

Proton spin structure in the HFS of $\mu \mathrm{H}$

William \& Máry and JGU Mainz (Sabbatical visitor)

Topics

- Why we are here
- How calculations are done
- Recent improvements
- What more can be done successfully

Why we are here

- to consider the hyperfine splittings (HFS) in eH - "ordinary hydrogen"-and $\mu \mathrm{H}$
- One is known to 13 digits, in frequency units,

$$
E_{\mathrm{HFS}}^{\exp }(e p)=1420.4057517667(9) \mathrm{MHz}
$$

- The other is known to 4 digits,

$$
E_{\mathrm{HFS}}^{\exp }(\mu p)=22.8089(51) \mathrm{meV} \quad[224 \mathrm{ppm}]
$$

- There are three proposals for measuring this 10 to 100 times better

Why we are here

- Surprises in Lamb shift measurements encourage proceeding to HFS
- With good theory, can check e- μ universality here
- Or, believing in μ-e universality, accurate measurements give information on proton structure
- With accurate data, measure the corrections to the leading order
- One correction term is sensitive to the magnetic form factor G_{M} at low momentum transfer, i.e., to the proton magnetic radius R_{M}
- R_{M} obtained from scattering experiments is a source of controversy

Why we are here-bkgd.

- Background: repeat, for eH ("ordinary hydrogen"), HFS is known to lots of digits (13), in frequency units,

$$
E_{\mathrm{HFS}}^{\exp }(e p)=1420.4057517667(9) \mathrm{MHz}
$$

- Theory only reaches 6 digit accuracy.
- Conventional way of writing main term with corrections,

Why we are here-bkgd.

- Fermi energy is lowest order term. Found in UG quantum textbooks. Will discuss accuracy later.
- Structure term $\Delta_{\text {s }}$ commonly broken into 3 parts

$$
\Delta_{\mathrm{S}}=\Delta_{\mathrm{Z}}+\Delta_{\mathrm{R}}+\Delta_{\mathrm{pol}}
$$

- $\Delta z=N R$ limit of the elastic contribution (to be defined)
- $\Delta_{R}=$ relativistic corrections to elastic contribution
- $\Delta_{\text {pol }}=$ mish-mosh of inelastic with elastic contribution

Why we are here-bkgd.

- Δz is the Zemach term, from Charlie Zemach, 1956,

$$
\begin{aligned}
\Delta_{Z} & =-2 \alpha m_{r} r_{Z} \\
r_{Z} & =\int d^{3} r_{1} \int d^{3} r_{2} \rho_{E}\left(r_{1}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right| \rho_{M}\left(r_{2}\right)
\end{aligned}
$$

- In modern times, use momentum space expression,

$$
r_{z}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q}{Q^{2}}\left(\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa_{p}}-1\right)
$$

- $1+\kappa_{p}$ is the magnetic moment of the proton (in proton magnetons), and $G_{M} /(1+\kappa p)=1-R_{M}^{2} Q^{2} / 6+\ldots$ shows dependence on R_{M} (and mutates mutandi on R_{E}).

Fermi energy number

- for electron case,

- Overall, about 30 ppb, or accurate to 7+ figures
- o.k. at present time, but can do better

Fermi energy number

- Rework using Rydberg, \quad Ryd $=\frac{1}{2} m_{e} \alpha^{2}$
- and also

$$
m_{e}=\frac{e}{2 \mu_{B}}
$$

$$
E_{F}^{e p}=\frac{16 \alpha^{2} \text { Ryd }}{3\left(1+m_{e} / m_{p}\right)^{3}} \frac{\mu_{p}}{\mu_{B}} 6 \mathrm{ppt} \text { (in frequency units) }
$$

43 ppt
0.3 ppb (in ratio), combining Schneider (2017) with Heiße et al. (2017)

- Now about 0.6 ppb, or 9 digits.
- BTW, Planck's constant in eV-sec is currently known to 6.6 ppb , so converting to energy units seriously reduces hard won accuracy (until May 21 next year).

Fermi energy number

- Muon case

$$
E_{F}^{\mu p}=\frac{16 \alpha^{2} \operatorname{Ryd}(\mu)}{3\left(1+m_{\mu} / m_{p}\right)^{3}} \frac{\mu_{p}}{\mu_{B}(\mu)}
$$

- m_{μ} or m_{μ} / m_{e} only known to 25 or 22 ppb , resp.
- Overall, circa 50 ppb, still 7+ digits. Adequate.

