Proton spin structure in the HES of ut

Carl E. Carlson William & Mary and JGU Mainz (Sabbatical visitor)

HFS 2018

Nucleon Spin Structure at Low Q: A Hyperfine View Trento, Italy, 2-6 July 2018

I

ff.

H

II.

I

Proton spin structure in the HFS of μ -H

Carl E. Carlson

Hľ

OUP

William & Mary and JGU Mainz (Sabbatical visitor)

.HFS_2018

Nucleon Spin Structure at Low Q: A Hyperfine View Trento, Italy, 2-6 July 2018

Topics

- Why we are here
- How calculations are done
- Recent improvements
- What more can be done successfully

Why we are here

- to consider the hyperfine splittings (HFS) in eH—"ordinary hydrogen"—and μH
- One is known to 13 digits, in frequency units,

$$E_{\text{HFS}}^{\text{exp}}(ep) = 1420.4057517667(9) \text{ MHz}$$

• The other is known to 4 digits,

 $E_{\text{HFS}}^{\text{exp}}(\mu p) = 22.8089\,(51)\,\text{meV}$ [224 ppm]

There are three proposals for measuring this 10 to 100 times better

Why we are here

- Surprises in Lamb shift measurements encourage proceeding to HFS
- With good theory, can check $e-\mu$ universality here
- Or, believing in μ-e universality, accurate measurements give information on proton structure
- With accurate data, measure the corrections to the leading order
- One correction term is sensitive to the magnetic form factor G_M at low momentum transfer, *i.e.*, to the proton magnetic radius R_M
- R_M obtained from scattering experiments is a source of controversy

Why we are here-bkgd.

 Background: repeat, for eH ("ordinary hydrogen"), HFS is known to lots of digits (13), in frequency units,

 $E_{\text{HFS}}^{\text{exp}}(ep) = 1420.4057517667(9) \text{ MHz}$

- Theory only reaches 6 digit accuracy.
- Conventional way of writing main term with corrections,

Why we are here-bkgd.

- Fermi energy is lowest order term. Found in UG quantum textbooks. Will discuss accuracy later.
- Structure term Δ_S commonly broken into 3 parts

$$\Delta_{\rm S} = \Delta_{\rm Z} + \Delta_{\rm R} + \Delta_{\rm pol}$$

- $\Delta_Z = NR$ limit of the elastic contribution (to be defined)
- Δ_R = relativistic corrections to elastic contribution
- $\Delta_{pol} = mish-mosh$ of inelastic with elastic contribution

Why we are here-bkgd.

• Δ_Z is the Zemach term, from Charlie Zemach, 1956,

$$\Delta_{Z} = -2\alpha m_{r} r_{Z}$$

$$r_{Z} = \int d^{3}r_{1} \int d^{3}r_{2} \ \rho_{E}(r_{1}) \left| \vec{r}_{1} - \vec{r}_{2} \right| \ \rho_{M}(r_{2})$$

• In modern times, use momentum space expression,

$$r_{z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left(\frac{G_{E}(Q^{2}) G_{M}(Q^{2})}{1 + \kappa_{p}} - 1 \right)$$

• $1+\kappa_p$ is the magnetic moment of the proton (in proton magnetons), and $G_M/(1+\kappa p) = 1 - R_M^2 Q^2/6 + ...$ shows dependence on R_M (and mutates mutandi on R_E).

Fermi energy number

for electron case,

- Overall, about 30 ppb, or accurate to 7+ figures
- o.k. at present time, but can do better

Fermi energy number

- $\operatorname{Ryd} = \frac{1}{2}m_e\alpha^2$ Rework using Rydberg, $m_e = \frac{c}{2\mu_B}$ and also $E_F^{ep} = \frac{16\alpha^2 \operatorname{Ryd}}{3(1 + m_e/m_p)^3} \frac{\mu_p}{\mu_B}$ 43 ppt 0.2 ppb for α combining Schneider (2017) Now about 0.6 ppb, or 9 digits. with Heiße et al. (2017)
- BTW, Planck's constant in eV-sec is currently known to 6.6 ppb, so converting to energy units seriously reduces hard won accuracy (until May 21 next year).

