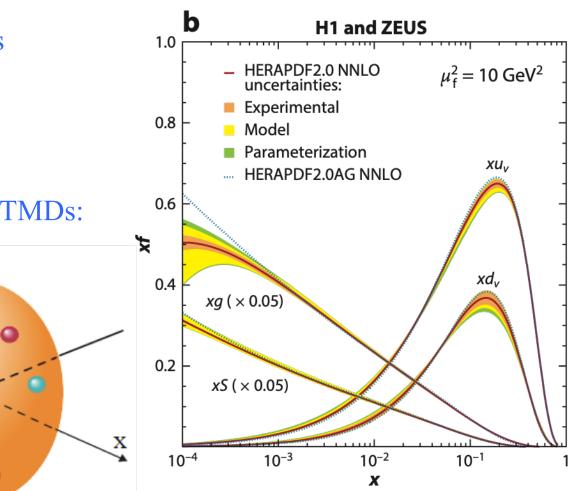

Charmonium production: a tool for accessing the gluon distribution in the pion

Stephane Platchkov

Paris-Saclay University, CEA/IRFU, France

(collaboration with W.-C. Chang, C-.Y. Hsieh , Y.-S. Lian, J.-C. Peng, and T. Sawada)

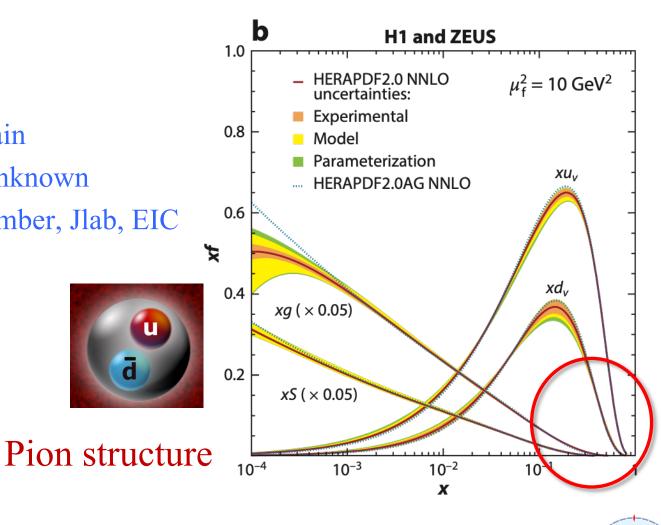

Parton distribution functions at a crossroad ECT* Trento, 18 – 22 September 2023

Hadron structure: the nucleon

CEA - Saclay

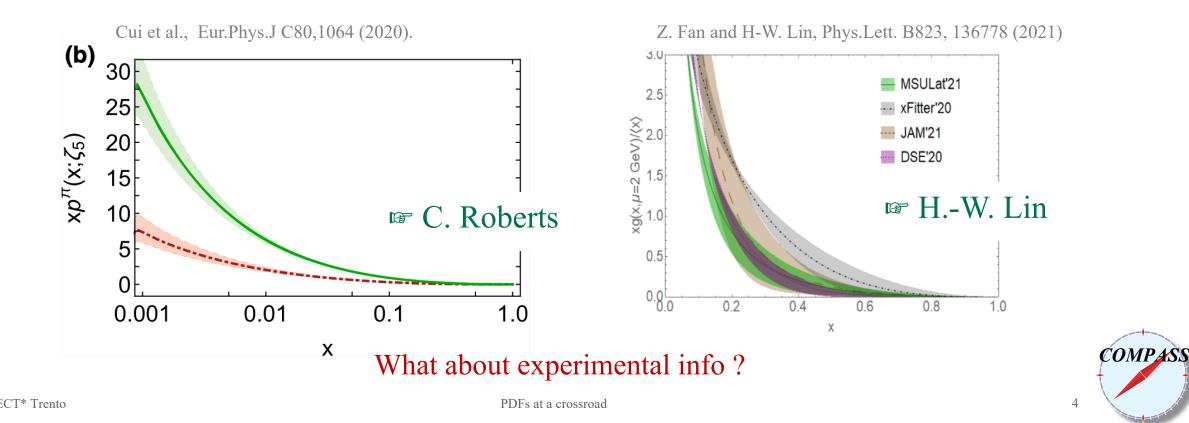
- Main laboratory for QCD studies
 - More than 4 decades of extensive investigations
 - Hundreds of experiments
 - Parton distributions are well known
 - Perturbative QCD works really well
 - Aim at a full multidimensional picture : GPDs, TMDs:

The nucleon structure is (almost) perfectly known –over few decades in x


 xp,k_{T}

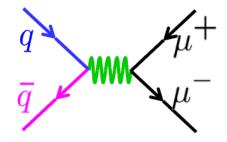
Hadron structure: the pion and the kaon

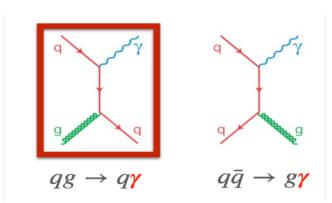
- ♦ Laboratories for QCD studies
 - Absence of meson targets
 - Few experiments, few decades old
 - Pion parton distributions are quite uncertain
 - Kaon parton distribution are essentially unknown
 - Good news: new data from Compass + Amber, Jlab, EIC


Sharp contrast with the present knowledge on the pion. And on the kaon

Meson structure in the last few years - theory

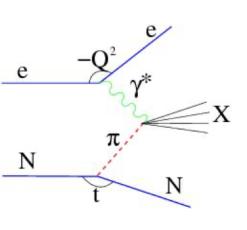
- ◆ Remarkable progress in theory
 - Continuum Schwinger method (CSM)
 - Lattice QCD
 - ► Aim at describing the properties of the two simplest hadrons (e.g. pion gluon PDF):

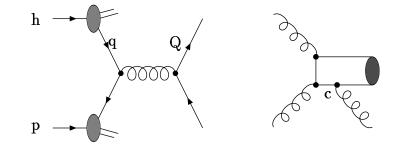




Type of data used to infer the pion PDFs

- Drell-Yan process
 - Pros: well-known and clean process
 - Cons: low cross sections (em process)
 - Data available: NA3, NA10, E615...
- Prompt-photon π -N production
 - Pros: sensitive to valence and gluon PDFs
 - Cons: high p_T, large background
 - Data available: CERN (WA70, NA24)




