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operators between nucleon states.
•Provide information about the nucleon internal structure.
•Can be related to the spatial distribution of the properties encoded 
in the operator (transverse densities)       Moment of the GPD.
•A deeper knowledge of the FFs is needed in order to understand 
the properties of the nucleon in terms of its QCD constituents.
•Scalar FF:

•Encodes the response of the nucleon under scalar probes.
•Essential input in EFT of DM detection. [Bishara, et al.,  JCAP 1702 (2017)]

•Electromagetic FF:
•Encodes the response of the nucleon under electromagnetic probes.
•Important to understand and solve the “Proton Radius Puzzle”.
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more, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical isoscalar scalar spec-
tral function m#

4 Im$N(t)/t2 of Ref. %23&. It has been deter-
mined on the basis of the ##→N̄N s-wave amplitude f!

0 (t)
%18& and ##-scattering data tied together with Roy equa-
tions, etc. %see Eq. !3" in Ref. %23&&. One observes a substan-

tial improvement when including the next-to-leading order
c1,2,3 term and the two-loop contributions. The major effect
comes evidently from the large isoscalar ##NN-contact
couplings, in particular from c3. The height of the peak at
t!5m#

2 is, however, still underestimated by about 20% in
the two-loop approximation. Higher order ##-rescattering
effects, etc., are necessary in order to close this remaining
gap. Given the pattern in Fig. 3, one can expect significant
effects !in the right direction" already from the two-loop dia-
grams with one vertex proportional to the !numerically large"
second-order low-energy constants c1,2,3,4 . Note that com-
plete calculations of elastic #N scattering to chiral order
four, which include the pertinent one-loop diagrams with one
c1,2,3,4 vertex, have recently been performed in Ref. %33& us-
ing the heavy baryon framework and in Ref. %34& employing
the so-called infrared regularization scheme of fully relativ-
istic baryon chiral perturbation theory. For comparison, simi-
lar deficiencies of the two-loop approximation of chiral per-
turbation theory have been observed in Ref. %35& for the
imaginary parts of the pion scalar and charge form factors.
Next, we show in Fig. 4 the spectral function ImGE

V(t) of
the isovector electric form factor of the nucleon weighted
with 1/t2. The dashed-dotted line gives the one-loop result,
Eq. !7". The dashed line includes in addition the c4 /M term
in Eq. !10" and the full line includes, furthermore, the two-
loop contributions, Eqs. !12" and !15". The upper dotted line
corresponds to the empirical isovector electric spectral func-
tion ImGE

V(t)/t2 of Ref. %18&. Modulo a kinematical factor
Q3/8M!t , it is determined by the product of the ##→N̄N
p-wave amplitude f!

1 (t) %18& and the !timelike" pion charge
form factor measured in the reaction e!e"→#!#" %see Eq.
!7" in Ref. %22&&. In the case of the isovector electric spectral
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FIG. 3. The spectral function Im $N(t) of the isoscalar scalar
form factor of the nucleon multiplied with m#

4 /t2. The dashed-
dotted line gives the one-loop result, Eq. !5". The dashed line in-
cludes in addition the c1,2,3 term in Eq. !9" and the full line includes,
furthermore, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical spectral function m#

4

Im $N(t)/t2 of Ref. %23&.
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FIG. 4. The spectral function ImGE
V(t) of the isovector electric

form factor of the nucleon divided by t2. The dashed-dotted line
gives the one-loop result, Eq. !7". The dashed line includes in ad-
dition the c4 /M term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !12" and !15". The upper
dotted line shows the empirical spectral function ImGE

V(t)/t2 of
Ref. %18&.
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FIG. 5. The spectral function ImGM
V (t) of the isovector mag-

netic form factor of the nucleon divided by t2. The dashed-dotted
line gives the one-loop result, Eq. !8". The dashed line includes in
addition the c4 term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !13" and !16". The upper
dotted line shows the empirical spectral function ImGE

