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Kilonovae & r-Process

Kilonova (KN): electromagnetic transient event 
associated with compact object mergers (at least 
one neutron star).

Important heating mechanism: radioactive decay of 
r-process nuclei

Kilonovae are the direct consequence of physics 
that develops over a wide range of time scales. 
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Time Scales
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r-Process Site: Post-Merger Disk

Magnetically driven accretion disk forms 
after merger event

r-Process occurs in different ejection 
“sites”:

- Fast wind driven off material in mid-
plane

- Material entrained in semi-relativistic 
jet

- Slow, viscous disk
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Neutrinos in the disk are neither trapped nor free-streaming, therefore neutrino 
transport is essential

nubhlight performs general relativistic magnetohydrodynamics with neutrino 
transport

Disk Ye

Neutrino 
interactions

Thermodynamic 
evolution 

of the disk

Magnetic 
fields

depends on depend on depends on
Disk Ye

Neutrino 
interactions

depend on
Disk Ye

Neutrino 
interactions

Evolution of Post-Merger Disk
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Ejection mechanism

Mass of ejecta

Ejecta velocity

Neutrino evolution timescale

could affect

𝛽 =
𝑃𝑔𝑎𝑠

𝑃𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

Decreasing init ial  f ield strength

Variable Field Strength
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Procedure

GRνMHD 
simulations

with nubhlight (Miller + 2019)

produce

Tracers: thermodynamic 
evolution

(>400,000 tota l )

for

Nucleosynthesis
with PRISM (Mumpower+)
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Nr x Nθ x Nφ = 192 x 128 x 66

Mdisk = 0.12 M⊙

MBH = 2.58 M⊙

Ye = 0.1
a = 0.69

Simulation time: 104 GMBH /c3 
(~127 ms)
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Nr x Nθ x Nφ = 192 x 128 x 66

Mdisk = 0.12 M⊙

MBH = 2.58 M⊙

Ye = 0.1
a = 0.69

Simulation time: 104 GMBH /c3 
(~127 ms)

FRDM2012 Mass Model
FRLDM Fission Barrier Heights

Nubase Experimental Data

Abundance Record Time: 
1 Gyr



A Note on Simulation Time
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Sprouse+ 2023: Coming soon to an arXiv near you!

Running GRνMHD 

simulation out to 

105 GMBH /c3 

 (~1.27 s) results in 

significantly more unbound 

low-Ye material!



Some Results
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Lund+ in prep
Figure: Miller+ 2019

Can lanthanide or actinide production 

be traced back to a specific region in 

the disk?

Where does material of a given Ye get 

ejected?



Spatial Trajectories 
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Polar material capable of 

producing overall  small  

amounts of actinides, but high 

mass fraction

High entropy in polar region 

allows for higher Ye for 

lanthanide/actinide 

production

Stronger init ial  B field yields 

higher ejecta mass, with higher 

lanthanide and actinide richness

Spatial Trajectories
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Nucleosynthesis!
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Lund+ in prep

(scaled) Abundance patterns at 1 Gyr show 
some differences, but overall shape quite 
similar!

Largest differences in actinides, third peak



Nucleosynthesis!

MICRA 23  | 9kalund@ncsu.edu

Lund+ in prep

Despite similarity in abundance pattern shape, 
bulk of material comes from different parts of 
ejecta, and depends on β.

Proportion of overall pattern from intermediate-
angle ejecta: 15 < θ < 45

Larger actinide abundances tend to see larger 
contribution from intermediate angle material

Efficiency of actinide production sensitive to 
initial conditions.
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Despite similarity in abundance pattern shape, 
bulk of material comes from different parts of 
ejecta, and depends on β.
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Thank you!
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