Drell-Yan process measurement at COMPASS as inputs to PDFs

Vincent Andrieux on behalf of the COMPASS Collaboration

University of Illinois at Urbana-Champaign

ECT* PDF at crossroad 18th-22nd September 2023 Trento (Italy)

For decades, the nucleon has been used as test bench to provide observables to test $\ensuremath{\mathsf{QCD}}$

We know it has a complex structure

- Pretty well known unpolarised 1D structure
- Spin distribution better understood
- Entering the era of multidimension/correlations GPDs, TMDs, ...

but...

Challenging our understanding of QCD beyond the nucleon

QCD should also encode the differences between hadrons

How to provide measurements to confront and constrain theories

How to probe the meson structure?

 π^- -induced Drell-Yan measurements: W.J. Stirling and M.R. Whalley 1993 J. Phys. G: Nucl. Part. Phys. 19 D1

Experiment	Target type	Beam energy (GeV)	DY mass (GeV/ c^2)	DY events	Systematics
NA3	30cm H ₂	200	4.10 - 8.50	121	12.6%
	6cm Pt	200	4.20 - 8.50	4,961	
NA10	120cm D ₂	286	4.2 - 8.5	7,800	
		140	4.35 - 8.5	3,200	
		286	4.2 - 8.5	49,600	6.5%
	12cm W	194	4.07-15.19	155,000 (inc. Ƴ)	
		140	4.35 - 8.5	29,300	
E615	20cm W	252	4.05 - 8.55	30,000	16%

How to probe the meson structure?

4/34

COMPASS Collaboration at CERN

\sim 200 physicists from 25 institutions from 13 countries

Beam line:

- High intensity hadron beam: \sim 70 MHz
- High energy: 190 GeV
- Negative hadron beam composition:
 - 97% pions
 - 2% kaons
 - 1% anti proton

Apparatus: Two-stage spectrometer

NIMA 577 (2007) 455, NIMA 779 (2015) 69, NIMA 1025 (2022) 166069

Key elements:

- Versatile target area configuration
- 2 spectrometers in 1 for a wide coverage: $8mrad < \theta_{\mu} < 160mrad$
- 2 triggering system:
 - LAS-LAS
 - LAS-OUTER
- 2 Muon filters

Vincent Andrieux (UIUC)

 $\bullet\,\sim\,400$ tracking planes

 $\begin{array}{l} \text{Variable definitions:} \\ x_{\text{F}} = \frac{2p_{l}^{*}}{\sqrt{s}} \\ x_{\pi/N} = \frac{1}{2} \left(\sqrt{x_{\text{F}}^{2} + 4\frac{M^{2}}{s}} \pm x_{\text{F}} \right) \end{array}$

Consideration for the luminosity

Due to high luminosity requirement:

- hadron absorber needed for radio-protection and spectrometer performance
- sequential targets: polarisable target, AI, W

Analysis performed in multidimensions with:

- 12 bins in $x_{\rm F}$
- 3 to 5 (10 for pol. target) bins in Mass from 3D to 1D
- 4 to 5 (10 for pol. target) bins in $q_{\rm T}$ from 3D to 1D

When integrated over the spin states it is mixture of NH₃ and LHe:

molar fraction of nucleons:

Н	He	Ν	
15.7%	11.1%	73.2%	

Light nuclei with expected small nuclear effects $\sim\pm2\%$ in the accessible region

Target will be denoted NH_3 -He in the following

Nuclear modification PDF for *u*-quark from nNNPDF3.0

Mass spectra and region of interest

Several channels contribute to inclusive dimuon final state production:

- Combinatorial background
- Open-Charm production in low mass
- Resonances: ${\sf J}/\psi$ and ψ'
- Drell-Yan in high mass

Statistical separation based on the different kinematic dependence with various Monte-Carlo samples and the combinatorial background distribution assessed from like-sign pairs in real data $(2\sqrt{N^{++}N^{--}})$: "Cocktail fit"

Collected pairs in the region of interest 4.3 GeV/ c^2 to 8.5 GeV/ c^2 : NH₃-He: 36 000 AI: 6 000 W: 43 000

Example of extraction method:

"Cocktail fit" from 2.4 (GeV/ c^2) for each kinematic bins of cross-section

Process purity is assessed from the ratio of Drell-Yan component to the total

Purity is above 90% for

 $M > 4.3 \text{ (GeV}/c^2) \text{ for NH}_3\text{-He}$ $M > 4.7 \text{ (GeV}/c^2) \text{ for Al}$ $M > 5.5 \text{ (GeV}/c^2) \text{ for W}$ with mild \nearrow with x_{F} & \searrow with q_{T}

Compare real data with Monte-Carlo for the first cell of NH₃-He target

Good description of lab variables with weighted MC sample for M > 4.3 (GeV/ c^2) Similar level of agreement for other targets, except for W which shows larger variations

Acceptance example for the first cell of NH₃-He target

Determined from pure Drell-Yan Monte-Carlo sample in 4 dimensions: x_F, M, q_T, Z_{vertex}

Acceptance restricted to domain where statistical accuracy is better than 10% it varies between \sim 1 to \sim 10% with largest dependence on $x_{\rm F}$

Contributions to systematic uncertainties

Recorded number of dimuons

Drell-Yan cross section

- Process purity determination
- 2 Trigger system normalisation
- Acceptance
- 4 Luminosity
- 5 ...

3 dimensional Drell-Yan cross section on NH_3 -He

- First high statistics measurement with light material
- Red line/shaded area: statistical / total (stat. and syst.) uncertainties
- Dominated by statistical uncertainty

Trento September-2023

$q_{\rm T}$ dependence of Drell-Yan cross section on NH₃-He

Unique inputs to extract π TMD with minimum nuclear effects

Systematics uncertainty at the level of statistical precision

x dependence of Drell-Yan cross section on NH₃-He

- First high statistics results on light target
- Largest uncertainties come from acceptance and purity corrections

Trento September-2023

3 dimensional Drell-Yan cross section on W

- Wide kinematic coverage
- Red line/shaded area: statistical / total (stat. and syst.) uncertainties
- Dominated by systematic uncertainty

Trento September-2023

Drell-Yan cross section on W and comparison to E615

$$\sqrt{ au} = M/\sqrt{s}$$

- New results since 30 years
- Similar kinematic coverage as E615
- Better statistics, similar total systematics except for the low mass region

Drell-Yan cross section on W and comparison to NA10

- Wider kinematic coverage
- Worse accuracy in statistics as well as in systematics

3 dimensional Drell-Yan cross section on Al

- Measurement with intermediate A number
- Red line/shaded area: statistical / total (stat. and syst.) uncertainties
- Dominated by statistical uncertainty

Trento September-2023

Flavour dependent EMC effect:

Unlike DIS, π -induced Drell-Yan process tags the quark flavour nCTEQ15: unconstrained flavour dependence EPS09: no flavour dependence

Flavour dependence of $R_{\pi A}^{DY}(x_N) = (A_2 d\sigma_{\pi A_1}^{DY})/(A_1 d\sigma_{\pi A_2}^{DY})$

- Ratio of integrated DY cross section per nucleon in all but x_N variable
- Covering the domain between anti-shadowing and EMC
- General trend as expected...
- \bullet \ldots Currently limited by systematics except possibly for Al/(NH_3-He)

Parton energy loss and Cronin effects

Parton crossing nuclear medium, looses energy due to multiple scattering and gluon emission

Signatures:

- Gain of transverse momentum: *q*_T Broadening
- Loss of longitudinal momentum: Suppression at large x_F

$\overrightarrow{p}_{\perp}$	$\overrightarrow{p}_{\perp} + \Delta \overrightarrow{p}_{\perp} \qquad \mu^{+}$

Broadening of q_T dependence of Drell-Yan cross section

Extracted from a fit to $\frac{d^2\sigma}{dx_F dq_T}$ assuming in each x_F bin an empirical shape: $2Nq_T(1 + (\frac{q_T}{h})^2)^{-6}$

Only relevant parameter: $b
ightarrow < q_{
m T}^2 >$

Evidence for q_T broadening visible

Drell-Yan nuclear modification factor $R_{\pi A}^{DY} = (A_2 d\sigma_{\pi A_1}^{DY})/(A_1 d\sigma_{\pi A_2}^{DY})$ vs q_T

- Ratio of integrated DY cross section per nucleon in all but $q_{\rm T}$ variable
- Measurements are in agreement with effective effects encoded in nPDF
- Currently limited by systematics except possibly for $AI/(NH_3-He)$

