Lattice Calculations of PDFs: Now and in the Future

David Richards
Jefferson Lab and Hadstruc Collaboration

Parton Distribution Functions at a Crossroads

HadStruc Collaboration

Robert Edwards, Colin Egerer, Joe Karpie, Jianwei Qiu, David Richards, Eloy Romero, Frank Winter Jefferson Lab
Carl Carlson, Tanjib Khan, Christopher Monahan,
Kostas Orginos, Raza Sufian
William and Mary
Wayne Morris, Anatoly Radyushkin
Old Dominion University
Savvas Zafeiropoulos
Aix Marseille Univ, Marseille, France
Yan-Qing Ma
Peking University, Beijing, China
Balint Joo
ORNL

Graduate students, and now post-docs.

- PDFs on the Lattice
- The PDF revolution - LaMET and Quasi-PDFs, Short Distance Factorization and Pseudo-PDFs,...
- Control over systematic uncertainties - confront and further experiment
- State-of-the-art isovector calculations
- The role of gluons (and sea quarks)
- Future - LQCD + Expt
- Future - 3D Structure

Lattice QCD

- Continuum Euclidean space time replaced by four-dimensional lattice, or grid, of "spacing" a
- Gauge fields are represented at SU(3) matrices on the links of the lattice - work with the elements rather than algebra

$$
U_{\mu}(n)=e^{i a T^{a} A_{\mu}^{a}(n)}
$$

Quarks ψ, ψ are Grassmann

 Variables, associated with the sites of the latticeWork in a finite $4 D$ space-time volume

- Volume V sufficiently big to contain, e.g. proton + pion effects
- Spacing a sufficiently fine to resolve its structure

Rich Menu of calculations....

Axial-vector form factors - neutrino program
A.S. Meyer, A. Walker-Loud, C.Wilkinson, arXiv:2201.01839

Isovector Sach's Form Factor
D.Djukanovic, Lattice 2022

Momentum and spin fractions of nucleon
S.Mondal et al., Phys. Rev. D 102, 054512 (2020)

Each characterized by matrix element of local operator \rightarrow calculable on Euclidean lattice.

PDFs, GPDs, TMDs?

A history of lattice QCD through no-go theorems

- You can't place a chirat gaugze titury on a arocrotized lattice

Domain-wall Fermions: D.Kaplan, Phys.Lett.B 288 (1992) 342 Overlap Fermions: R.Narayanan, H.Neuberger, Nucl.Phys.B 443 (1995) 305

- You can't investigate seattening on a Luelidean lattice
"Luscher's Method": M.Luscher, Nucl.Phys.B 354 (1991) 531
See David Wilson, Tuesday and many parallel talks
- You can't compute manix enments-of lighecone operators on a Euclidean lattice LaMET: X.Ji, Phys.Rev.Lett. 110 (2013) 262002

Theorems did not fall - we found way to drive around them

Transformed our ability to exploit internal structure of hadrons

Hadron Structure: No-go Theorem?

- First Challenge:
- Euclidean lattice precludes calculation of light-cone/time-separated correlation functions PDFs, GPDs, TMDs

$$
q(x, \mu)=\int \frac{d \xi^{-}}{4 \pi} e^{-i x \xi^{-} P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} e^{-i g \int_{0}^{\xi^{-}} d \eta^{-} A^{+}\left(\eta^{-}\right)} \psi(0)|P\rangle
$$

So.... ...Use Operator-Product-Expansion to formulate in terms of Mellin Moments with respect to Bjorken x.
$\longrightarrow\langle P| \bar{\psi} \gamma_{\mu_{1}}\left(\gamma_{5}\right) D_{\mu_{2}} \ldots D_{\mu_{n}} \psi|P\rangle \rightarrow P_{\mu_{1}} \ldots P_{\mu_{n}} a^{(n)}$

- Second Challenge:
- Discretised lattice: power-divergent mixing for higher moments Moment Methods Recent work by ETMC/HOPE
- Extended operators: Z.Davoudi and M. Savage, PRD 86,054505 (2012)
- Valence heavy quark: W.Detmold and W.Lin, PRD73, 014501 (2006)

PDFs from Euclidean Lattice

Large-Momentum Effective Theory (LaMET)

