STRUCTURE R OM LATT HR E HUEY-WEN LIN Founded

Outline

§ Lattice Nucleon Structure 101

The savvy shopper's guide to top-quality LQCD numbers

§ LQCD Spin Precision Frontier

➢ Nucleon structure with controlled systematics in continuum limit (m_π → m^{phys}_π, a → 0, L → ∞)

§ LQCD Pioneer Frontier

> Lattice parton distribution functions

Lattice 101

§ Lattice QCD is an ideal theoretical tool for investigating the strong-coupling regime of quantum field theories § Physical observables are calculated from the path integral $\langle 0|O(\bar{\psi},\psi,A)|0\rangle = \frac{1}{Z}\int \mathcal{D}A \mathcal{D}\bar{\psi} \mathcal{D}\psi \ e^{iS(\bar{\psi},\psi,A)}O(\bar{\psi},\psi,A)$ in **Euclidean** space

Are We There Yet?

- § Lattice gauge theory was proposed in the 1970s by Wilson
- > Why haven't we solved QCD yet?
- § Progress is limited by computational resources 1980s Today

§ Greatly assisted by advances in algorithms
 > Physical pion-mass ensembles are not uncommon!

Successful Examples

§ Lattice flavor physics provides precise inputs from the SM
 A. El-Khadra, Sep. 2015, INT workshop "QCD for New Physics at the Precision Frontier"
 > Very precise results in many meson systems

errors (in %) (preliminary) FLAG-3 averages

§ We are beginning to do precision calculations in nucleons

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

§ Noise issue

- \sim Signal diminishes at large $t_{\rm E}$ relative to noise
- $\boldsymbol{\nsim}$ Get worse when quark mass decreases

§ Excited-state contamination

- Nearby excited state: Roper(1440)
- § Hard to extrapolate in pion mass
- $\sim \Delta$ resonance nearby; multiple expansions, poor convergence...
- > Less an issue in the physical pion-mass era
- § Requires larger volume and higher statistics
- Ensembles are not always generated with nucleons in mind
 High-statistics: large measurement and long trajectory

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

Nucleon Matrix Elements

§ Pick a QCD vacuum

≈ Gauge/fermion actions, flavour (2, 2+1, 2+1+1), m_{π} , *a*, *L*, ...

§ Construct correlators (hadronic observables)

Requires "quark propagator" Invert Dirac-operator matrix (rank O(10¹²))

Nucleon Matrix Elements Lattice-QCD calculation of (N|\overline{r}g|N)

Time

Analysis

§ Statistical Effect

Typical case for tensor charge

§ Statistical Effect

✤ One of the worst-case example

§ Reliable method to extract ground-state matrix element **& Robustness of the 2-simRR fit**

a = 0.06 fm, 220-MeV pion PNDME, 1606.07049

§ An example from PNDME

\sim Move the excited-state systematic into the statistical error $C^{\operatorname{3pt}}(t_f, t, t_i) = |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)}$ $+\mathcal{A}_0\mathcal{A}_1^*\langle 0| = e^{-M_0(t-t_i)}e^{-M_1(t_f-t)}$ $+\mathcal{A}_0^*\mathcal{A}_1\langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f-t)}$ $+|\mathcal{A}_1|^2\langle 1|\mathcal{O}_{\Gamma}|1\rangle e$ >> Much stronger effect at finer lattice spacing!

Needs to be studied case by case

a = **0.09 fm**, 310-MeV pion

Nucleon Matrix Elements

Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$

§ Systematic Uncertainty (nonzero *a*, finite *L*, etc.)

