Magnetic Field Effects on Nucleosynthesis in Post-Merger Disk Outflows

Kelsey Lund

15 September 2023

Kilonova (KN): electromagnetic transient event associated with compact object mergers (at least one neutron star).

Important heating mechanism: radioactive decay of r-process nuclei

Kilonovae are the direct consequence of physics that develops over a wide range of time scales.

Time Scales

Time Scales (advertisement)

Holmbeck+ 2023: 2304.02125 Lund+ 2023: 2208.06373 Barnes+ 2021: 2010.11182 Zhu+ 2021: 2010.03668

Time Scales

r-Process Site: Post-Merger Disk

Magnetically driven accretion disk forms after merger event

r-Process occurs in different ejection "sites":

- Fast wind driven off material in midplane
- Material entrained in semi-relativistic jet
- Slow, viscous disk

Evolution of Post-Merger Disk

Neutrinos in the disk are neither trapped nor free-streaming, therefore neutrino transport is essential

nubhlight performs general relativistic magnetohydrodynamics *with* neutrino transport

Variable Field Strength

Procedure

Procedure

 $N_r \times N_{\theta} \times N_{\phi} = 192 \times 128 \times 66$ $M_{disk} = 0.12 M_{\odot}$ $M_{BH} = 2.58 M_{\odot}$ $Y_e = 0.1$ a = 0.69<u>Simulation time: 10</u>⁴ GM_{BH} /c³

(~127 ms)

Procedure

A Note on Simulation Time

Sprouse + 2023: Coming soon to an arXiv near you!

Running GRvMHD simulation out to 10⁵ GM_{BH} /c³ (~1.27 s) results in significantly more unbound low-Ye material!

Some Results

Lund+ in prep Figure: Miller+ 2019

Can lanthanide or actinide production be traced back to a specific region in the disk?

Where does material of a given Ye get ejected?

Spatial Trajectories

Lund+ in prep

Spatial Trajectories

Lund+ in prep

Polar material capable of producing overall small amounts of actinides, but high mass fraction High entropy in polar region allows for higher Ye for lanthanide/actinide production Stronger initial B field yields higher ejecta mass, with higher lanthanide and actinide richness

(scaled) Abundance patterns at 1 Gyr show some differences, but overall shape quite similar!

Largest differences in actinides, third peak

Nucleosynthesis!

Despite similarity in abundance pattern shape, bulk of material comes from different parts of ejecta, and depends on β .

Proportion of overall pattern from intermediateangle ejecta: $15 < \theta < 45$

Larger actinide abundances tend to see larger contribution from intermediate angle material

Efficiency of actinide production sensitive to initial conditions.

Nucleosynthesis!

Despite similarity in abundance pattern shape, bulk of material comes from different parts of ejecta, and depends on β .

Proportion of overall pattern from intermediateangle ejecta: $15 < \theta < 45$

Larger actinide abundances tend to see larger contribution from intermediate angle material

Efficiency of actinide production sensitive to initial conditions.

Thank you!