1/2

Type of data used to infer the pion PDFs

- Sullivan (Leading Neutron) process
 - Pros: gives access to lower x values of the PDFs (if high energy)
 - Cons: theoretical uncertainties
 - Data available: HERA (Zeus and H1) + JLab (to come)
- Charmonium production
 - Pros: sensitive to the gluon PDF, <u>large cross sections</u>
 - Cons: production mechanism
 - Data available: CERN: NA3, WA39, WA11 FNAL: E537, E672, E705

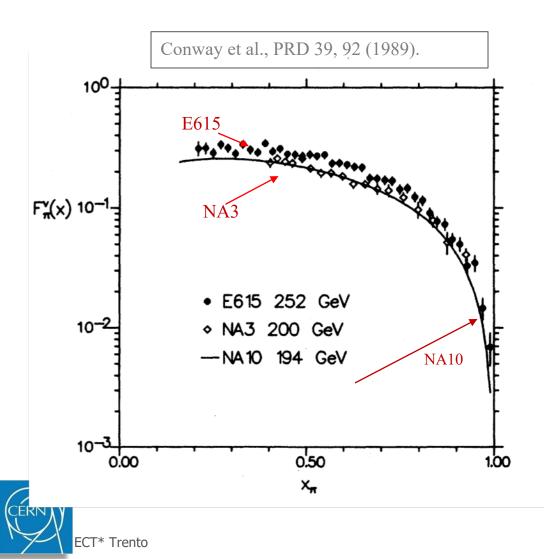
qq

gg

COMPAŠS

Pion structure – global fits

- Previous (3 decades old) global fits (+ a couple of others...)
 - SMRS Sutton, Martin, Roberts and Stirling (1992)
 - DY + Direct-photon production
 - GRV(S) Glück, Reya and Vogt (1992), Glück, Reya and Shienbein (1999)
 - Direct-photon production + DY
- Recent global fits
 - JAM Barry, Sato, Melnitchouk and Ji (2018, 2021)
 - DY + Sullivan process (+NLL corrections in 2021)
 - xFitter Novikov et al., (2020)
 - DY + Direct-photon production

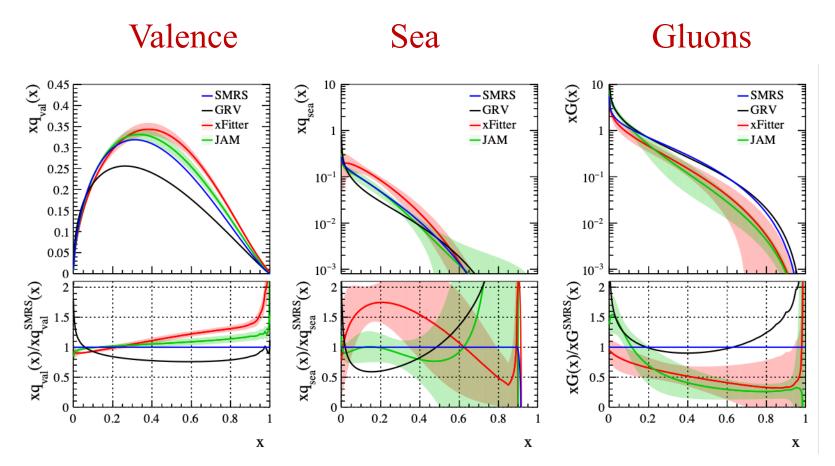


Uncertainties in the present DY data (CERN vs FNAL)

PDFs at a crossroad

Differences

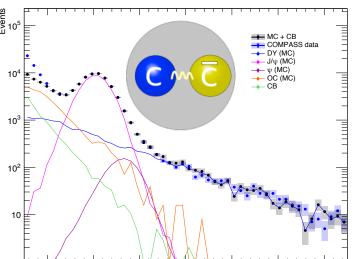
Global fits normalizations


Exp / Global fit	xFitter	JAM	xFitter/JAM
E615	1.160	0.985	1.18
NA10-194 GeV	0.997	0.816	1.22
NA10-286 GeV	0.927	0.758	1.22
WA70 (prompt- γ)	0.737	-	
H1 LN	_	1.170	
Zeus LN	_	0.964	

Global fits – pion PDFs comparison

Fixed-target charmonium production and pion parton distributions

Wen-Chen Chang, Jen-Chieh Peng, Stephane Platchkov, and Takahiro Sawada Phys. Rev. D **107**, 056008 – Published 7 March 2023



Charmonium production

- Several advantages
 - Sensitive to valence and glue
 - Large cross sections, 30 50 times more than Drell-Yan
 - Fixed-target energies: dominated by 2 ---> 1 process
 - Large number of π -induced data (from 80s to 00s) on many targets
- Present descriptions for charmonium production
 - Color Evaporation Model
 - weight of each contribution (qqbar or GG) depends solely on the parton PDFs
 - Only one adjustable parameter
 - Non-Relativistic QCD (NRQCD)
 - effective field theory, based on factorization
 - separates pQCD (short distance processes) and npQCD (long-distance dynamics)

First step

- Compare the "Global Fits" results with the data, using CEM NLO.
 - Integrated cross sections
 - x_F dependent cross sections

Constraining gluon density of pions at large x by pion-induced J/ψ production

Wen-Chen Chang, Jen-Chieh Peng, Stephane Platchkov, and Takahiro Sawada Phys. Rev. D **102**, 054024 – Published 24 September 2020

Experimental information used

- Data choice criteria
 - x_F distribution is available
 - Minimize nuclear effects (A \leq 9)
- ♦ Additional input
 - proton PDF: CT14nlo
 - nuclear PDFs: EPPS16

Data on heavier targets are also available

TABLE II. The J/ψ production datasets with π^- beam used in the analysis, listed in order of decreasing beam momentum.