"Equal time" correlator

$$
\begin{gathered}
\left.q\left(x, \mu^{2}, P^{z}\right)=\int \frac{d z}{4 \pi} e^{i z k^{z}}\langle P| \bar{\psi}(z) \gamma^{z} e^{-i g \int_{0}^{z} d z^{\prime} A^{z}\left(z^{\prime}\right)} \psi(0) \right\rvert\, P> \\
\left.+\mathcal{O}\left(\left(\Lambda^{2} /\left(P^{z}\right)^{2}\right), M^{2} /\left(P^{z}\right)^{2}\right)\right) \\
q\left(x, \mu^{2}, P^{z}\right)=\int_{x}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}\right) q\left(y, \mu^{2}\right)+\mathcal{O}\left(\Lambda^{2} /\left(P^{z}\right)^{2}, M^{2} /\left(P^{z}\right)^{2}\right) \\
\text { "quasi-PDF Approach" }
\end{gathered}
$$

PDFs, GPDs and TMDs

Ma and Qiu, Phys. Rev. Lett. 120022003
A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

Light cone reduces to a point

GLCS

Same lattice building blocks

pPDF

Characterized by shortdistance factorization

Pseudo-PDFs

Lattice "building blocks" that of quasi-PDF approach.
X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
X. Ji, J. Zhang, and Y. Zhao, Phys. Rev. Lett. 111, 112002 (2013).
J. W. Qiu and Y. Q. Ma, arXiv:1404.686.

A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

- Pseudo-PDF (pPDF) recognizing generalization of PDFs in terms of loffe Time.

```
\nu=p\cdotz
```

B.loffe, PL39B, 123 (1969); V.Braun et al, PRD51, 6036 (1995)

$$
\begin{gathered}
M^{\alpha}(p, z)=\langle p| \bar{\psi} \gamma^{\alpha} U(z ; 0) \psi(0)|p\rangle \\
p=\left(p^{+}, m^{2} / 2 p^{+}, 0_{T}\right) \\
M^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right)
\end{gathered}
$$

loffe-time pseudo-Distribution (pseudo-ITD) generalization to space-like z

Pseudo-PDFs

To deal with UV divergences, introduce reduced distribution

$$
\mathfrak{M}=\frac{\mathscr{M}\left(\nu, z^{2}\right)}{\mathscr{M}\left(0, z^{2}\right)} \equiv\left(\frac{\mathscr{M}\left(\nu, z^{2}\right)}{\mathscr{M}(\nu, 0)}\right),\left(\frac{\mathscr{M}\left(0, z^{2}\right)}{\mathscr{M}(0,0)}\right)
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d u K\left(u, z^{2} \mu^{2}, \alpha_{s}\right) Q\left(u \nu, \mu^{2}\right)
$$

Computed on lattice
Perturbatively calculable
loffe-time Distribution

$$
Q(\nu, \mu)=\mathfrak{M}\left(\nu, z^{2}\right)-\frac{\alpha_{s} C_{F}}{2 \pi} \int_{0}^{1} d u\left[\ln \left(z^{2} \mu^{2} \frac{e^{2 \gamma_{E}+1}}{4}\right) B(u)+L(u)\right] \mathfrak{M}\left(u \nu, z^{2}\right) .
$$

K. Orginos et al., PRD96 (2017), 094503

Inverse problem
ITD $\leftrightarrow P D F$

Match data at different z

$$
\begin{aligned}
Q(\nu) & =\int_{-1}^{1} d x q(x) e^{i \nu x} \\
q(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i \nu x} Q(\nu)
\end{aligned}
$$

Need data for all v, or additional physics input

Ioffe-Time Distribution to PDF

J.Karpie, K.Orginos, A.Radyushkin, S.Zafeiropoulos, Phys.Rev.D 96 (2017)
B.Joo et al., HEP 12 (2019) 081, J.Karpie et al., Phys.Rev.Lett. 125 (2020) 23, 232003

To extract PDF requires additional information - use a phenomenologically motivated parametrization $f(x)=x^{a}(1-x)^{b} P(x)$ MSTW, CJ

ID	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	β	c_{SW}	$a m_{l}$	$a m_{s}$	$L^{3} \times T$	N_{cfg}
$a 094 m 360$	$0.094(1)$	$358(3)$	6.3	1.20536588	-0.2350	-0.2050	$32^{3} \times 64$	417
$a 094 m 280$	$0.094(1)$	$278(3)$	6.3	1.20536588	-0.2390	-0.2050	$32^{3} \times 64$	500
$a 091 m 170$	$0.091(1)$	$172(6)$	6.3	1.20536588	-0.2416	-0.2050	$64^{3} \times 128$	175

$P(x)=\frac{1+c \sqrt{x}+d x}{B(a+a, b+1)+c B(a+1.5, b+1)+d B(a+2, b+1)}$

B.Joo et al.,PRL 125 (2020) 23, 232003

Challenges of Higher Momenta

Both LaMET and pseudo-PDF require high momentum and fine resolution!

