singh, V. Sulkosky, J. Yuan, C. Peng, N. Ton

E97-110 Kinematic Coverage

2134.2

2134.9

2844.8

1147.3

2233.9

3318.8

3775.4

4404.2

Structure Functions g_1/g_2 for ³He

Generalized GDH Integral

• Numerical integration of the GDH integrand

$$I(Q^{2}) = \frac{8\pi^{2}\alpha}{M^{2}}I_{TT}(Q^{2}),$$

$Q^2 (\text{GeV}^2)$	W_{max} (MeV)	$I_{GDH}(Q^2)$ (µb)	$\sigma_{stat} \ (\mu b)$	$\sigma_{syst} \ (\mu b)$
0.032	1470	-17.79	295.75	604.05
0.050	1770	532.54	170.67	460.76
0.088	2000	1097.05	76.82	315.72
0.118	1790	1322.22	69.28	254.10
0.230	1950	565.71	24.66	69.84

- Systematic at lowest Q12 is dominated by the elastic tail subtraction near the threshold region
- Unmeasured contribution is estimated and added into syst.
 - MAID2007 model for W < 2 GeV
 - Regge parameterization for W > 2 GeV (E. Thomas and N. Bianchi Nuclear Physics B -Proceedings Supplements, 82:256 – 261, 2000.)
 - Negligible

Generalized GDH Integral

Generalized Spin Polarizability γ_0

Q^2 (GeV²)

Summary

- Spin structure at very low Q for the neutron
 - study "strong" QCD
 - Provide good test to ChPT calculations
 - 0th moments: spin sum rules
 - 2nd moments: spin polarizabilities: behavior at lowest Q region!
- Spin structure at very low Q for ³He
 - Extracted generalized GDH sum and γ_0 for 0.03 < Q² < 0.23 (GeV²)
 - Observed "turn-around" bahavior of generalized GDH sum at very low Q²
 - Indication when approach Q²=0, recovers GDH sum rule prediction
 - Very large negative value for γ_0 at very low Q²
 - Large uncertainty at very low Q² due to elastic radiative tail
 - Need theory calculation (few-body ChPT?)