Fermi energy number

• Muon case

$$E_F^{\mu p} = \frac{16\alpha^2 \operatorname{Ryd}(\mu)}{3(1 + m_{\mu}/m_p)^3} \frac{\mu_p}{\mu_B(\mu)}$$

- m_{μ} or m_{μ}/m_e only known to 25 or 22 ppb, resp.
- Overall, circa 50 ppb, still 7+ digits. Adequate.

μ-Η HFS

Current data from CREMA

$$E_{\text{HFS}}^{\text{exp}}(\mu p) = 22.8089\,(51)\,\text{meV}$$
 [224 ppm]

- BTW, 2011 theory $E_{\text{HFS}}^{\text{thy}}(\mu p) = \begin{cases} 22.8146(49) \text{ meV} & (\text{CNG, 2011}) \\ 22.8102(16) \text{ meV} & (\text{Tomalak, 2018}) \\ 22.8123(33) \text{ meV} & (\text{Peset-Pineda, 2017}) \end{cases}$
- For future: the uncertainty in the data turns into 3% uncertainty for Zemach radius.
- Also: little in this talk about the EFT calculations. Expect Pascalutsa, Lensky, Hagelstein, and Pineda to make up for this.

The calculation

- Give some details of the dispersion relation calculation
- Understand how improvements, at least in the dispersive calculation have been made, and maybe
- Lowest order gives Fermi energy,

Lowest order has no structure dependence. The momentum transfer is too low.

Two photon exchange

- Can involve proton structure, because energetic, short wavelength photon can be absorbed and emitted.
- Calculable because Cauchy integral formula, and fact that imaginary part comes only and completely from situation where intermediate lepton & hadronic states are on-shell.

Two photon exchange

- With matter on-shell, LHS of diagram is scattering amplitude, RHS is its conjugate. I.e., is cross section. Can obtain from lepton-proton scattering data.
- If blob is just proton—elastic contribution—cross section given in terms of proton form factors.
- If blob is heavier than proton—inelastic contribution—cross section given in terms of proton structure functions.

TPE

 Elastic terms: Zemach already given, and since you surely want to see it,

$$\Delta_{R} = \frac{2\alpha m_{r}}{\pi m_{p}^{2}} \int_{0}^{\infty} dQ F_{2}(Q^{2}) \frac{G_{M}(Q^{2})}{1 + \kappa_{p}} + \frac{\alpha m_{r}}{2(1 + \kappa_{p})\pi(m_{p} - m_{\ell})} \Biggl\{ \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left(\frac{\beta_{1}(\tau_{p}) - 4\sqrt{\tau_{p}}}{\tau_{p}} - \frac{\beta_{1}(\tau_{\ell}) - 4\sqrt{\tau_{\ell}}}{\tau_{\ell}} \right) F_{1}(Q^{2})G_{M}(Q^{2}) + 3 \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left(\beta_{2}(\tau_{p}) - \beta_{2}(\tau_{\ell}) \right) F_{2}(Q^{2})G_{M}(Q^{2}) \Biggr\} - \frac{\alpha m_{\ell}}{2(1 + \kappa_{p})\pi m_{p}} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \beta_{1}(\tau_{\ell})F_{2}^{2}(Q^{2})$$

TPE

• repeat,

$$\Delta_R = XF_1(Q^2)G_M(Q^2) + YF_2(Q^2)G_M(Q^2) + ZF_2^2(Q^2)$$

- But if you try it—find the elastic contribution to the imaginary part, use the Cauchy formula to find the whole term—you will discover the last term is absent.
- Explain soon. Proceed to inelastic terms.

TPE inelastic

• Simplified form for $m_e = 0$ inside integral (full form with $m_{\mu} \neq 0$ of course also known)

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m_e}{2(1+\kappa_p)\pi m_p} (\Delta_1 + \Delta_2) \\ \Delta_1 &= \int_0^\infty \frac{dQ^2}{Q^2} \left\{ \frac{9}{4} F_2^2(Q^2) + 4m_p \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \ \beta_1(\tau) g_1(\nu, Q^2) \right\} \\ \Delta_2 &= -12m_p \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \ \beta_2(\tau) g_2(\nu, Q^2) \qquad \left(\tau = \frac{\nu^2}{Q^2}\right) \end{split}$$

- v = photon energy in lab, $Q^2 = -q^2$.
- g1 and g2 are polarized structure functions, obtained from inelastic ep scattering data with polarized e and p.
- The structure functions are properties of the proton, and can be obtained from electron data even when being used from muon calculation.