Achieving high momenta in a lattice calculation presents several challenges

- Discretization errors
- "Compression" of energy spectrum as spatial momentum increased
- Reduced symmetries for states in motion - parities are mixed, helicity defines the basis
- Poor overlaps of e.g. Jacobi smearing on states in motion - poor signal-to-noise ratio.

Neat solution

Boosted interpolating operators

Bali et al., Phys. Rev. D 93, 094515 (2016)

Now essentially ubiquitous
Can we combine momentum smearing with distillation to address some of the other issues?
N.B Bali et al does indeed suggest application to distillation.

Look at

- Nucleon energies and dispersion relation
- Nucleon charges

Distillation and Hadron Structure

To control systematic uncertainties, need precise computations over a wide range of momentum.

- Use a low-mode projector to capture states of interest "distillation" M.Peardon et al (Hadspec), Phys.Rev.D 80 (2009) 054506
- Enables momentum projection at each temporal point.

Momentum projection

Variational basis

Isovector PDF using Distillation

C.Egerer et al. (hadstruc), JHEP 11 (2021) 148

Expand the x-dependence in terms of (shifted) Jacobi Polynomials

$$
\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\mathfrak{R e} \int_{0}^{1} d x \mathcal{K}_{\mathrm{v}}^{\mathcal{K}_{\mathrm{v}}\left(x \nu, z^{2} \mu^{2}\right) x^{\alpha}(1-x)^{\beta} \Omega_{n}^{(\alpha, \beta)}(x)} \begin{gathered}
\text { J.Karie.,..Orginos,A.Radyushkin,s.z } \\
\text { afeiropoulos, arxiv:2 105.13311 }
\end{gathered}
$$

DGLAP Evolution

- Data demonstrate "precious scaling"...

ETMC, arXiv:2212.06201

Quasi-PDFs/LaMET

Liberally interpreted!

Construction of a rigorous framework to extract GPDs from first-principles lattice calculation essential to precision we proposed.
Two important works on LaMET framework.
Natural scale of quark (or gluon) is $p_{z}=x P_{z}$
Resum terms of type $\ln ^{n} p_{z} / \mu$

Pion PDF

Y. Su et al., Nucl.Phys.B 991 (2023) 116201

Control uncertainty due to linear divergence of Wilson line - leading twist-3 correction. Resummation of infraredrenormalon series.

Vastly improved fidelity at intermediate x

R. Zhang et al, Phys.Lett.B 844 (2023) 138081

Improved control at accessible P_{z}

Phys.Rev.D 105 (2022) 3, 034507, Hadstruc Collaboration, (C.Egerer et al).

$$
\begin{aligned}
& 2 P^{+} S^{\rho_{\perp}} \mathcal{I}\left(P^{+} z^{-}, \mu\right)=\left\langle P, S^{\rho_{\perp}}\right| \bar{\psi}\left(z^{-}\right) \gamma^{+} \gamma^{\rho_{\perp}} \gamma_{5} W_{+}\left(z^{-}, 0\right) \psi(0)\left|P, S^{\rho_{\perp}}\right\rangle \\
& h(x, \mu)=\int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} e^{-i x \nu} \mathcal{I}(\nu, \mu)
\end{aligned}
$$

In contrast to unpolarized PDF, there is no conserved current - so express in terms of the (renormalized) tensor charge.

Transversity Distribution

Helicity Distribution

Valence quark helicity distribution, together with contamination terms

CP-odd helicity distribution, together with contamination terms

Small NS anti-quark helicity

Unpolarized and Polarized Gluon

"Understanding the Glue That Binds Us All: The Next QCD Frontier in Nuclear Physics"

Gluon Contribution to unpolarized PDF

Two-point functions as in isovector case

$$
\text { Reduced matrix element: } \quad \mathfrak{M}\left(\nu, z^{2}\right)=\left(\frac{\mathcal{M}\left(\nu, z^{2}\right)}{\left.\mathcal{M}(\nu, 0)\right|_{z=0}}\right) /\left(\frac{\left.\mathcal{M}\left(0, z^{2}\right)\right|_{p=0}}{\left.\mathcal{M}(0,0)\right|_{p=0, z=0}}\right)
$$