Contamination from excited states
 Nonperturbative renormalization

 e.g. RI/SMOM scheme in MS at 2 GeV

 Extrapolation to the continuum limit

 $(m_{\pi} \rightarrow m_{\pi}^{\text{phys}}, L \rightarrow \infty, a \rightarrow 0)$

§ A state-of-the art calculation (PNDME)

⇒ Extrapolate to the **continuum** limit $(m_{\pi} \rightarrow m_{\pi}^{\text{phys}}, L \rightarrow \infty, a \rightarrow 0)$

PNDME, 1606.07049

LQCD Spin Precision Frontier

\mathcal{PNDME}

Precision Neutron-Decay Matrix Elements (2010-)

https://sites.google.com/site/pndmelqcd/

Tanmoy Bhattacharya Rajan Gupta

HWL

Saul Cohen Anosh Joseph

Yong-Chull Jang

Boram Yoon

- § Much effort has been devoted to controlling systematics
- § A state-of-the art calculation (PNDME): **2016**

<i>a</i> (fm)	V	<i>Μ</i> _π <i>L</i>	M_{π} (MeV)	t _{sep}	# Meas.	
0.12	$24^3 \times 64$	4.55	310	8,10,12	64.8k	
0.12	24 ³ × 64	3.29	220	8,10,12	24k	
0.12	$32^3 \times 64$	4.38	220	8,10,12	7.6k	
0.12	$40^3 \times 64$	5.49	220	8,10,12,14	64.6k	
0.09	32 ³ × 96	4.51	310	10,12,14	7.0k	
0.09	48 ³ × 96	4.79	220	10,12,14	7.1k	
0.09	64 ³ × 96	3.90	130	10,12,14	56.5k	
0.06	$48^3 \times 144$	4.52	310	16,20,22,24	64.0k	
0.06	64 ³ × 144	4.41	220	16,20,22,24	41.6k	
We thank MILC collaboration for sharing their 2+1+1 HISO lattices						

§ **2018**: 4 lattice spacings, 2 physical pion mass, $M_{\pi} \leq 320$ MeV

<i>a</i> (fm)	V	$M_{\pi}L$	$oldsymbol{M}_{\pi}$ (MeV)	t _{sep}	# Meas.
0.15	$16^3 \times 48$	3.93	310	5,6,7,8,9	122 . 7K
0.12	$24^3 \times 64$	4.55	310	8,10,12	64.8k
0.12	$24^3 \times 64$	3.29	220	8,10,12	60.5K
0.12	$32^3 \times 64$	4.38	220	8,10,12	47.6K
0.12	$40^3 \times 64$	5.49	220	8,10,12,14	128.6K
0.09	32 ³ × 96	4.51	310	10,12,14	114 . 9K
0.09	48 ³ × 96	4.79	220	10,12,14	123 . 4K
0.09	64 ³ × 96	3.90	130	8,10,12,14,16	165.1K
0.06	$48^3 \times 144$	4.52	310	18,20,22,24	64.0K
0.06	64 ³ × 144	4.41	220	18,20,22,24	41.6K
0.06	96 ³ × 192	3.80	130	16,18,20,22	43 . 2K

§ Much effort has been devoted to controlling systematics
§ A state-of-the art calculation (PNDME)

Extrapolate to the physical limit (varying ansatz)

 $g_T(a, m_\pi, L) = c_1 + c_2 m_\pi^2 + c_3 a + c_4 e^{-m_\pi L}$

MICHIGAN STATE

Huey-Wen Lin — Nucleon Spin Structure at Low Q: A Hyperfine View

VERSITY

Flavor-Dependent Quark Spín

§ New type of diagram is needed: "disconnected"

>> Historically, notoriously noisy to calculate on the lattice

- Recent developments offer new methods and increasing computational resources
 - Truncated solver, hopping-parameter expansion, hierarchical probing, ...

Continuum Extrapolation

§ Up and down quark "connected" contribution

PNDME, 1806.09006, 1806.10604 $\Delta q(a, m_{\pi}, L) = c_1 + c_2 m_{\pi}^2 + c_3 a + c_4 e^{-m_{\pi}L}$

Continuum Extrapolation

§ Up and down quark "disconnected" contribution

PNDME, 1806.09006, 1806.10604 $\Delta q^{\text{disc}} = c_1 + c_2 m_{\pi}^2 + c_3 a + c_4 e^{-m_{\pi}L}$

Anticipated pionmass dependence

Unexpectedly strong lattice-spacing dependence!