TPE inelastic

• repeat,

$$\Delta_{\text{pol}} = -ZF_2^2(Q^2) + Ag_1(\nu, Q^2) + Bg_2(\nu, Q^2)$$

- The first term exactly cancels corresponding term in Δ_R
- Why is it there?

Historical note

 Another thinkable way to calculate for the elastic terms. Calculate proton box and cross box with known vertex functions

- Modern view: not correct calculation. HW,
- But gives exactly $\Delta_Z + \Delta_R$ quoted earlier, with spurious term.

more history

- Why keep (and then subtract from Δ_{pol})?
- History
- plus interesting effect: Drell-Hearn-Gerasimov-Hosoda-Yamamoto sum rule

$$F_2^2(0) = \kappa_p^2 = -4m_p \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu^2} g_1(\nu, 0)$$

 ensures a cancellation at Q² = 0, leaving Δ_{pol} finite even for m_e = 0. (Individual terms diverge like log(m_e) for small m_e.)

First results

- Proton structure corrections with Δ_{pol} term date to Drell & Sullivan (1967), but data for $g_1 \& g_2$ inadequate.
- First Δ_{pol} result not compatible with zero from Faustov & Martynenko (2002). eH case:

 Authors
 Δ_{pol} (ppm)

 Faustov & Martynenko (2002)
 1.4 ± 0.6

 Us (2006)
 1.3 ± 0.3

 Faustov, Gorbacheva, & Martynenko (2006)
 2.2 ± 0.8

 Us (2008)
 1.88 ± 0.64

- Critically dependent on data for g_1 and g_2 , and also F_2 .
- Sum of all corrections just under 1 ppm, or about 1 standard deviation, from data

µH results

• From methods just given, obtain

 $\Delta_{pol}(\mu p) = (351 \pm 114) \text{ ppm}$ (CNG 2008)

• for the polarizability term, and overall

 $\Delta_S(\mu p) = \Delta_Z + \Delta_R + \Delta_{pol} = (-6421 \pm 140) \text{ ppm}$ (CNG 2008, 2011)

 Regarding the uncertainty on the latter, there is a clever idea from Tomalak (and, in a rather different calculation, Peset and Pineda).

more accurate µH results

- Instead of independent calculation, get $\Delta_{S}(\mu p)$ by scaling from $\Delta_{S}(ep)$, plus (relatively small) corrections.
- Get $\Delta_{S}(ep)$ from data, i.e., from data QED corrections small (μ vp, hvp, weak) corrections. Small uncertainty.
- Δ_Z is the biggest term, and recall $\Delta_Z = -2\alpha m_r r_Z$
- Hence $\frac{m_r(\mu)}{m_r(e)}\Delta_S(ep)$ contains the exact Zemach term for $\Delta_S(\mu p)$

more accurate µH results

• Fully,

$$\Delta_{S}(\mu p) = \frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{S}(ep) + \left(\Delta_{R}(\mu p) - \frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{R}(ep)\right) + \left(\Delta_{\text{pol}}(\mu p) - \frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{\text{pol}}(ep)\right)$$

- In extra terms, uncertainties as well as overall magnitudes tend to cancel.
- Obtain following Tomalak,

 $\Delta_{S}(\mu p) = (-6201 \pm 49) \text{ ppm}$

- Uncertainty about a factor 3 smaller
- For information, I got blue term about -154.5(4.4) ppm and red term 2.8(10.) ppm

more accurate µH results

- Quoted OA error includes estimate of higher order, O(α²), corrections in extraction of Δ_S(ep) from data.
 (Estimate is taken to be α * existing Δ_S(ep).)
- Without this, uncertainty would be about 2 1/2 times smaller.
- I.e., factor 10 reduction in uncertainty of $\Delta_{S}(\mu p)$ is thinkable, with higher order effort.