Experiment	P_{beam} (GeV/c)	Target	Normalization ^a	References
FNAL E672, E706	515	Be	12.0	[68]
FNAL E705	300	Li	9.5	[69]
CERN NA3 ^b	280	р	13.0	[70]
CERN NA3 ^b	200	p	13.0	[70]
CERN WA11 ^b	190	Be	с	[72]
CERN NA3 ^b	150	р	13.0	[70]
FNAL E537	125	Be	6.0	[73]

39.5

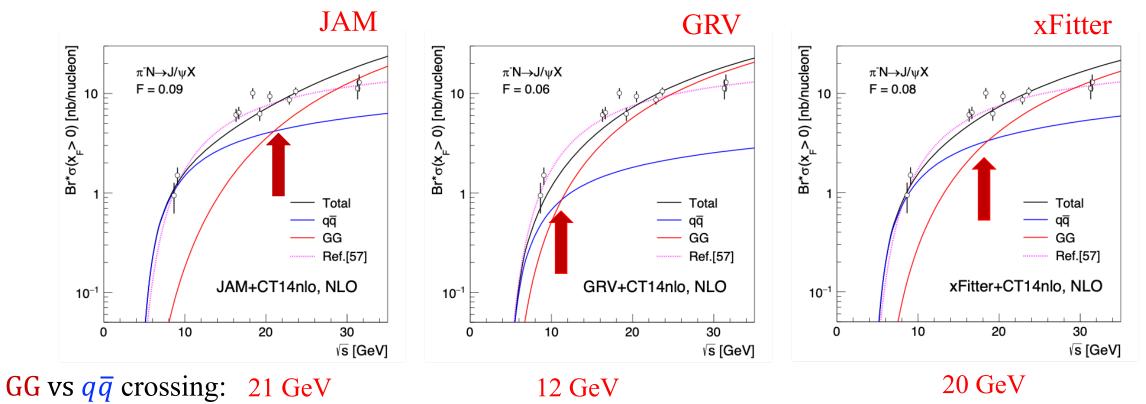
^aPercentage of uncertainty in the cross section normalization. ^bThe numerical information was taken from figures. ^cInformation not available.

р

15.0

Eight data sets with π beam, published 1981 - 1996

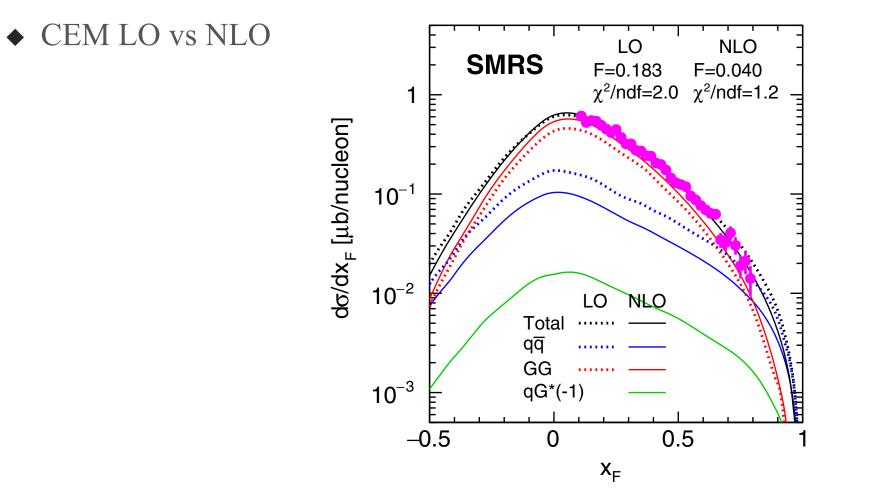
CERN WA39^b



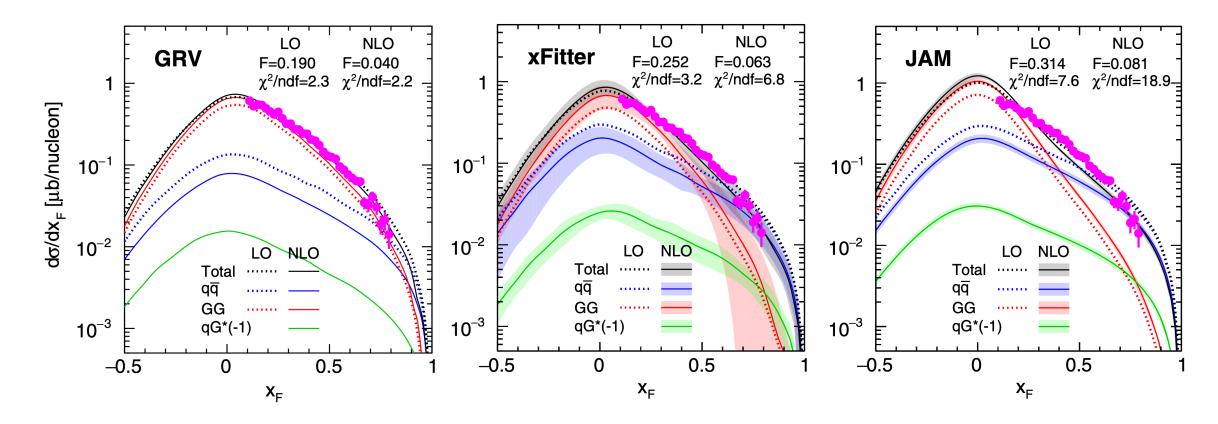
[74]

