Lightfront Wave Functions of the nucleon

Cédric Mezrag

Irfu, CEA, Université Paris-Saclay

$$
\text { September } 19^{\text {th }}, 2023
$$

In collaboration with:
M. Riberdy, J. Segovia and C.D. Roberts

Definitions and Classification of LFWFs

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type :

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type :

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

- These matrix elements typically encode hadron structure properties (EFF, PDFs, GPDs, etc)

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type :

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

- These matrix elements typically encode hadron structure properties (EFF, PDFs, GPDs, etc)
- Thus, we can compute hadron structure distributions, as a convolution (or overlap) of Lightfront Wave functions
M. Diehl et al., Nucl. Phys B596 (2001)

From Mesons to Baryons

LFWFs modelling techniques have been widely used on mesons

- Simple Algebraic Nakanishi models for the pion and computation of GPDs in the DGLAP region (parton number conserved)
for instance C. Mezrag et al., Few Body Syst. 57 (2016) 9, 729-772
- Advanced modelling with and without Nakanishi parametrisations

$$
\text { for instance K. Raya et al., Chin.Phys.C } 46 \text { (2022) 1, } 013105
$$

- Covariant extension from DGLAP to ERBL regions for GPDs
N. Chouika et al., EPJC 77 (2017)
- Prediction for Sullivan DVCS at EIC and EicC
J.M. Morgado Chavez et al., Phys. Rev. Lett. 128 (2021)

From Mesons to Baryons

LFWFs modelling techniques have been widely used on mesons

- Simple Algebraic Nakanishi models for the pion and computation of GPDs in the DGLAP region (parton number conserved)
for instance C. Mezrag et al., Few Body Syst. 57 (2016) 9, 729-772
- Advanced modelling with and without Nakanishi parametrisations

$$
\text { for instance K. Raya et al., Chin.Phys.C } 46 \text { (2022) 1, } 013105
$$

- Covariant extension from DGLAP to ERBL regions for GPDs
N. Chouika et al., EPJC 77 (2017)
- Prediction for Sullivan DVCS at EIC and EicC
J.M. Morgado Chavez et al., Phys. Rev. Lett. 128 (2021)

We would like to extend all this to the Baryon sector

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}
$$

- Lightfront operator O of given number of quark and gluon fields

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \cdots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O
- Quark spin projection can also be selected through $\frac{1 \pm \gamma_{5}}{2}$ projectors

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O
- Quark spin projection can also be selected through $\frac{1 \pm \gamma_{5}}{2}$ projectors

Both mesons and baryons can (in principle) have multiple independent leading-twist LFWFs

An example on the pion

$$
\left.\langle 0| \bar{q}_{\alpha}\left(\gamma_{5} q\right)_{\beta}|\pi\rangle\right|_{z^{+}=0}
$$

An example on the pion

An example on the pion

An example on the pion

We can build one LFWFs with OAM projection 0 , and one with OAM projection 1.

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs
X. Ji, et al., Nucl Phys B652 383 (2003)

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs

$$
\text { X. Ji, et al., Nucl Phys B652 } 383 \text { (2003) }
$$

- The LFWFs carry different amount of OAM projections:

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi_{i} \Gamma_{\alpha_{3}^{\prime} \sigma^{\prime}}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i ; \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{3}^{\prime} \sigma \sigma^{\prime}} \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi_{i} \Gamma_{\alpha_{3}^{\prime} \sigma^{\prime}}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i ; \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{3}^{\prime} \sigma \sigma^{\prime}} \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Important

The FWF allows a consistent derivation of the 6 leading-fock states LFWFs of the nucleon

Modelling the Faddeev wave Function

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks (not considered in this talk)

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks (not considered in this talk)
- In the following we build a model inspired by numerical solutions of the Faddeev equations

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \not h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right) \\
\text { Braun et al., Nucl.Phys. B589 (2000) } \\
\text { X. Ji et al., Nucl.Phys. B652 (2003) }
\end{array}
$$

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \not \subset u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right) \\
\text { Braun et al., Nucl.Phys. B589 (2000) } \\
\times \text {. Ji et al., Nucl.Phys. B652 (2003) }
\end{array}
$$

- We can apply it on the Faddeev wave function:

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \not h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right) \\
\text { Braun et al., Nucl.Phys. B589 (2000) } \\
\text { X. Ji et al., Nucl.Phys. B652 (2003) }
\end{array}
$$

- We can apply it on the Faddeev wave function:

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \not h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right) \\
\text { Braun et al., Nucl.Phys. B589 (2000) } \\
\text { X. Ji et al., Nucl.Phys. B652 (2003) }
\end{array}
$$

- We can apply it on the Faddeev wave function:

- The operator then selects the relevant component of the wave function.