Outlook

- Have come a long way since my 1987 QM course notes claim that best calculations had 30 ppm accuracy.
- Future, for calculation of *e* or μ separately, or for individual Δ_{pol} or Δ_Z , want
 - Lower systematic error in g_1 . (See previous talk.)
 - g₂ for proton. HFS less sensitive to g₂ than g₁, but g₂ measurements very welcome. Especially want low Q² data. (Coming talk by Karl Slifer.)
 - For calculating Δ_Z , better form factor fits. Uncertainties in Zemach term not now trivial compared to Δ_{pol} . Esp., low Q^2 elastic FF important.
- For full Δ_s , scaling and then correcting electron number gives enhanced accuracy for $\Delta_s(\mu p)$. Now at ca. 50 ppm; a 20 or even 10 ppm calculation is thinkable.
- Look forward to hearing EFT and lattice results, and HFS talk by Pachucki.

after the end

Riken-CAP expt.

- Center for Advanced Photonics
- μ always decaying; from μ H in *F*=0, unpolarized
- circularly polarized γ
 - wrong *f*, nothing happens
 - right *f*, get *F*=1, but polarized in one direction
- μ that DK from these *F*=1 states are polarized
- measure F/B asymmetry of electrons out
- goal: $\Delta E^{exp}HFS}(\mu p)$ to 2 ppm (present CREMA has 224 ppm)
- gives Zemach radius to 0.03%, if theory perfect

FAMU at Riken-RAL

- Fysics of Atoms Muonic, expt. at Rutherford-Appleton
- H and O gas mixture
- *µ*H in *F*=0
- Some muons captured by O, cascade gives X-rays
- photons, correct *f*, give *F*=1
- revert to *F*=0 by collisional deexcitation, but get kick
- moving μ H have different capture rate on O, see more X-rays
- measure: $\Delta E^{exp}_{HFS}(\mu p)$ to 10 ppm (present CREMA has 224 ppm)
- get Zemach radius to 0.15%, if theory perfect

R-16-02.1, from CREMA

- Charge Radius Experiment with Muonic Atoms
- start μ H in *F*=0, photons of right *f* give *F*=1
- *F*=1 collisionally deexcites to *F*=0, and recoils
- recoiling μH more likely to reach Au wall, μ transfers to Au, cascade gives X-rays
- more wall X-rays for right *f*
- measure: $\Delta E^{exp}HFS}(\mu p)$ to 10 ppm (present CREMA has 224 ppm)
- get Zemach radius to < 0.02%, if theory perfect

Atomic measurements of R_E

proton charge radius (fm)

error budget for old eH calc.

For Δ_{pol} :

Term	Q^2 (GeV ²)	From	Value w/AMT F_2
Δ_1	[0, 0.0452]	$F_2 \& g_1$	1.35(0.22)(0.87) ()
	[0.0452, 20]	F_2	7.54 () (0.23) ()
		81	-0.14(0.21)(1.78)(0.68)
	[20, ∞]	F_2	0.00 () (0.00) ()
		<i>8</i> 1	0.11 () () (0.01)
total Δ_1			8.85(0.30)(2.67)(0.70)
Δ_2	[0, 0.0452]	82	-0.22 () () (0.22)
	[0.0452, 20]	82	-0.35 () () (0.35)
	[20, ∞]	82	0.00 () () (0.00)
total Δ_2			-0.57 () () (0.57)
$\Delta_1 + \Delta_2$			8.28(0.30)(2.67)(0.90)
$\Delta_{\rm pol}$ (ppm)			1.88(0.07)(0.60)(0.20)

- uncertainties are (statistical)(systematic from data)(modeling)
- AMT = form factors fit of Arrington, Melnitchouk, Tjon (2007)

error budget for old eH calc.

Overall:

Quantity	value (ppm)	uncertainty (ppm)
$(E_{\rm hfs}(e^-p)/E_F^p) - 1$	1 103.48	0.01
$\frac{\Delta_{\text{QED}}}{\Delta_{\mu\nu\rho}^{p} + \Delta_{\text{hyp}}^{p} + \Delta_{\text{weak}}^{p}}$	1 136.19 0.14	0.00
Δ_Z (using AMT)	-41.43	0.44
Δ_R^p (using AMT)	5.85	0.07
Δ_{pol}^p (this work, using AMT)	1.88	0.64
Total	1102.63	0.78

Some HO corrections done

• Martynenko (2005)

• Bodwin-Yennie (1988)—for point proton

+ crosses