Integrated ($x_F > 0$) J/psi cross sections vs CEM NLO calculations

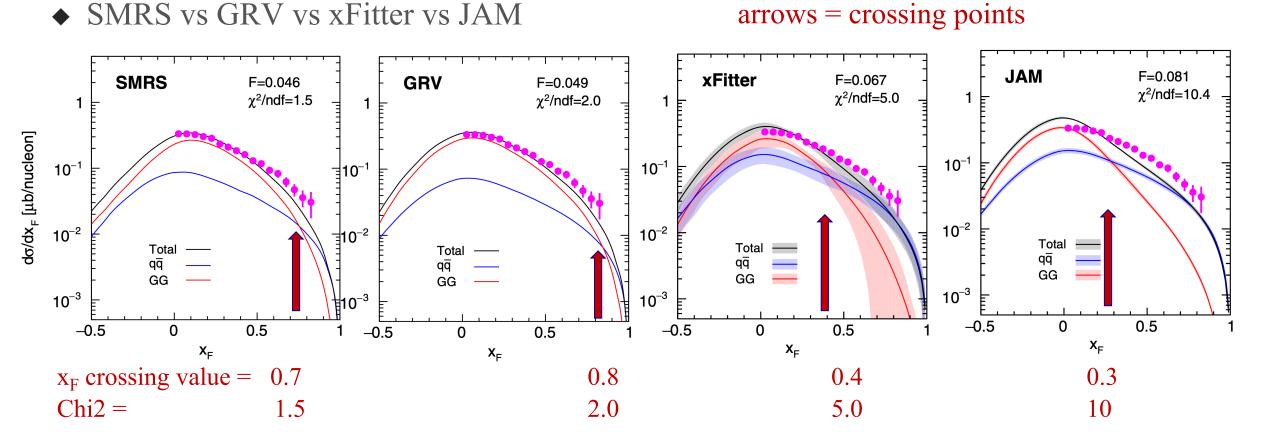
◆ Global fit dependence



Overall good agreement, but large GG vs $q\bar{q}$ variations

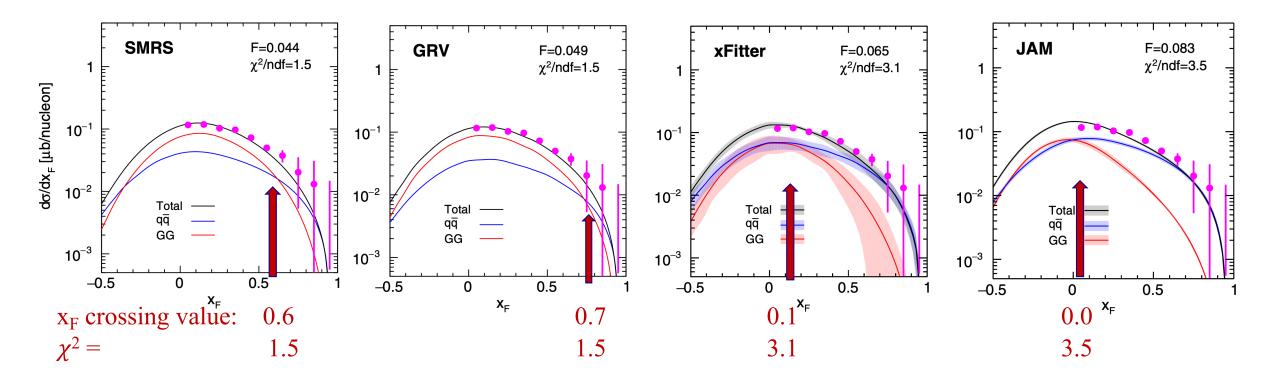

NLO: minor improvement in Chi2

• GRV vs xFitter vs JAM



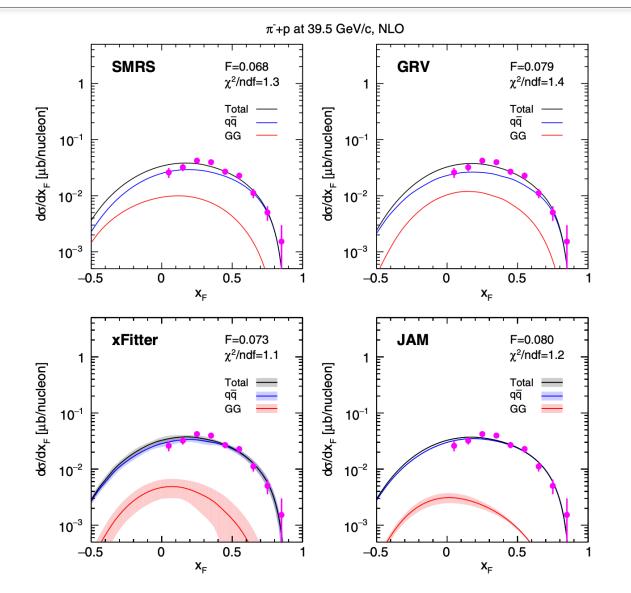
Different qq and GG contributions, and different χ^2/ndf

COMPASS 15



Smaller GG contribution == > larger χ^2

• SMRS vs GRV vs xFitter vs JAM



Smaller GG contribution == > larger χ^2 Decreasing energy = decreasing GG contribution

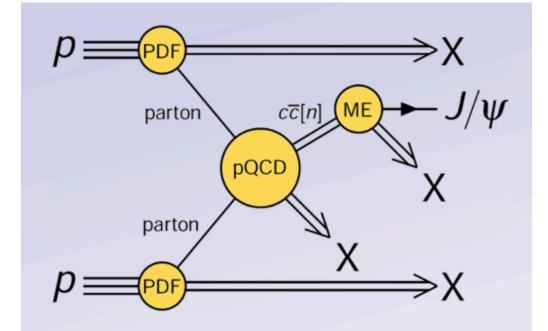
WA39: π + p for E = 39.5 GeV

PDFs at a crossroad

1

- Conclusions from the CEM NLO study
 - The gg fusion process becomes increasingly important with the increase of the (FT) energies
 - Data are sensitive to the amount of g(x) in the pion
 - Global fits with larger gluon contributions (GRV, SMRS) are favored

Would a different production model entail different conclusions?