μ-H HFS

- Current data from CREMA

$$
E_{\mathrm{HFS}}^{\exp }(\mu p)=22.8089(51) \mathrm{meV} \quad[224 \mathrm{ppm}]
$$

- BTW, 2011 theory

$$
E_{\mathrm{HFS}}^{\mathrm{thy}}(\mu p)= \begin{cases}22.8146(49) \mathrm{meV} & (\text { CNG, 2011) } \\ 22.8102(16) \mathrm{meV} & \text { (Tomalak, 2018) } \\ 22.8123(33) \mathrm{meV} & \text { (Peset-Pineda, 2017) }\end{cases}
$$

- For future: the uncertainty in the data turns into 3\% uncertainty for Zemach radius.
- Also: little in this talk about the EFT calculations. Expect Pascalutsa, Lensky, Hagelstein, and Pineda to make up for this.

The calculation

- Give some details of the dispersion relation calculation
- Understand how improvements, at least in the dispersive calculation have been made, and maybe
- Lowest order gives Fermi energy,

- Lowest order has no structure dependence. The momentum transfer is too low.

Two photon exchange

- Can involve proton structure, because energetic, short wavelength photon can be absorbed and emitted.
- Calculable because Cauchy integral formula, and fact that imaginary part comes only and completely from situation where intermediate lepton \& hadronic states are on-shell.

Two photon exchange

- With matter on-shell, LHS of diagram is scattering amplitude, RHS is its conjugate. I.e., is cross section. Can obtain from lepton-proton scattering data.
- If blob is just proton-elastic contribution-cross section given in terms of proton form factors.
- If blob is heavier than proton-inelastic contribution-cross section given in terms of proton structure functions.

TPE

- Elastic terms: Zemach already given, and since you surely want to see it,

$$
\begin{aligned}
& \Delta_{R}=\frac{2 \alpha m_{r}}{\pi m_{p}^{2}} \int_{0}^{\infty} d Q F_{2}\left(Q^{2}\right) \frac{G_{M}\left(Q^{2}\right)}{1+\kappa_{p}} \\
& +\frac{\alpha m_{r}}{2\left(1+\kappa_{p}\right) \pi\left(m_{p}-m_{\ell}\right)}\left\{\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left(\frac{\beta_{1}\left(\tau_{p}\right)-4 \sqrt{\tau_{p}}}{\tau_{p}}-\frac{\beta_{1}\left(\tau_{\ell}\right)-4 \sqrt{\tau_{\ell}}}{\tau_{\ell}}\right) F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)\right. \\
& \left.+3 \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left(\beta_{2}\left(\tau_{p}\right)-\beta_{2}\left(\tau_{\epsilon}\right)\right) F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)\right\} \\
& -\frac{\alpha m_{\ell}}{2\left(1+\kappa_{p}\right) \pi m_{p}} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \beta_{1}\left(\tau_{\ell}\right) F_{2}^{2}\left(Q^{2}\right)
\end{aligned}
$$

$\beta_{1}(\tau)=-3 \tau+2 \tau^{2}+2(2-\tau) \sqrt{\tau(\tau+1)}, \quad \beta_{2}(\tau)=1+2 \tau-2 \sqrt{\tau(\tau+1)}, \quad \tau_{p}=\frac{Q^{2}}{4 m_{p}^{2}}, \quad \tau_{\ell}=\frac{Q^{2}}{4 m_{\ell}^{2}}$

TPE

- repeat,

$$
\Delta_{R}=X F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)+Y F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)+Z F_{2}^{2}\left(Q^{2}\right)
$$

- But if you try it-find the elastic contribution to the imaginary part, use the Cauchy formula to find the whole term-you will discover the last term is absent.
- Explain soon. Proceed to inelastic terms.

TPE inelastic

- Simplified form for $m_{e}=0$ inside integral (full form with $m_{\mu} \neq 0$ of course also known)

$$
\begin{aligned}
\Delta_{\mathrm{pol}}= & \frac{\alpha m_{e}}{2\left(1+\kappa_{p}\right) \pi m_{p}}\left(\Delta_{1}+\Delta_{2}\right) \\
\Delta_{1} & =\int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left\{\frac{9}{4} F_{2}^{2}\left(Q^{2}\right)+4 m_{p} \int_{\nu_{t / h}}^{\infty} \frac{d \nu}{\nu^{2}} \beta_{1}(\tau) g_{1}\left(\nu, Q^{2}\right)\right\} \\
& \Delta_{2}=-12 m_{p} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{\nu_{l / h}}^{\infty} \frac{d \nu}{\nu^{2}} \beta_{2}(\tau) g_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

$$
\left(\tau=\frac{\nu^{2}}{Q^{2}}\right)
$$

- $\nu=$ photon energy in lab, $Q^{2}=-q^{2}$.
- g_{1} and g_{2} are polarized structure functions, obtained from inelastic ep scattering data with polarized e and p.
- The structure functions are properties of the proton, and can be obtained from electron data even when being used from muon calculation.