Calculation at $a \approx$ 0.09 fm can have 50% change in Δu^{disc}

Huey-Wen Lin — Nucleon Spin Structure at Low Q: A Hyperfine View

Quark Spin Contribution

§ Sum up both contributions

	$g_A^u \equiv \Delta u$	$g_A^a \equiv \Delta d$	$g_A^s \equiv \Delta s$	
Connected	0.895(21)	-0.320(12)		
Disconnected	-0.118(14)	-0.118(14)	-0.053(8)	
Sum	0.777(25)	-0.438(18)	-0.053(8)	
ETMC	0.830(26)	-0.386(18)	-0.042(10)(2)	Difference
	1			

Difference caused by Δq^{disc}

$$\sum_{q=u,d,s} (\frac{1}{2}\Delta q) = 0.143(31)$$

PNDME, 1806.09006, 1806.10604

Axíal Form Factors

§ Controversial axial form factor determinations from v data

\gg Inconsistent determination of M_A (difficult or uncontrollable experimental systematics)

§ Lattice can provide SM inputs for event Monte Carlo

Huey-Wen Lin — Nucleon Spin Structure at Low Q: A Hyperfine View

Hills, et al

Axíal Form Factors

§ Nucleon isovector axial form factor PNDME, 1705.06834 $\approx \left\langle N(\vec{p}_f) \left| A_{\mu}(\vec{Q}) \right| N(\vec{p}_i) \right\rangle = \bar{u}(\vec{p}_f) \left[G_A(Q^2) \gamma_{\mu} + q_{\mu} \frac{\tilde{G}_P(Q^2)}{2M_N} \right] \gamma_5 u(\vec{p}_i)$

Plot by Yong-Chull Jang

Axíal Form Factors

Lattice Pioneer Frontier

- § PDFs are universal quark/gluon distributions inside nucleon
- Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)
- § Important inputs to discern new physics at LHC Currently dominate errors in Higgs production

(J. Campbell, HCP2012)

Long existing obstacles!

§ Lattice calculations rely on operator product expansion, only product $\int_{dx}^{1} dx x^{n-1}q(x)$

§ For higher \gg No practi New Strate § Calculate quark dist \Rightarrow In $P_z \rightarrow \infty$ \Rightarrow For finite § Feasible wit

Symmetry: You Break it, You Buy It.

> Xiangdong Ji, Phys. Rev. Lett. 111, 039103 (2013)

P.

mension ops

 x_{\perp}

- Long existing obstacles!
- § Lattice calculations rely on operator product expansion, only provide moments $\langle x^n \rangle$ $\langle x^{n-1} \rangle_q = \int_{-1}^{1} dx \, x^{n-1} q(x)$
- § For higher moments, all ops mix with lower-dimension ops No practical proposal to overcome this

- Long existing obstacles!
- § Lattice calculations rely on operator product expansion, only provide moments $\langle x^n \rangle$ $\langle x^{n-1} \rangle_q = \int_{-1}^{1} dx \, x^{n-1} q(x)$
- § For higher moments, all ops mix with lower-dimension ops \gg No practical proposal to overcome this
- New Strategy:
- § Calculate finite-momentum boosted quark distribution
- In P_z →∞ limit, parton distribution is recovered
 For finite P_z , corrections are needed
- § Feasible with today's resources!

Xiangdong Ji, Phys. Rev. Lett. 111, 039103 (2013)

x

$q(x,\mu) = \tilde{q}(x,\mu,P_z) + \mathcal{O}(\alpha_s) + \mathcal{O}(M_N^2/P_z^2) + \mathcal{O}(\Lambda_{\rm QCD}^2/P_z^2)$

X. Xiong et al., 1310.7471; J.-W. Chen et al, 1603.06664

Lattice Parton Physics Project (LP³)

https://www.pa.msu.edu/~hwlin/LP3/

Xiangdong Ji Lucha (UMD) (Co

Luchang Jin (Conn) Ruizi Li (MSU*)

Yi-Bo Yang (MSU)

International collaborators

Jiunn-Wei Chen Yu-Sheng Liu (NTU) (SJTU)

Andreas Schäfer Jia (Regensburg) (R

Jian-Hui Zhang (Regensburg)

Progress in the theoretical development of LaMET

Renormalization:

Ji and Zhang, 2015; Ishikawa et al., 2016, 2017; Chen, Ji and Zhang, 2016;

Xiong, Luu and Meißner, 2017; Constantinou and Panagopoulos, 2017; Ji, Zhang, and Y.Z., 2017; J. Green et al., 2017; Ishikawa et al. (LP3), 2017; Wang, Zhao and Zhu, 2017; Spanoudes and Panagopoulos, 2018.