V(t)/t2 of
Ref. %18&.
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•     is used to reconstruct the spectral functions up to t < 1GeV2

•Electromagnetic FF: Since t >1 GeV2 is far away from the space-like 
region, we parametrize the contribution from this region by an 
effective pole                                                   :
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region, we parametrize the contribution from this region by an 
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•Higher order corrections are important for t > 0.2 GeV2.
•Error bands shown correspond to the uncertainties in the LECs.
•Systematic errors are inferred from the difference between NLO 
and NLO+pN2LO.
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[J. M. Alarcón, C. Weiss,  arXiv:1803.09748] 

[1] Obtained from: Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA 52 (2016)
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  •Pion EM FF     related to e+e-    π+π- cross sections
•Related to measured quantities.
•Dispersion Theory      ππ phase shifts.
•LQCD
•We use the GS parametrization of   [Lorenz, Hammer, Meißner,EPJ A 48 (2012)]
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[1] Belushkin, Hammer and Meißner, PRC 75 (2007)  [2] Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA 52 (2016)
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•Comparison with respect to the old results
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•Conclusions:
•Brute force calculations are hopeless.
•Non-perturbative effects are visible in the near-threshold region.
•Based on unitarity one achieves a factorization suitable for perturbative 
calculations.
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Electromagnetic Form Factor



•To compute the EM form factors of proton and neutron, we need 
the isoscalar component as well.
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•To compute the EM form factors of proton and neutron, we need 
the isoscalar component as well.
•One cannot apply the same approach as in the isovector case.
•We parametrize the isoscalar spectral function through the 
exchange in the narrow with approximation + higher mass pole     .

 

•We fix the couplings by imposing the charge and radii sum rules:
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•Reconstructing the form factors with 

[J. M. Alarcón, C. Weiss, arXiv: 1803.09748] 
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•Charge and magnetization densities reveal the the spatial 
distribution of charge and magnetization inside the nucleon.
•For relativistic system as the nucleon is necessary to project into 
the transverse plane to avoid any ambiguity.

•The input necessary to compute the densities can be taken from 
experimental data (parametrizations) or theory.
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•Relation between spectral functions and transverse densities.
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Prelminary

Nucleon Transverse Densities

•Charge Densities

•Magnetization Densities

Nucleon Form Factors in DIχEFT
[J. M. Alarcón, C. Weiss, in preparation] 
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Summary and Conclusions



•Through unitarity, it is possible to find a representation suited for 
ChEFT        Predictions of the Nucleon Form factors.
•The results improve previous ChEFT calculations and are 
competitive with dispersion theory calculations.
•EM FFs have a much complex structure that what it seems. 
•DIχEFT implements the constrains that allow to reconstruct the 
FFs with its full complexity:

•Analyses of FF data.
•Two photon exchange corrections to e-p scattering.

•Results used to understand “Proton Radius Puzzle” (PRad).
•New promising method to compute nucleon matrix elements from 
first principles (EM tensor, D-term, extension to G-parity odd, …).

Summary and Conclusions
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•Checking the parametrization of the spectral function at high   .
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•Reconstructing the form factors with 
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•Comparison with respect to the old results

DI  EFT�

[T. Bauer, J. Bernauer, S. Scherer, PRC 86 (2012)]

Ye et al.
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Is lowest reduced chi-squared cred
2 the answer?

If not, why not?

Are there systematic problems with the MAMI data?

J.A & C.W arXiv 1710.06430

Clearly: P&P prediction 0.6(3) = No Go 

I. Sick & D. Trautmann: 2.01(5) PRC 2017 
M. Distler: 2.6 fm4

Note the Re vs <r4>e correlation !!

(Courtesy of Marko Horbatsch)

Talk by Marko Horbatsch (JLab, 12/8/2017)
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Talk by Marko Horbatsch (JLab, 12/8/2017)

Is it consistent for the higher moments ?
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•We study the naturalness of the isovector moments by defining:

•If the integral were dominated by a certain region   , the ratio           
would be given by the average of         over this region.
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