TPE inelastic

- repeat,

$$
\Delta_{\mathrm{pol}}=-Z F_{2}^{2}\left(Q^{2}\right)+A g_{1}\left(\nu, Q^{2}\right)+B g_{2}\left(\nu, Q^{2}\right)
$$

- The first term exactly cancels corresponding term in Δ_{R}
- Why is it there?

Historical note

- Another thinkable way to calculate for the elastic terms. Calculate proton box and cross box with known vertex functions

- Modern view: not correct calculation. HW,
- But gives exactly $\Delta z+\Delta_{R}$ quoted earlier, with spurious term.

more history

- Why keep (and then subtract from $\Delta_{\text {pol }}$)?
- History
- plus interesting effect: Drell-Hearn-Gerasimov-HosodaYamamoto sum rule

$$
F_{2}^{2}(0)=\kappa_{p}^{2}=-4 m_{p} \int_{\nu_{l h}}^{\infty} \frac{d \nu}{\nu^{2}} g_{1}(\nu, 0)
$$

- ensures a cancellation at $Q^{2}=0$, leaving $\Delta_{\text {pol }}$ finite even for $m_{e}=0$. (Individual terms diverge like $\log \left(m_{e}\right)$ for small m_{e}.)

First results

- Proton structure corrections with $\Delta_{\text {pol }}$ term date to Drell \& Sullivan (1967), but data for $g_{1} \& g_{2}$ inadequate.
- First $\Delta_{\text {pol }}$ result not compatible with zero from Faustov \& Martynenko (2002). eH case:

Authors	$\Delta_{\mathrm{pol}}(\mathrm{ppm})$
Faustov \& Martynenko (2002)	1.4 ± 0.6
Us (2006)	1.3 ± 0.3
Faustov, Gorbacheva, \& Martynenko (2006)	2.2 ± 0.8
Us (2008)	1.88 ± 0.64

- Critically dependent on data for g_{1} and g_{2}, and also F_{2}.
- Sum of all corrections just under 1 ppm, or about 1 standard deviation, from data

$\mu \mathrm{H}$ results

- From methods just given, obtain

$$
\Delta_{\mathrm{pol}}(\mu p)=(351 \pm 114) \mathrm{ppm} \quad(\mathrm{CNG} 2008)
$$

- for the polarizability term, and overall
$\Delta_{S}(\mu p)=\Delta_{Z}+\Delta_{R}+\Delta_{\text {pol }}=(-6421 \pm 140) \mathrm{ppm} \quad(\mathrm{CNG} 2008,2011)$
- Regarding the uncertainty on the latter, there is a clever idea from Tomalak (and, in a rather different calculation, Peset and Pineda).

more accurate $\mu \mathrm{H}$ results

- Instead of independent calculation, get $\Delta \mathrm{s}(\mu p)$ by scaling from $\Delta_{s}(e p)$, plus (relatively small) corrections.
- Get $\Delta_{S}(e p)$ from data, i.e., from data - QED corrections small ($\mu \mathrm{vp}$, hvp, weak) corrections. Small uncertainty.
- Δz is the biggest term, and recall $\Delta z=-2 \alpha m_{r} r_{z}$
- Hence $\frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{S}(e p)$ contains the exact Zemach term for $\Delta_{S}(\mu p)$

more accurate $\mu \mathrm{H}$ results

- Fully,

$$
\Delta_{S}(\mu p)=\frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{S}(e p)+\left(\Delta_{R}(\mu p)-\frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{R}(e p)\right)+\left(\Delta_{\mathrm{pol}}(\mu p)-\frac{m_{r}(\mu)}{m_{r}(e)} \Delta_{\mathrm{pol}}(e p)\right)
$$

- In extra terms, uncertainties as well as overall magnitudes tend to cancel.
- Obtain following Tomalak,

$$
\Delta_{S}(\mu p)=(-6201 \pm 49) \mathrm{ppm}
$$

- Uncertainty about a factor 3 smaller
- For information, I got blue term about -154.5(4.4) ppm and red term 2.8(10.) ppm

more accurate $\mu \mathrm{H}$ results

- Quoted OA error includes estimate of higher order, $O\left(\alpha^{2}\right)$, corrections in extraction of $\Delta_{s}(e p)$ from data. (Estimate is taken to be $\alpha *$ existing $\Delta_{s}(e p)$.)
- Without this, uncertainty would be about 2 1/2 times smaller.
- I.e., factor 10 reduction in uncertainty of $\Delta_{s}(\mu p)$ is thinkable, with higher order effort.

