A recent paper on FT quarkonium polarization

Physics Letters B 840 (2023) 137871

Low- p_T quarkonium polarization measurements: Challenges and opportunities

Pietro Faccioli^{a,*}, Ilse Krätschmer^b, Carlos Lourenço^c

^a LIP, Lisbon, Portugal ^b ISTA, Klosterneuburg, Austria ^c CERN, Geneva, Switzerland

> Stephane Platchkov Paris-Saclay University, CEA/IRFU, France

Measurements considered: J/psi

"In this paper we devote our attention to low- p_T quarkonium hadroproduction, a kinematical domain complementary to that explored in collider experiments."

- ◆ Consider all FT quarkonia polarization data
 - Data in three different frames
 - Different particles (p, π+, π-, p̄) and energies
 sqrt(s) from 15.3 to 41.6 GeV
 - Absence of acceptance correlation between $\cos\theta$ and φ
 - Most polarization values for J/psi are near 0

Fig. 1. The J/ ψ polar anisotropy parameter λ_{ϑ} measured in the CS, GJ, and HX frames (top to bottom), vs. x_F and p_T .

Polarization

- J/ ψ is a 1⁻⁻ particle; its third component is J_z = 0,+1, -1.
 - $\alpha = +1$: 100% transverse polarization ($J_z = \pm 1$)
 - $\alpha = 0$: unpolarized
 - $\alpha = -1$: 100% longitudinal polarization ($J_z = 0$)

$$\frac{d\sigma}{d(\cos\theta)} \propto 1 + \alpha \cos^2\theta,$$

- Polarization observable
 - angular momentum, chirality, parity conservations preserve the properties of the J/ψ : from production to the 2μ decay
 - Nature wants to help us, for $q\bar{q}: \alpha \simeq +1$, but for $gg: \alpha \simeq -1$
 - Key variable for understanding the bound state formation

Polarization: expected results (Cheung and Vogt, priv. comm)

The polarization value as a function of x_F is sensitive to the shape differences between gg and $q\bar{q}$ contributions to the cross section

PDFs Trento

Data used

Table 1

 J/ψ and Υ polarization measurements in fixed target experiments, characterized by several beam energies (E_{lab}) and angular coverages, denoted using x_F , centre-of-mass rapidity (y_{cms}) or fractional momentum of the beam partons (x_1).

Exp. [Ref.]	Beam	Target	E _{lab} (GeV)	\sqrt{s} (GeV)	$\Delta x_{\rm F}$	$\Delta p_{\rm T}$ (GeV)	$\langle p_{\rm T} \rangle$, $\langle p_{\rm T}^2 \rangle$ (GeV), (GeV ²)
J/ψ							
E537 [<mark>31</mark>]	π^- , $ar{ m p}$	W	125	15.3	0.0-0.7	0-2.5	$\langle p_{\rm T} \rangle = 1.04$
WA11 [32]	π^-	Ве	146	16.6	0.0–0.4	0–2.4	$\langle p_{\rm T} \rangle = 1.0$
NA60 [33]	In	In	158	17.2	y _{cms} : 0–1	pprox0–4	
E444 [34]	π^{\pm}	C, Cu, W	225	20.6	<i>x</i> ₁ : 0.2–1.0	0–2.5	$\langle p_{\rm T} \rangle = 1.2$
E615 [<mark>35</mark>]	π^{\pm}	W	252	21.8	0.25-1.0	0–5	
NA3 [<mark>36</mark>]	π^-	H, Pt	280	22.9	0.0-1.0		$\langle p_{\rm T}^2 \rangle = 1.52, 1.85$
WA92 [37]	π^-	Si, Cu, W	350	25.6	pprox 0.0–0.8	0–4	
E672/706 [<mark>38</mark>]	π^-	Be	515	31.1	0.1–0.8	0–3.5	$\langle p_{\rm T} \rangle = 1.17$
E672/706 [<mark>39</mark>]	р	Be	530, 800	31.5, 38.8	0.0–0.6		$\langle p_{\rm T} \rangle = 1.15, \ 1.22$
E771 [<mark>40</mark>]	р	Si	800	38.8	-0.05-0.25	0–3.5	$\langle p_{\rm T}^2 \rangle = 1.96$
E866 [41]	р	Cu	800	38.8	pprox 0.0–0.5	\approx 0–4	
HERA-B [42]	р	C, Ti, W	920	41.6	-0.34-0.14	0–5.4	$\langle p_{\rm T}^2 \rangle = 2.2$
$\Upsilon(1S)$ and $\Upsilon(2S)+\Upsilon(3S)$							
E866 [43]	р	Cu	800	38.8	0.0–0.6	0–4	$\langle p_{\rm T} \rangle = 1.3$

Measurements shown: Upsilon

- ◆ Difference between Y(1S) and Y(2S)+ Y(3S)
 - "astounding difference"

Fig. 2. The $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ polar anisotropy parameter λ_{ϑ} measured by E866 in the CS frame, vs. x_F and p_T .