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{2}\right)\left(L^{\downarrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S\right] \Delta(K)\right.
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
\overbrace{p_{h}}^{O_{\varphi}^{3}} & \propto \frac{\gamma_{\nu}^{21}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(-k_{2}\right)\left(L^{\downarrow} \boldsymbol{h}^{\top}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right] \Delta(K)\right. \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{2}\right) L^{\downarrow} C^{\dagger} \phi L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{1}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \not L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{2}\right)\left(L^{\downarrow} \hbar^{T}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right] \Delta(K)\right. \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{2}\right) L^{\downarrow} C^{\dagger} \pitchfork L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \xrightarrow[-\overbrace{m}^{m}]{m_{n}^{m}} O_{\varphi}^{3} O_{\varphi}^{21} \\
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(-k_{2}\right)\left(L^{\downarrow} \dot{h}^{\top}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S\right] \Delta(K)\right. \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 \top} S^{\top}\left(-k_{2}\right) L^{\downarrow} C^{\dagger} \pitchfork L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{1}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Note that $\int \mathrm{d}^{(2)} k_{1 \perp} \mathrm{~d}^{(2)} k_{2 \perp} \psi_{1}=\varphi$, the nucleon DA.

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K)
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(-k_{1}\right) L^{\uparrow} \phi^{\top}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0^{T}} S^{T}\left(-k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \epsilon^{\mu \nu \rho \sigma} n_{\mu} p_{\nu} k_{1 \perp \rho} k_{2 \perp \sigma} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(-k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(-k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \epsilon^{\mu \nu \rho \sigma} n_{\mu} p_{\nu} k_{1 \perp \rho} k_{2 \perp \sigma} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Note that the antisymmetric structure guarantees that the contribution vanishes when integrated over the transverse momenta.

Scalar Diquark part of the nucleon

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda_{q}^{2}+\left(q+\frac{z}{2} K\right)^{2}\right)}
$$

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the 0th degree coefficient in a Gegenbauer expansion of the Nakanishi weight

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda_{q}^{2}+\left(q+\frac{z}{2} K\right)^{2}\right)}
$$

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the 0th degree coefficient in a Gegenbauer expansion of the Nakanishi weight
- We couple this with a simple massive fermion propagator:

$$
S(p)=\frac{-i p \cdot \gamma+M}{p^{2}+M^{2}}
$$

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane
- Width of the diquark BSA $\Lambda_{q}=3 / 5 M_{N}$ fitted on previous computations:

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space
- Nakanishi representation \rightarrow analytic treatments of singularities and analytic reconstruction of the function from the moment

$$
\phi\left(x, q_{\perp}\right)=\int_{x}^{1} \mathrm{~d} u \int_{0}^{x} \mathrm{~d} v \frac{F(u, v, x)}{\left(M_{\mathrm{eff}}^{2}\left(u, v, x, M^{2}, \Lambda^{2}\right)+\left(q_{\perp}^{\mathrm{eff}}\left(u, v, x, q_{\perp}, K_{\perp}\right)\right)^{2}+K^{2}\right)^{2}}
$$

$F, M_{\text {eff }}$ and $q_{\perp}^{\text {eff }}$ are computed analytically

First results for the diquark

- We present the first results at the level of the diquark DA
- It depends on a single variable
- It has been computed in the RL case
Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115
\rightarrow we have a comparison point for our simple Nakanishi model.

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

- Note that expanding the log, one get:

$$
\phi(x) \propto \frac{1}{2} x(1-x)-\frac{1}{3} K^{2} / M^{2} x^{2}(1-x)^{2}+\ldots
$$

so that:

- at the end point the DA remains linearly decreasing (important impact on observable)
- at vanishing diquark virtuality, one recovers the asymptotic DA

Comparison with DSE results

RL results from Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

But overall, we expect to gain insights from this simple model

Quark-diquark amplitude

Nucleon Quark-Diquark Amplitude

$$
\bar{\square}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curve from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,
Modification of the $\tilde{\rho}$ Ansatz ? $\tilde{\rho}(z) \rightarrow \tilde{\rho}(\gamma, z)$?