Second step:

- Use NRQCD instead of CEM. Needed are:
 - Beam and Target PDFs
 - Short Distance cross sections (pQCD)
 - Long-Distance Matrix Elements (phen.)
 - Factorization

• Start with integrated cross sections only

Hsieh, Lian, Chang, Peng, Platchkov and Sawada, Chin. J. Phys. 73 (2021) 13

- Sensitivity to the different subprocesses
 - Color Octet LDMEs (Color Singlet LDMEs are fixed to the values used in the literature)

Н	q ar q	GG	qG	
$\overline{J/\psi},\psi(2S)$	$\langle \mathcal{O}_8^H[{}^3S_1] \rangle \ (\alpha_s^2)$	$\Delta^{H}_{8} (lpha_{s}^{2}) \ \langle \mathcal{O}^{H}_{1} [^{3}S_{1}] angle \ (lpha_{s}^{3})$		$\Delta_8^H = \langle \mathcal{O}_8^H[{}^1S_0] \rangle + \frac{3}{m_c^2} \langle \mathcal{O}_8^H[{}^3P_0] \rangle + \frac{4}{5m_c^2} \langle \mathcal{O}_8^H[{}^3P_2] \rangle$
χ_{c0}	$\langle \mathcal{O}_8^H[{}^3S_1] \rangle \ (\alpha_s^2)$	$\langle \mathcal{O}_1^H[{}^3P_0] \rangle \ (\alpha_s^2)$		
χ_{c1}	$\langle \mathcal{O}_8^H[{}^3S_1] \rangle \ (\alpha_s^2)$	$\langle \mathcal{O}_1^H[{}^3P_1] \rangle \ (\alpha_s^3)$	$\langle \mathcal{O}_1^H[{}^3P_1] \rangle \ (\alpha_s^3)$	
X c2	$\langle \mathcal{O}_8^H[{}^3S_1] \rangle \ (\alpha_s^2)$	$\langle \mathcal{O}_1^H[{}^3P_2] \rangle \ (\alpha_s^2)$		

- Data used: only integrated cross sections
 - π -induced J/ ψ and ψ (2S)
 - p-induced J/ψ and $\psi(2S)$

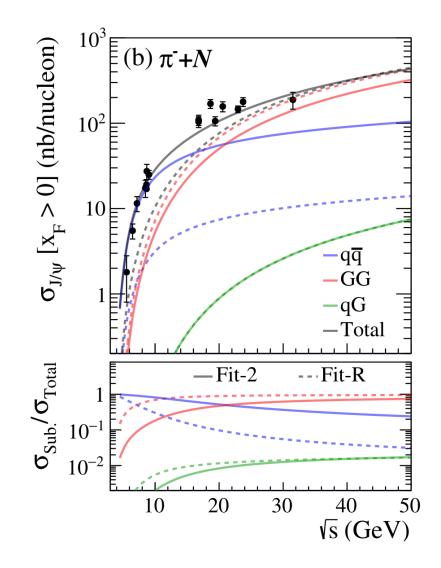
Lhfu CEA - Sacia

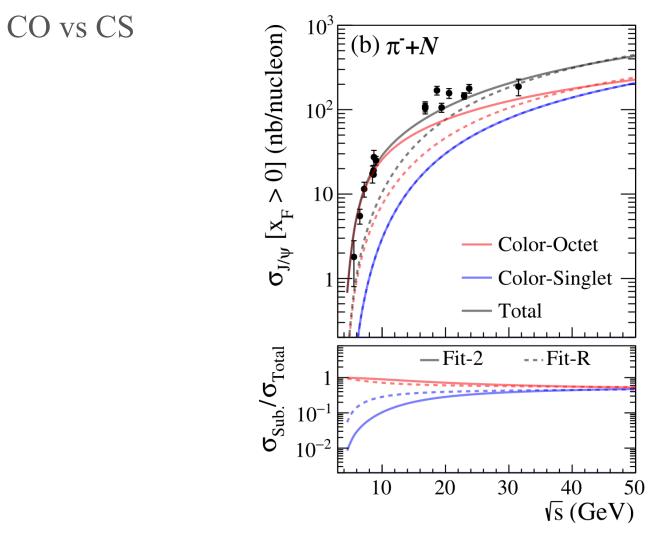
◆ Charmonium J/𝗤 data

Good common fit to both pion and proton-induced data

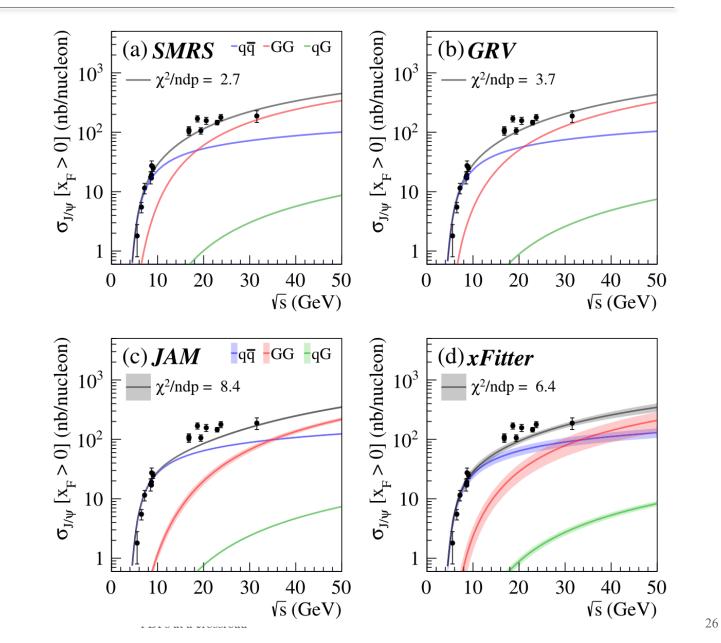
• Charmonium $\psi(2S)$ data

Good common fit to both J/ ψ and ψ (2S) states




• J/ψ subprocesses

• J/ψ


The Color Octet process dominates the cross section

COMPASS

◆ PDF dependence

Use of SMRS and GRV leads to better χ^2 values

Further study:

integrated cross section AND x_F -dependent data

NRQCD fits including x_F -dependent data

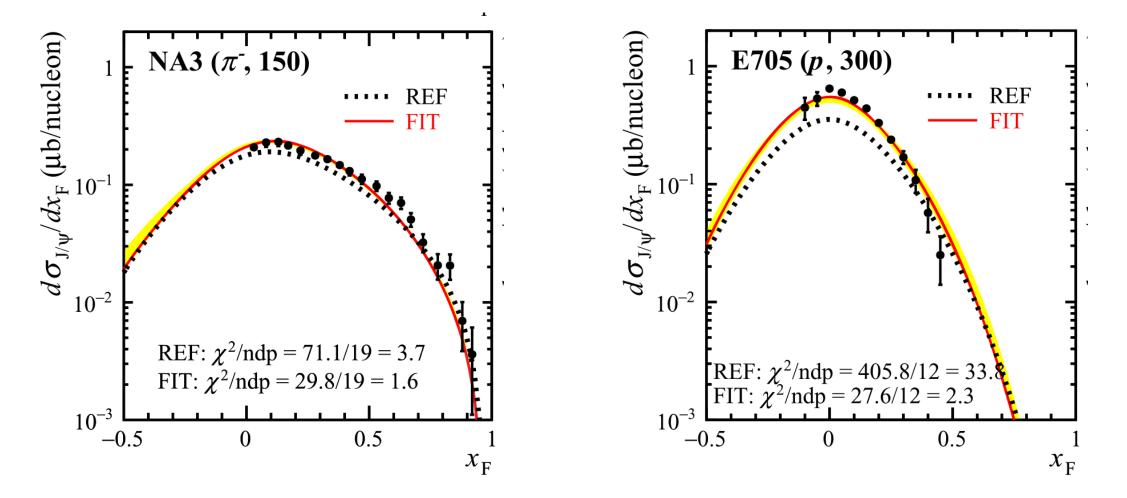
◆ Data used (Chang et al., PRD 107, 2023)

an

• Atomic numbers < 10, both proton and pion-induced data, for J/ψ and $\psi(2S)$

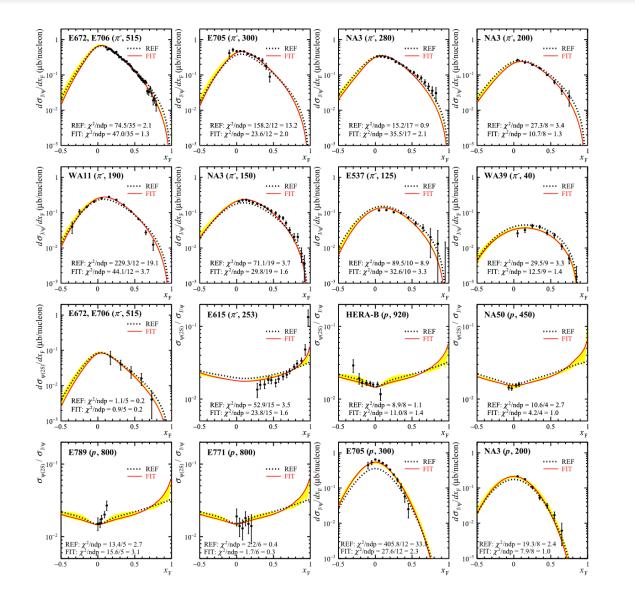
	Experiment	Beam	P_{beam} (GeV/c)	Target	Data	x_F	ndf	Norma. ^a	Reference
	FNAL E672, E706	π	515	Be	$\sigma^{J/\psi}$	[0.11, 0.79]	35	12.0	[82]
	FNAL E705	π	300	Li	$\sigma^{J/\psi}$	[-0.10, 0.45]	12	9.5	[83]
	CERN NA3 ^b	π	280	р	$\sigma^{J/\psi}$	[0.025, 0.825]	17	13.0	[84]
pion	CERN NA3 ^b	π	200	р	$\sigma^{J/\psi}$	[0.05, 0.75]	8	13.0	[84]
	CERN WA11 ^b	π	190	Be	$\sigma^{J/\psi}$	[-0.35, 0.75]	12	^c 10.0	[85]
164 points	CERN NA3 ^b	π	150	р	$\sigma^{J/\psi}$	[0.025, 0.925]	19	13.0	[84]
_	FNAL E537	π	125	Be	$\sigma^{J/\psi}$	[0.05, 0.95]	10	6.0	[86]
	CERN WA39 ^b	π	39.5	р	$\sigma^{J/\psi}$	[0.05, 0.85]	9	15.0	[87]
	FNAL E672, E706	π	515	Be	$\sigma^{\psi(2S)}$	[0.17, 0.73]	5	16.0	[82]
	FNAL E615	π	253	W	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.275, 0.975]	15		[88]
	HERA-B	р	920	W	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[-0.3, 0.075]	8		[78]
nroton	CERN NA50	р	450	W	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[-0.075, 0.075]	4		[89]
	FNAL E789	р	800	Au	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.00, 0.12]	5		[90]
proton 82 points	FNAL E771	р	800	Si	$\sigma^{\psi(2S)}/\sigma^{J/\psi}$	[0.00, 0.20]	6		[91]
V2 PUIIts	FNAL E705	р	300	Li	$\sigma^{J/\psi}$	[-0.10, 0.45]	12	10.1	[83]
	CERN NA3 ^b	р	200	р	$\sigma^{J/\psi}$	[0.05, 0.75]	8	13.0	[84]

TABLE II. Differential cross sections datasets for charmonium production $[J/\psi, \psi(2S)]$ and $R_{\psi}(x_F)$ used in the study, listed in order of decreasing beam momentum.

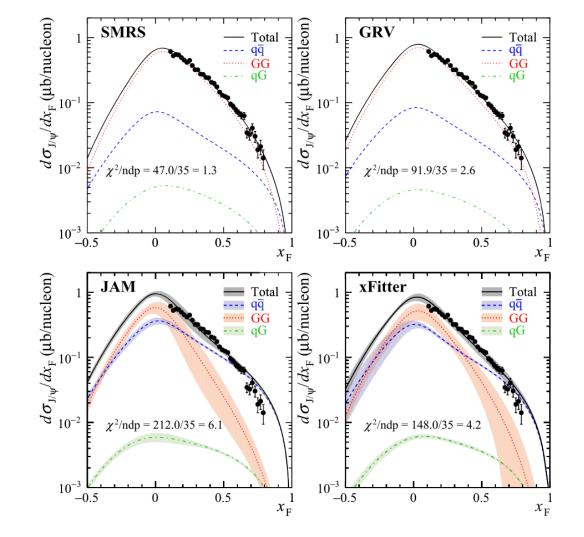

.1

PDFs at a crossroad

1. ..