HX, GJ, CS frame analysis of HERA-B data

- Observations
 - Inverse hierarchy for Theta and Phi results
 - Reflects the difference between the frame definition
 - A trend towards longitudinal J/psi polarization at small x_F.
 - Interpretation: gg process is dominant

Fig. 3. The J/ ψ λ_{ϑ} and λ_{φ} parameters measured by HERA-B in the CS, GJ and HX frames, vs. x_F and p_T .

♦ Assumptions

- QQ production is dominated by 2-to-1 topologies, so that contributions producing at least one additional object besides the quarkonium, are considered negligible.

- The gg \rightarrow QQ and qq \rightarrow QQ processes lead, respectively, to fully longitudinal and fully transverse polarizations of the directly produced J/ ψ , ψ (2S), and Y mesons.

Model used

Relative proportion of qqbar and gg:

 $R = \frac{\sum_{q} [F_1^q(x_1, \hat{s}) F_2^{\overline{q}}(x_2, \hat{s}) + F_1^{\overline{q}}(x_1, \hat{s}) F_2^q(x_2, \hat{s})]}{F_1^g(x_1, \hat{s}) F_2^g(x_2, \hat{s})}, \quad \text{Use the PDFs to calculate it}$

Ratio of qqbar and gg cross sections:

 $r = \frac{\hat{\sigma}(q\bar{q} \to Q)}{\hat{\sigma}(q\bar{q} \to Q)},$ Fit r to the data: (only parameter)

Compute the polarization using: $f_{q\bar{q}} = R \times r/(1 + R \times r)$ and $f_{gg} = 1/(1 + R \times r)$, $\lambda = \frac{f_{q\bar{q}} \lambda^{qq} / (3 + \lambda_{\vartheta}^{q\bar{q}}) + f_{gg} \lambda^{gg} / (3 + \lambda_{\vartheta}^{gg})}{f_{q\bar{q}} / (3 + \lambda_{\vartheta}^{q\bar{q}}) + f_{gg} / (3 + \lambda_{\vartheta}^{gg})} .$ Assumed polarizations λgg and λqq (from -1 and +1) to values corrected for feed-down (upp, low, central)

Ratio of qqbar to gg "luminosities" for a proton beam

◆ Luminosity = product of PDFs √s = 40 GeV qq / gg $0 < p_{_{T}} < 5.4 \text{ GeV}$ 2 Observations • Dominance of gg near $x_F = 0$ – pp 1.5 – p-Cu • Large difference J/ψ vs Y 0.5 General • Low p_T data: 2 ---> 1 process Ω $0.1 \frac{0.2}{x_{\rm F}}$ -0.2 -0.1 0.3 • qq = transverse pol.; gg = longitudinal pol. -0.3

Y(1S)

J/ψ

0.5

0.4

Model vs Data for proton-nucleus collisions

Fig. 6. The x_F (left) and p_T (right) dependences of the J/ψ polarization parameters λ_ϑ in the CS (top) and HX (middle) frames, and λ_φ in the HX frame (bottom), as measured by HERA-B (red points) and E866 (blue points). The cyan, green, and magenta bands represent, respectively, the upper (U), central (C), and lower (L) scenarios described in the text; they are independently computed for the HERA-B and E866 conditions. The departure of the bands from the E866 measurements for $x_F > 0.45$ (open circles) justifies the conjecture that our model is not valid to describe high- x_F quarkonium production.

Fig. 7. Same as Fig. 6, for the $\Upsilon(1S) \lambda_{\vartheta}$ parameter measured by E866 in the CS frame.

PDFs Trento

"As mentioned before, these Y(2S+3S) measurements are clearly a notable exception in the global panorama of the existing data. Faced with this large discrepancy, we must wonder if there could be some experimental factor causing a difference between the Y(2S+3S) measurement and the J/ ψ or Y(1S) measurements."

Pion-nucleus collisions

- Observations
 - Very large effect, as expected.

"The x_F dependence of this ratio, as well as its average value and the covered x_F range, depend quite significantly on the chosen PDF set, probably because of the poorly-known gluon density in the pion"

Fig. 9. The $q\bar{q}$ over gg parton luminosity ratios, vs. x_F , for J/ ψ production at the collision energy of E615 [35], for the JAM21, xFitter, and GRV-pi1 pion PDF sets, and for the π^-p , π^- -Ca, π^- -W, and π^+ -W collision systems.

Pion-nucleus collisions

Fig. 10. The x_F and p_T dependences of the $J/\psi \lambda_{\vartheta}$ parameter, in the CS, GJ, and HX frames, as measured by E444 and E615 in π -W collisions. The bands are computed using the JAM21, xFitter, and GRV-pi1 pion PDF sets, for the three feed-down scenarios. As in Fig. 6, the data points and bands are displayed less prominently in the $x_F > 0.5$ region.

Fig. 11. Same as Fig. 10, for the E537 conditions.

Confirmation: GRV produces the best agreement

Predictions for AMBER

Fig. 12. The x_F dependence of the λ_{ϑ} parameter, in the CS frame, as predicted for J/ψ (top) and $\psi(2S)$ (bottom) production in p-C (left) and π^- -C (right) collisions at $\sqrt{s} = 18.9$ GeV (corresponding to the conditions of the AMBER experiment), for the three considered J/ψ feed-down scenarios. The bands on the right panels correspond to the three pion PDF sets.