Outlook

- Have come a long way since my 1987 QM course notes claim that best calculations had 30 ppm accuracy.
- Future, for calculation of e or μ separately, or for individual $\Delta_{\text {pol }}$ or Δz, want
- Lower systematic error in g_{1}. (See previous talk.)
- g_{2} for proton. HFS less sensitive to g_{2} than g_{1}, but g_{2} measurements very welcome. Especially want low Q2 data. (Coming talk by Karl Slifer.)
- For calculating Δz, better form factor fits. Uncertainties in Zemach term not now trivial compared to $\Delta_{\text {pol }}$. Esp., low Q2 elastic FF important.
- For full Δ_{s}, scaling and then correcting electron number gives enhanced accuracy for $\Delta_{s}(\mu p)$. Now at ca. 50 ppm; a 20 or even 10 ppm calculation is thinkable.
- Look forward to hearing EFT and lattice results, and HFS talk by Pachucki.

after the end

Riken-CAP expt.

- Center for Advanced Photonics
- μ always decaying; from $\mu \mathrm{H}$ in $F=0$, unpolarized
- circularly polarized γ
- wrong f, nothing happens
- right f, get $F=1$, but polarized in one direction
- μ that DK from these $F=1$ states are polarized
- measure F/B asymmetry of electrons out
- goal: $\Delta E^{\exp }{ }_{\text {hFs }}(\mu p)$ to 2 ppm (present CREMA has 224 ppm)
- gives Zemach radius to 0.03%, if theory perfect

FAMU at Riken-RAL

- Fysics of Atoms Muonic, expt. at Rutherford-Appleton
- H and O gas mixture
- $\mu \mathrm{H}$ in $F=0$
- Some muons captured by O, cascade gives X-rays
- photons, correct f, give $F=1$
- revert to $F=0$ by collisional deexcitation, but get kick
- moving $\mu \mathrm{H}$ have different capture rate on O , see more X -rays
- measure: $\Delta E^{\exp }{ }_{\mathrm{HFs}}(\mu \mathrm{p})$ to 10 ppm (present CREMA has 224 ppm)
- get Zemach radius to 0.15%, if theory perfect

R-16-02.1, from CREMA

- Charge Radius Experiment with Muonic Atoms
- start $\mu \mathrm{H}$ in $F=0$, photons of right f give $F=1$
- $F=1$ collisionally deexcites to $F=0$, and recoils
- recoiling $\mu \mathrm{H}$ more likely to reach Au wall, μ transfers to Au , cascade gives X-rays
- more wall X -rays for right f
- measure: $\Delta E^{\exp }{ }_{\text {Hfs }}(\mu p)$ to 10 ppm (present CREMA has 224 ppm)
- get Zemach radius to $<0.02 \%$, if theory perfect

Atomic measurements of R_{E}

error budget for old eH calc.

For $\Delta_{\text {pol }}$:

Term	$Q^{2}\left(\mathrm{GeV}^{2}\right)$	From	Value w/AMT F_{2}
Δ_{1}	$[0,0.0452]$	$F_{2} \& g_{1}$	$1.35(0.22)(0.87)()$
	$[0.0452,20]$	F_{2}	7.54()$(0.23)()$
		$[20, \infty]$	g_{1}
		F_{2}	$-0.14(0.21)(1.78)(0.68)$
	g_{1}	0.00()$(0.00)()$	
			$8.85(0.30)(2.67)(0.70)$
total Δ_{1}		$[0,0.0452]$	g_{2}
Δ_{2}	$[0.0452,20]$	g_{2}	-0.22()$(0.35()()(0.22)$
	$[20, \infty]$	g_{2}	0.00()()(0.35)
			-0.57()()(0.57)
total Δ_{2}			$8.28(0.30)(2.67)(0.90)$
$\Delta_{1}+\Delta_{2}$			$1.88(0.07)(0.60)(0.20)$

uncertainties are (statistical)(systematic from data)(modeling)
AMT $=$ form factors fit of Arrington, Melnitchouk, Tjon (2007)

error budget for old eH calc.

Overall:

Quantity	value (ppm)	uncertainty (ppm)
$\left(E_{\mathrm{hfs}}\left(e^{-} p\right) / E_{F}^{p}\right)-1$	1103.48	0.01
Δ_{QED}	1136.19	0.00
$\Delta_{\mu \mathrm{vp}}^{p}+\Delta_{\mathrm{hvp}}^{p}+\Delta_{\text {weak }}^{p}$	0.14	
Δ_{Z} (using AMT)	-41.43	0.44
Δ_{R}^{p} (using AMT)	5.85	0.07
$\Delta_{\text {pol }}$ (this work, using AMT)	1.88	0.64
Total	1102.63	0.78
Deficit	0.85	0.78

Some HO corrections done

- Martynenko (2005)

+ crosses
- Bodwin-Yennie (1988)-for point proton

+ crosses