• Factorization:

Ma and Qiu, 2014, 2015, 2017; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018.

One-loop matching:

Xiong, Ji, Zhang and Y.Z., 2014; Ji, Schaefer, Xiong and Zhang, 2015; Xiong and Zhang, 2015; Constantinou and Panagopoulos, 2017; I. Stewart and Y. Z., 2017; Wang, Zhao and Zhu, 2017; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018.

• Power corrections:

J.-W. Chen et al., 2016; A. Radyushkin, 2017.

Transvers momentum dependent parton distribution function:

Ji, Xiong, Sun, Yuan, 2015; Ji, Jin, Yuan, Zhang and Y.Z., 2018; Ebert, Stewart and Y.Z., in progress.

Slide credit: Yong Zhao, CIPANP 2018 Plenary talk

LaMET: Important!

Large-Momentum Effective Theory for PDFs $^{X. Ji, PRL. 111, 262002 (2013)}$ 3) Recover true distribution (take $P_z \rightarrow \infty$ limit)

 $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + \mathcal{O}\left(M_N^2/P_z^2\right) + \left(\Lambda_{\rm QCD}^2/P_z^2\right)$

§ "Matching" is a very crucial step in recovering the true lightcone distribution

Nucleon Unpolarízed PDF

§ From 2014 to 2018

§ First result in 2014 $M_{\pi} \approx 310 \text{ MeV}, a \approx 0.12 \text{ fm}$ $(M_{\pi}L \approx 4.5)$ $Largest P_{z} \approx 1.3 \text{ GeV}$ 1 -loop MS matching +target-mass correction

§ Updated results in 2017/18

Improved quasi-distribution definition
 RI/MOM nonperturbative renormalization and corresponding matching to lightcone distribution

Nucleon Unpolarízed PDF

Improved quasi-distribution definition
 RI/MOM nonperturbative renormalization and corresponding matching to lightcone distribution

§ Exciting! Two collaborations' results at physical pion mass \Rightarrow Boost momenta $P_z \le 1.4$ GeV \Rightarrow Study of systematics still needed

Summary

§ Exciting era using LQCD to study nucleon structure ➢ Well-studied systematics → precision structures > More nucleon matrix elements with physical pion masses Address neglected disconnected contributions obtaining flavor-dependent quantities § Overcoming longstanding limitations on Moment Method widely studied with LaMET and its variants methods >> More systematics study planned in the near future § Stay tuned for many more exciting results from LQCD

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices

The work of HL is sponsored by NSF CAREER Award under grant PHY 1653405

36TH INTERNATIONAL SYMPOSIUM ON LATTICE FIELD THEORY

http://www.pa.msu.edu/conf/Lattice2018/

Backup Slídes

Nucleon Axíal Charge

§ Implications?

 $\sim 2\sigma$ might go away with greater statistics

Lattice 2016 Prelim. ≫ RBC* 2+1f 1.15(4) ≫ PACS* 2+1f 1.8(4)

Others Results

§ Flavor-dependent couplings, 1ST moments on PDFs, ...
 ➢ qEDM by Cirigliano (this afternoon)

§ An example from PNDME

$\mathfrak{S} \text{Move the}$ $\mathbf{excited-state systematic}$ into the statistical error $C^{\text{3pt}}(t_f, t, t_i) = |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)}$ $+ \mathcal{A}_0 \mathcal{A}_1^* \langle 0| \qquad |\mathcal{A}_0^{-M_0(t - t_i)} e^{-M_1(t_f - t)}$ $+ \mathcal{A}_0^* \mathcal{A}_1 \langle 1|\mathcal{O}_{\Gamma}|0\rangle \qquad (t - t_i) e^{-M_0(t_f - t)}$ $+ |\mathcal{A}_1|^2 \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_1(t_f - t)}$