Trento September-2023

Drell-Yan nuclear modification factor $R(A_1/A_2)$ in x_F for various q_T bins

🏉 Vincent Andrieux (UIUC)

Trento September-2023

Unpolarised Drell-Yan angular dependencies

General expression for spin independent cross-section:

$$\frac{dN}{d\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda+3} \left(1 + \frac{\lambda}{\cos^2(\theta_{CS})} + \frac{\mu}{\sin(2\theta_{CS})} \cos(\phi_{CS}) + \frac{\nu}{2} \sin^2(\theta_{CS}) \cos(2\phi_{CS}) \right)$$

where $\lambda = A_U^1$, $\mu = A_U^{\cos(\phi_{CS})}$ and $\nu = 2A_U^{\cos(2\phi_{CS})} \propto h_{1,h}^{\perp q} \otimes h_{1,p}^{\perp q}$

In naive Drell-Yan: LO (pure electromagnetic) and no k_T : $\lambda = 1, \mu = \nu = 0$

Preliminary 2018 data results, systematic uncertainty (not shown) similar to the statistical ones

• Large effect from higher order corrections

Hint for non-zero Boer-Mulders effect

W-target

Lam-Tung relation

- Reflect the spin 1/2 of the quarks
- Less affected by first order QCD corrections

Preliminary systematic uncertainty (not shown) similar to the statistical ones

- Consistent with results obtained by past pion-induced Drell-Yan experiments
- Preliminary results indicate a possible violation of Lam-Tung relation
- This leaves some room for Boer-Mulders effects: $2\nu (1 \lambda) \approx 4 A_U^{cos(2\phi_{CS})}$

Similar mean value of $q_{\rm T}$ for COMPASS and E615 $\Rightarrow \rho = Q_T/M \approx 0.2$

For comparison with results shown by Hui-Yu Xing on Monday (see next slide)

Drell-Yan angular parameters for several reference frames

- Larger cross-section $\rightarrow \sim$ 30× more data compared to high-mass Drell-Yan region
- Probing $\langle x_N \rangle \sim 0.09$: \approx valence domain
- ${\rm J}/\psi$ signal extracted from "cocktail fit"

Results of nuclear modification factor from ${\sf J}/\psi$

Ongoing analysis, preliminary systematic uncertainties \leq 10% (not shown)

- Similar effects as observed by past experiments, e.g NA03 Z.Phys.C20 (1983) 101
- Strong suppression towards large x_F (*i.e* low x_{target} and large x_{beam})
- Increase with $q_{\rm T}$ due to Cronin effect

Nuclear modification factor in 2 dimensions from ${\sf J}/\psi$

To better disentangle the various nuclear effects, the analysis is performed as a function of x_F and p_T

Systematics uncertainty not shown: $\leq 10\%$

Potentially more prominent suppression towards high x_F at low p_T Additional insights compared to past experiments

- $\Rightarrow\,$ COMPASS has released a wealth of preliminary Drell-Yan cross sections
- \Rightarrow High statistics measurement is available on a light target
- \Rightarrow Systematics uncertainties are at the same order of magnitude as E615
- \Rightarrow Preliminary results of $R_{\pi A}(AI/W)$ for J/ ψ production in ($x_{\rm F}$, $p_{\rm T}$) were shown

Perspective:

Finalisation of Drell-Yan and ${\rm J}/\psi$ cross-section measurements in the coming months expected

BACKUP

$$\begin{split} M^2 &= (p_{\mu^+} + p_{\mu^-})^2 \\ s &= (p_{\pi} + p_N)^2 \approx 2E_{\pi}M_{\text{nucleon}} \\ q_{\text{L}}^*: \text{ Photon longitudinal momentum in } \pi\text{-N rest frame} \\ q_{\text{T}}: \text{ Photon transverse momentum in } \pi\text{-N rest frame} \\ x_{\text{F}} &= 2q_L^*/\sqrt{s} \\ x_{\pi,N} &= \frac{1}{2} \left(\sqrt{x_F^2 + 4\frac{M^2}{s}} \pm x_F \right) \\ \tau &= M^2/s = x_{\pi}x_N \end{split}$$

Situation for the other experiments

- NA10: Estimated to be negligeable and no correction
- E615: Evaluation with MC technique and subtraction