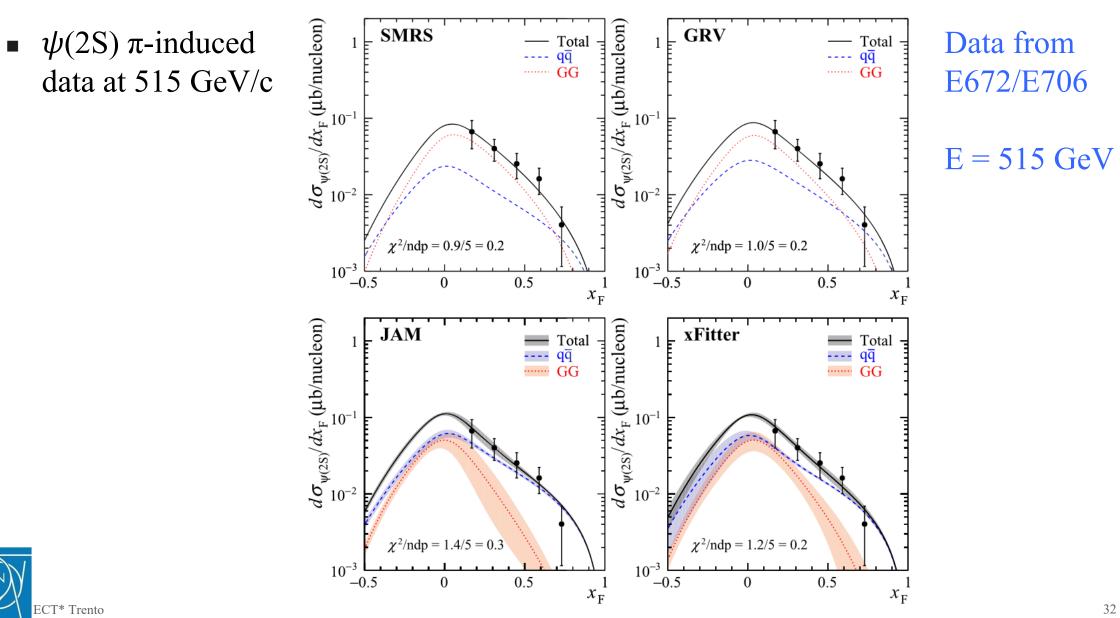

Good fit on both π and p data

Fit results: all data sets

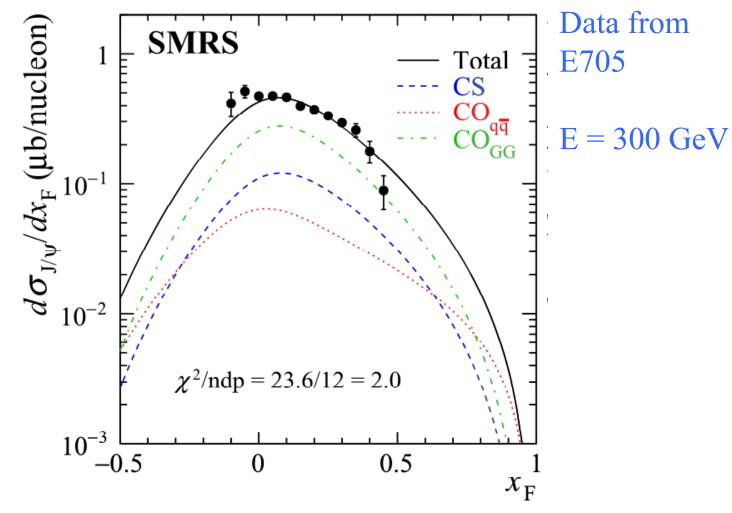


NRQCD fit results: dependence on the pion PDFs

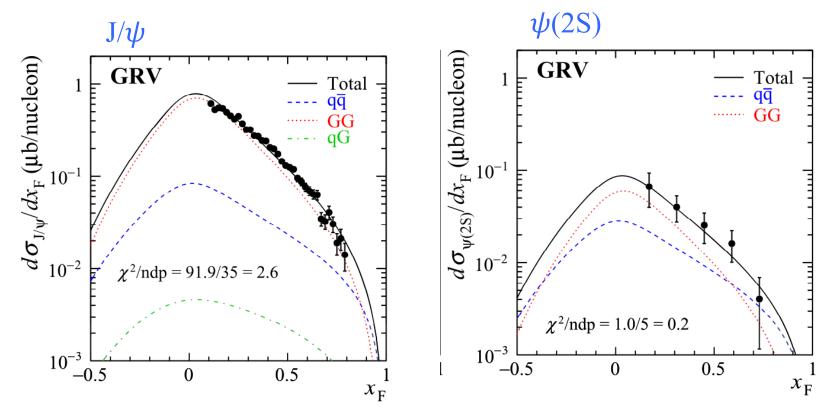
• $J/\psi \pi$ -induced data at 515 GeV/c



NRQCD fit results: dependence on the pion PDFs


COMPASS

Sensitivity of the FT data to the CO component


The CO gg contribution dominates the cross section

COMPASS 33

Comparison between J/ ψ and ψ (2S)

• π -induced data at 515 GeV/c

- Differences
 - size of cross section: about an order of magnitude!
 - larger $q\bar{q}$ contribution for $\psi(2S)$!

- LDMEs (SMRS)
 - $= 0.0560 \pm 0.0016$ • $\Delta_8(J/\psi)$ $\Delta_8(\psi(2S))$ $= 0.0057 \pm 0.0003$ Ratio: = ~10
 - $\langle 0_8[{}^3S_1] (J/\psi) = 0.0259 \pm 0.0023$ $\langle 0_8[^3S_1] (\psi(2S)) = 0.0132 \pm 0.0009$ Ratio:

 $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ Data: **SMRS** E615 Total GG Unexplained behavior!