Flavor-singlet quantities are subject to severe signal-to-noise problems compared with isovector measures:

- Use distillation and many more measurements per configuration - sampling of lattice
- Use of summed Generalized Eigenvalue Problem (sGEVP) - better control over excited state contributions
- Use of Gradient Flow - smoothing of short-distance fluctuations

ITD to PDF

Matching: I.Balitsky,W.Morris,A.Radyushkin,Phys.Lett.B 808 (2020) 135621

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathcal{I}_{g}\left(\nu, \mu^{2}\right)}{\mathcal{I}_{g}\left(0, \mu^{2}\right)}-\frac{\alpha_{s} N_{c}}{2 \pi} \int_{0}^{1} d u \frac{\mathcal{I}_{g}\left(u \nu, \mu^{2}\right)}{\mathcal{I}_{g}\left(0, \mu^{2}\right)}\left\{\ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}}}{4}\right) B_{g g}(u)+4\left[\frac{u+\ln (\bar{u})}{\bar{u}}\right]_{+}+\frac{2}{3}\left[1-u^{3}\right]_{+}\right\}
$$

$N . B$ neglecting quark-gluon mixing
Implementation for obtaining the PDFs follows that of the isovector distribution

- Expand in Jacobi Polynomials

$$
x^{\alpha}(1-x)^{\beta}
$$

Require normalization of $x g(x) \quad\langle x\rangle_{g}^{\overline{M S}}(\mu=2 \mathrm{GeV})=0.427(92)$
C.Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017)

Continuum limit/physical extrapolation

See also ETMC

Gluon momentum fraction on same lattice

Gluon Helicity Distribution

- Crucial questions in global analysis - do we need to apply positivity constraint:

$$
|\Delta g(x)| \leq g(x) \forall x
$$

Relaxing constraint leads to new "replicas" in global analysis:

C.Egerer et al. (HadStruc), Phys.Rev.D 106 (2022) 9, 094511

LQCD Calculation of gluon helicity distribution compared with global analyses

LQCD can inform in advance of EIC!

Caveat! Mixing with sea quarks not yet included

Lattice QCD + Experiment: Greater than their parts

Pion PDF

Pion PDF has high level of uncertainty - no free-pion targets

"Good Lattice Cross Sections"

Ma and Qiu, Phys. Rev. Lett. 120022003

$$
\begin{aligned}
\mathcal{O}_{S}(\xi) & =\xi^{4} Z_{S}^{2}\left[\bar{\psi}_{q} \psi_{q}\right](\xi)\left[\bar{\psi}_{q} \psi\right](0) \\
\mathcal{O}_{V^{\prime}}(\xi) & \left.=\xi^{2} Z_{V^{\prime}}^{2}\left[\bar{\psi}_{q} \xi \cdot \gamma \psi_{q^{\prime}}\right](\xi)\left[\bar{\psi}_{q^{\prime}} \xi \cdot \gamma \psi\right]\right](0)
\end{aligned}
$$

$$
q_{\mathrm{v}}^{\pi}(x)=\frac{x^{\alpha}(1-x)^{\beta}(1+\gamma x)}{B(\alpha+1, \beta+1)+\gamma B(\alpha+2, \beta+1)}
$$

T.Izubuchi et al., Phys. Rev. D 100, 034516

J-H Zhang et al., Phys. Rev. D 100, 034505

Sufian et al., Phys. Rev. D102, 05408 (2020)

Back to expt.

PHYSICAL REVIEW D 105, 114051 (2022)

Complementarity of experimental and lattice QCD data on pion parton distributions
P. C. Barry $\odot{ }^{1}$ C. Egerer, ${ }^{1}$ J. Karpie $\odot,{ }^{2}$ W. Melnitchouk $\odot{ }^{1}{ }^{1}$ C. Monahan $\odot,{ }^{1,3}$ K. Orginos, ${ }^{1,3}$ Jian-Wei Qiu, ${ }^{1,3}$ D. Richards, ${ }^{1}$ N. Sato, ${ }^{1}$ R. S. Sufian@, ${ }^{1,3}$ and S. Zafeiropoulos ${ }^{4}$
(Jefferson Lab Angular Momentum (JAM) and HadStruc Collaborations)
Can we use LQCD + expt in global analysis: what is the impact?