Mellin Moments

- We do not compute the PDA directly but Mellin moments of it:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle\left(k_{1 \perp}, k_{2 \perp}\right)=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{1}^{m} x_{2}^{n} \psi\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}\right)
$$

- For a general moment $\left\langle x_{1}^{m} x_{2}^{n}\right\rangle$, we change the variable in such a way to write down our moments as:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle\left(k_{1 \perp}, k_{2 \perp}\right)=\int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1-\alpha} \mathrm{d} \beta \alpha^{m} \beta^{n} f\left(\alpha, \beta, k_{1 \perp}, k_{2 \perp}\right)
$$

- f is a complicated function involving the integration on 6 parameters
- Uniqueness of the Mellin moments of continuous functions allows us to identify f and ψ

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture
- Improvement in the modelling with respect to our previous work
C. Mezrag et al., Phys.Lett. B783 (2018)

Preliminary results for ψ_{1}

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 20$

Preliminary results for ψ_{1}

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 20$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0.1 M_{N}^{2}, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 10$

Preliminary results for ψ_{1}

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 20$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0.1 M_{N}^{2}, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 10$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=0\right) / 3$

Preliminary results for ψ_{1}

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 20$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0.1 M_{N}^{2}, \ell_{\perp}^{2}=0, \theta_{q \ell}=0\right) / 10$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=0, \ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=0\right) / 3$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=0\right) / 2$

The case of ψ_{2}

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.

The case of ψ_{2}

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because:

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because:

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.
- Finally, the frozen propagators allow only for a normalisation factor difference, proportional to the frozen mass M.

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.
- Finally, the frozen propagators allow only for a normalisation factor difference, proportional to the frozen mass M.

Adding tensorial structures or modifying the propagators will break this symmetry between ψ_{1} and ψ_{2}.

Other LFWFs

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

- Within our set of approximation, we have a preliminary model for 0 OAM projection LFWFs of the nucleon.

Other LFWFs

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

- Within our set of approximation, we have a preliminary model for 0 OAM projection LFWFs of the nucleon.
- Consequently, we are now in a position to compute the 0 OAM contribution to the nucleon structure (EFF, PDFs, GPDs).

Other LFWFs

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

- Within our set of approximation, we have a preliminary model for 0 OAM projection LFWFs of the nucleon.
- Consequently, we are now in a position to compute the 0 OAM contribution to the nucleon structure (EFF, PDFs, GPDs).
- But before we want to compute ψ_{3} and ψ_{4} to get also a contribution from non-vanishing OAM projection.

Other LFWFs

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

- Within our set of approximation, we have a preliminary model for 0 OAM projection LFWFs of the nucleon.
- Consequently, we are now in a position to compute the 0 OAM contribution to the nucleon structure (EFF, PDFs, GPDs).
- But before we want to compute ψ_{3} and ψ_{4} to get also a contribution from non-vanishing OAM projection.
- Note that GPD E and EFF F_{2} will remain out of reach without ψ_{5} and ψ_{6}.

Summary and conclusion

Achievements

- DSE compatible framework for Nucleon LFWFs computations
- Based on the Nakanishi representation
- Improved models from the first exploratory work on PDA
- Relation between LFWFs and GPDs has been worked out
- Proof of concept with results for ψ_{1} and ψ_{2} (scalar diquark only)

Work in progress/future work

- Finishing the computation for the 6 LFWFs
- Tackling the AV-diquark contributions
- Improvement of the Nakanishi Ansätze
- Computations of GPDs
- Going beyond $\xi=0$ with the covariant extension
- Finally, compute experimental observables

Thank you for your attention

Back up slides

Intuitive picture

$$
H(x, \xi)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha)+\xi G(\beta, \alpha)]
$$

- DGLAP (red) and ERBL (green) lines cut $\beta=0$ outside or inside the square
- Every point $(\beta \neq 0, \alpha)$ contributes both to DGLAP and ERBL regions
- For every point $(\beta \neq 0, \alpha)$ we can draw an infinite number of DGLAP lines.

Intuitive picture

$$
H(x, \xi)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi)[F(\beta, \alpha)+\xi G(\beta, \alpha)]
$$

- DGLAP (red) and ERBL (green) lines cut $\beta=0$ outside or inside the square
- Every point $(\beta \neq 0, \alpha)$ contributes both to DGLAP and ERBL regions
- For every point $(\beta \neq 0, \alpha)$ we can draw an infinite number of DGLAP lines.

Is it possible to recover the DDs from the DGLAP region only?

GPD properties from Radon Transform

- Double Distribution representation:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

GPD properties from Radon Transform

- Double Distribution representation:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

- F_{D} is the Radon transform of $H-D$.