No obvious contamination between 0.96 and 1.44 fm separation

a = **0.12 fm**, 310-MeV pion

Systematic Control

§ Much effort has been devoted to controlling systematics
 § A state-of-the art calculation (PNDME)
 a = 0.06 fm, 220-MeV pion

Systematic Control

LaMET: Step-by-Step

Large-Momentum Effective Theory for PDFs X. Ji, PRL. 111, 262002 (2013) 1) Calculate nucleon matrix elements on the lattice

$$p(P_z) \stackrel{u}{=} \frac{p(P_z)}{q} \frac$$

LaMET: Step-by-Step

Large-Momentum Effective Theory for PDFs X. Ji, PRL. 111, 262002 (2013) 1) Calculate nucleon matrix elements on the lattice

LaMET: Step-by-Step

Large-Momentum Effective Theory for PDFs X. Ji, PRL. 111, 262002 (2013) 2) Compute "quasi-distribution" via

$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-i x \, z P_z} h(z,\mu,P_z)$$

 $P_z \in \{0.43, 0.86, 1.29\}$ GeV

 $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + \mathcal{O}\left(\frac{M_N^2}{P_z^2}\right) + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{P_z^2}\right)$

Finite $P_z \leftrightarrow \infty$ perturbative matching $Z(x, \mu/P_z) = C\delta(x-1) - \frac{\alpha_s}{2\pi}Z^{(1)}(x, \mu/P_z)$

Non-singlet case only

X. Xiong, X. Ji, J. Zhang, Y. Zhao, 1310.7471;

Ma and Qiu, 1404.6860

LaMET: Step-by-Step

 $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + \mathcal{O}\left(\frac{M_N^2}{P_z^2}\right) + \mathcal{O}\left(\Lambda_{\text{QCD}}^2/P_z^2\right)$

Dominant correction (for nucleon); known scaling form HWL et al. 1402.1462 J.-W. Chen et al, 1603.06664

 $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + \mathcal{O}\left(\frac{M_N^2}{P_z^2}\right) + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{P_z^2}\right)$

complicated higher-twist operator; smaller P_z correction for nucleon J.-W. Chen et al, 1603.06664 and reference within (extrapolate it away)

§ Some similarity in more broadly-studied HQET...

$$O\left(\frac{m_b}{\Lambda}\right) = Z\left(\frac{m_b}{\Lambda}, \frac{\Lambda}{\mu}\right) o(\mu) + O\left(\frac{1}{m_b}\right) + \cdots$$

LaMET: Step-by-Step

 $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + \mathcal{O}\left(\frac{M_N^2}{P_z^2}\right) + \left(\frac{\Lambda_{\rm QCD}^2}{P_z^2}\right)$

§ Matching is a very crucial step in recovering the true lightcone distribution

10-1

10-2

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 N

22-24 March 2017, Oxford, UK

MSTW0 ABM1

§ A first joint workshop with global-fitting community to address key LQCD inputs

<u>http://www.physics.ox.ac.uk</u> /confs/PDFlattice2017

 Whitepaper study the needed precision of lattice PDFs in the large-x region

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 March 2017, Oxford, UK

§ Implementing the pseudo-data from LQCD with x = 0.7 - 0.9

$$u(x_i, Q^2) - d(x_i, Q^2)$$
 and $\overline{u}(x_i, Q^2) - \overline{d}(x_i, Q^2)$

Lin et al, Progress in Particle and Nuclear Physics 100, 106 (2018)

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 March 2017, Oxford, UK

§ Implementing the pseudo-data from LQCD with x = 0.7-0.9

Lin et al, Progress in Particle and Nuclear Physics 100, 106 (2018)

Quark EDM

§ Extrapolate to the physical limit PNDME, 1506.04196; 1506.06411 $a^{d} = 0.222(29) a^{u} = 0.774(66) a^{s} = 0.009(0)$

 $g_T^d = -0.233(28), g_T^u = 0.774(66), g_T^s = 0.008(9)$

would falsify the split-SUSY scenario with gaugino mass unification