$$
\frac{d \sigma}{d x_{F} d \sqrt{\tau}}=\frac{4 \pi \alpha^{2}}{9 Q^{2} S} \sum_{i j} \int_{x_{\pi}^{0}}^{1} d x_{\pi} \int_{x_{A}^{0}}^{1} d x_{A} f_{i}^{\pi}\left(x_{\pi}, \mu\right) f_{j}^{A}\left(x_{A}, \mu\right) \mathcal{C}_{i j}^{\mathrm{DY}}\left(x_{\pi}, x_{\pi}^{0}, x_{A}, x_{A}^{0}, Q, \mu\right),
$$

Measured Cross Section

$$
f\left(x, \mu_{0}^{2}\right)=\frac{N_{f} x^{\alpha_{f}}(1-x)^{\beta_{f}}\left(1+\gamma_{f} x^{2}\right)}{B\left(\alpha_{f}+2, \beta_{f}+1\right)+\gamma_{f} B\left(\alpha_{f}+4, \beta_{f}+1\right)}
$$

From Good Lattice Cross Section data

From pseudo-PDF data

Combined analysis for gluon helicity distribution in progress

3D Imaging + GPDs

GPDs in pseudo-PDF approach

Thanks to Joe Karpie, Lattice 2023

- GPDs correspond to off-forward matrix elements. In pseudo-PDF framework, our starting point is the Generalized loffe Time Distributions

$$
I_{\mu}\left(p^{\prime}, p, s=s-, \mu^{2}\right)=\left\langle p^{\prime}\right| \bar{q}\left(-z^{-} / 2\right) \gamma_{\mu} W\left(-z^{-} / s, z^{-} / 2\right) q\left(z^{-} / 2\right)|p\rangle_{\mu^{2}}
$$

Where loffe time $\nu=\left(p+p^{\prime}\right) / 2, t=\left(p-p^{\prime}\right)^{2}$ and skewness $\xi=q \cdot z / P \cdot z$
Extends to generalized pseudo-ITD in manner of pseudo ITD.

Requires solution of inverse problem
Allows us to obtain 3D GITDs/GPDs at discrete values of momentum transfer and skewness, in contrast to $x=\xi$ in DVCS.

GPDs - II

C. Egerer et al., JHEP 11 (2021) 148

Accessible values on our "paradigm" lattice

$$
\begin{array}{c|c|c|c|c|c|c}
\hline \hline \text { ID } & a_{s}(\mathrm{fm}) & m_{\pi}(\mathrm{MeV}) & L_{s}^{3} \times N_{t} & N_{\mathrm{cfg}} & N_{\mathrm{srcs}} & R_{\mathcal{D}} \\
\hline a 094 m 358 & 0.094(1) & 358(3) & 32^{3} \times 64 & 349 & 4 & 64 \\
\hline \hline
\end{array}
$$

Introduce double distributions

$$
f(x, \xi)=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(x-\beta-\xi \alpha) \tilde{f}(\alpha, \beta)
$$

A.Radyushkin, PLB380 (1996), 417; M.Polyakov, C.Weiss PRD60 (1999) 114017

Thanks to Joe Karpie, Lattice 2023

Bare matrix elements in pseudo-PDF and quasi-PDF are same.

Can apply OPE at short distances to obtain Mellin Moments [c.f. earlier calculations of Generalized Form Factors using local operators]
S.Bhattacharya et al., Phys.Rev.D 108 (2023) 1014507

Thanks Yong

GFFs at $\xi=0$; note higher Mellin moments
J.Karpie,K.Orginos,S.Zafeiropoulos, JHEP 11 (2018) 178

A New Opportunity in Hadron Structure

Lattice QCD

Future Electron-Ion Collider

3D Image of nucleon and nuclei at the femtoscale

Summary

- Realistic calculation of light-cone distributions from LQCD now available
- Focus on understanding systematic contributions in pseudoPDF framework
- Distillation + boosting enables both far increased reach in momentum, and improved sampling of lattice
- Essential in calculations of gluon contributions
- Are able to isolate leading twist from higher-twist and discretization contamination
- Exascale era offers unprecedented opportunity for firstprinciples calculation - theory for most precise PDFs
- Complete calculations of isoscalar structure
- Bayesian reconstruction, Neural Networks,.....
- Calculation of GPDs Underway
- Lattice QCD + Expt - global analysis