GPD properties from Radon Transform

- Double Distribution representation:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

- F_{D} is the Radon transform of $H-D$.
- Since DD are compactly supported, we can use the Boman and Todd-Quinto theorem which tells us

$$
H(x, \xi)=0 \quad \text { for } \quad(x, \xi) \in \operatorname{DGLAP} \Rightarrow F_{D}(\beta, \alpha)=0 \quad \text { for all } \quad(\beta \neq 0, \alpha) \in \Omega
$$

Boman and Todd-Quinto, Duke Math. J. 55, 943 (1987)
insuring the uniqueness of the extension up to D-term like terms.

GPD properties from Radon Transform

- Double Distribution representation:

$$
H(x, \xi)=D(x / \xi)+\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha \delta(x-\beta-\alpha \xi) F_{D}(\beta, \alpha)
$$

- F_{D} is the Radon transform of $H-D$.
- Since DD are compactly supported, we can use the Boman and Todd-Quinto theorem which tells us

$$
H(x, \xi)=0 \quad \text { for } \quad(x, \xi) \in \mathrm{DGLAP} \Rightarrow F_{D}(\beta, \alpha)=0 \quad \text { for all } \quad(\beta \neq 0, \alpha) \in \Omega
$$

Boman and Todd-Quinto, Duke Math. J. 55, 943 (1987)
insuring the uniqueness of the extension up to D-term like terms.

New modeling strategy

- Compute the DGLAP region through overlap of LFWFs \Rightarrow fulfilment of the positivity property
- Extension to the ERBL region using the Radon inverse transform \Rightarrow fulfilment of the polynomiality property

Nakanishi Representation

At all order of perturbation theory, one can write (Euclidean space):

$$
\Gamma(k, P)=\mathcal{N} \int_{0}^{\infty} \mathrm{d} \gamma \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(\gamma, z)}{\left(\gamma+\left(k+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

We use a "simpler" version of the latter as follow:

$$
\tilde{\Gamma}(q, P)=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(z)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

Spinor decomposition and twist selection

We introduce to lightlike vector p and n such that:

$$
P^{\mu}=p^{\mu}+n^{\mu} \frac{M^{2}}{2 p \cdot n} \quad \text { and } \quad P^{+}=p^{+}
$$

see for instance V. Braun et al., Nucl Phys B589 381 (2000)
From these four-vectors we define the projectors:

$$
N(p)=\underbrace{\frac{p \cdot \gamma n \cdot \gamma}{2 p \cdot n} N(P)}+\frac{n \cdot \gamma p \cdot \gamma}{2 p \cdot n} N(p)=N^{+}(P)+N^{-}(P)
$$

Dominant contribution
when $P^{+} \rightarrow \infty$

Spinor decomposition and twist selection

We introduce to lightlike vector p and n such that:

$$
P^{\mu}=p^{\mu}+n^{\mu} \frac{M^{2}}{2 p \cdot n} \quad \text { and } \quad P^{+}=p^{+}
$$

see for instance V. Braun et al., Nucl Phys B589 381 (2000)
From these four-vectors we define the projectors:

$$
N(p)=\underbrace{\frac{p \cdot \gamma n \cdot \gamma}{2 p \cdot n} N(P)}_{\substack{\text { Dominant contribution } \\ \text { when } P^{+} \rightarrow \infty}}+\frac{n \cdot \gamma p \cdot \gamma}{2 p \cdot n} N(p)=N^{+}(P)+N^{-}(P)
$$

The same procedure is applied to all quark fields (and a similar one to gluon fields), selecting the leading twist contributions

Sorting LFWFs

$$
\left.\langle 0| \tilde{O}^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{\substack{j \\ \text { LT }}}^{n} \tilde{\tau}_{j}^{\alpha, \ldots} N^{+}(P, \lambda) \tilde{F}_{j}\left(z_{i}\right)
$$

- With the previous procedure we can select the leading-twist combinations scalar functions \tilde{F}

Sorting LFWFs

$$
\left.\langle 0| \tilde{O}^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{\frac{j}{j}}^{n} \tilde{\tau}_{j}^{\alpha, \ldots} N^{+}(P, \lambda) \tilde{F}_{j}\left(z_{i}\right)
$$

- With the previous procedure we can select the leading-twist combinations scalar functions \tilde{F}
- But an additional classification can be performed, by selecting the helicity projection of the quark fields involved through:

$$
\psi=\frac{1+\gamma_{5}}{2} \psi+\frac{1-\gamma_{5}}{2} \psi=\psi^{\uparrow}+\psi^{\downarrow}
$$