0.5

 $x_{\rm F}$

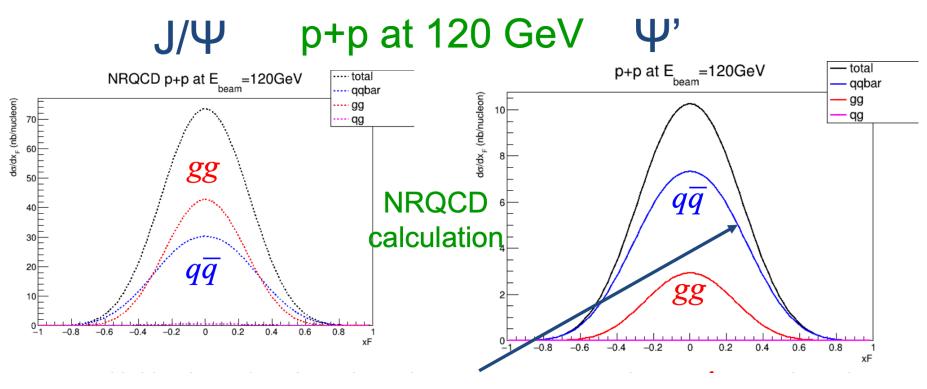
 $\chi^2/\text{ndp} = 23.8/15 = 1.6$

0

Cross section ratio at E = 252 GeV

-0.5= -2!The $q\bar{q}$ contribution in $\psi(2S)$ is much larger than in J/ψ

The behavior of the data cannot be explained using CEM



 10^{-2}

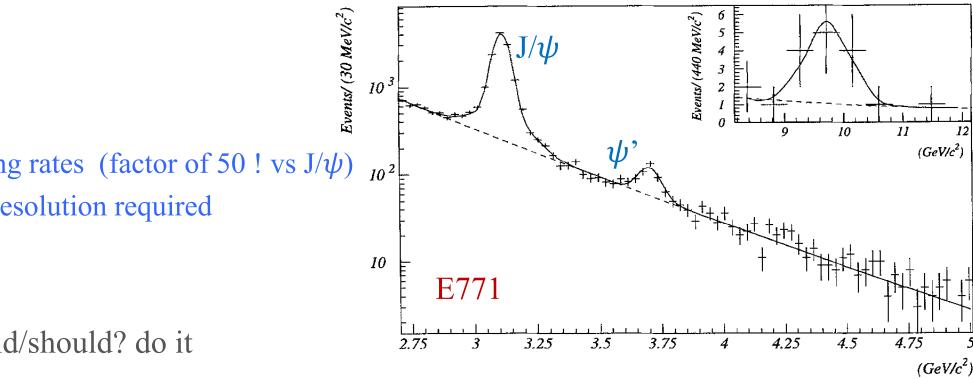
Comparison between J/ ψ and ψ (2S) for p+p at 120 GeV

• Calculation: W.-C. Chang

Combined use of J/ ψ and ψ (2S) data would greatly help in separating $q\bar{q}$ and gg contributions

 $\Rightarrow \psi(2S)$ could be considered as a Drell-Yan surrogate

Why measure $\psi(2S)$ cross sections?

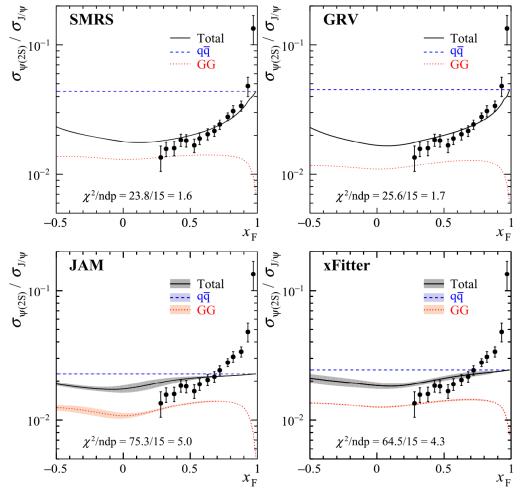


COMPASS

37

- ◆ Pros:
 - Different sensitivity to g(x) and q(x)
 - No feeddown contributions

E771 Collaboration / Physics Letters B 374 (1996) 271-276


- Low counting rates (factor of 50 ! vs J/ψ) $_{10^2}$
- Very good resolution required

◆ AMBER could/should? do it

Dependence on the pion PDFs

SMRS and GRV fits do (AGAIN!) a better job

LDMEs compared to <u>collider energies</u> fits values

$\langle O_8^{J/\psi} [{}^3S_1] \rangle (\text{GeV}^3)$

(2.59±0.23)x10 ⁻²	PRD 107, 2023
(0.31±0.06)x10 ⁻²	PRL 106, 2011
(0.30±0.12)x10 ⁻²	PRL 108, 2012
(1.00 ± 0.30) x10 ⁻²	PRL 114, 2015
(1.10 ± 1.00) x10 ⁻²	PRL 114, 2015

• $\psi(2S)$ production

Bodwin et al.,

Present work

• J/ψ production

Present work

Buttenshoen-Kniehl

Chao, Ma et al.,

Zhang, Sun et al.,

- Gong, Wan et al.,
- Buttenshoen-Kniehl, Fit1
- Buttenshoen-Kniehl, Fit4

 $\langle O_8^{\psi(2S)}[{}^3S_1]\rangle$ (GeV³)

(1.32 ± 0.09) x10 ⁻²	PRD 107, 1023
(0.34 ± 0.12) x10 ⁻²	PRL 106, 2011
(0.15 ± 0.01) x10 ⁻²	PRD 107, 2023
(0.28 ± 0.01) x10 ⁻²	PRD 107, 2023

Price for a good fit: values for $\langle O_8[{}^3S_1] \rangle$ between a factor of 2.5 and 10 larger (Note: high-energy fits are usually limited to values of $p_T > 5$ or 7 GeV/c)

Discussion

- The present NRQCD analysis could be further refined if the following items are considered:
 - Include higher order terms of NRQCD
 - Add data from heavier targets
 - Note: FT data are limited to small pT values ($\leq 4 \text{ GeV/c}$)
- ♦ An optional next step
 - Include charmonium production data in a global fit

Conclusions

- A common NRQCD fit to FT pion and proton-induced charmonium data is made
- A good fit to J/ψ and $\psi(2S)$ data, as well as to their ratios
- Better fit results for SMRS and GRV, in comparison with the recent JAM and xFitter PDFs
- Explained by larger gluon contributions, particularly at large x_F
- Use of either CEM or NRQCD leads to qualitatively similar results

- And a surprise
 - The data for $\psi(2S)$ favor a much larger $q\bar{q}$ contribution than that for J/ψ

