Finite temperature first order phase transition in astrophysical systems

Framework for phase transitions between the Maxwell and Gibbs constructions

Mirco Guerrini

collaborators: C. Constantinou (ECT*) and M. Prakash (Ohio U.)

MICRA 2023

Introduction

Why finite T?

- Identify observables with simulations (e.g BNSM)
- New gen GW detectors (e.g ET) : Post-merger
 → composition and temperature dependent
 (A. Prakash et al. 2021 and Bauswein et al. 2019)

Hadron-quark 1^{st} order p.t. at high density

- $(\sigma \rightarrow \infty)$ Maxwell C. (MC): local c.n.
- $(\sigma \rightarrow 0)$ Gibbs C. (GC): global c.n.
- (0 < σ < ∞) new framework
 - T = 0: Constantinou et al. 2023
 - $T \neq 0$: this work (in preparation)

Method

In this work

- Particles: p, n, e, u, d, s, γ and antiparticles $(y_i = n_i/n_B = y_{i,part.} y_{i,antip.})$
- Nucleons: ZL XOA (Zhao et al. 2020), Quarks: vMIT (Gomes et al. 2019)
- Fermi integrals: JEL approach (Johns et al. 1996)
- Supernovae matter: (n_B, Y_e, T, η) as free variables \rightarrow not in eq. wrt β -reactions

The framework

 $F(n_B, \{y_i\}, T, \chi, \eta) = (1 - \chi)(F_H + \eta F_{eH}) + \chi(F_Q + \eta F_{eQ}) + (1 - \eta)F_{eM}$

minimized wrt y_p , y_n , y_u , y_d , y_s , y_{eH} , y_{eQ} , y_e , χ with **baryon**, **lepton** conservation, **global** and **local** c.n. as constraints

see Constatinou et al. 2023 and talk @ MICRA2023 for details (T=0, β -eq.)

Key element: η is the fraction of leptons in local c.n.

Results

Mixed phase boundaries

- strong Y_e dependence
- larger $\eta \rightarrow$ smaller mixed phase

Composition

 {y_i} in the mixed phases under control (where y_i = n_i/n_B = y_{i,part.} - y_{i,antip.})

Remember: η parameter

- $\eta = 1 \ (\sigma \to \infty) \Rightarrow$ fully local c.n.
- $\eta = 0 \ (\sigma \to 0) \Rightarrow$ fully global c.n.
- $0 < \eta < \infty \Rightarrow$ new framework

Results

Pressure: If $\eta = 1 \ (\sigma \to \infty)$

- Neutron Star (NS) matter: (n_B) (Constantinou et al. 2023)
 - β equilibrium, T = 0
 - one global conserved charge
 - P is constant in mixed phase (proper MC)
- Supernova (SN) matter: (*n*_B, *Y*_e, *T*) (*This work*)
 - out of $\beta\text{-equilibrium, finite }\mathcal{T}$
 - more than one global conserved charges
 - P is not constant in mixed phase

 $P \neq {
m const.}$ (i.e. P is not flat) even for the "Maxwell" ($\sigma \rightarrow \infty$) mixed phase in SN matter

Summary

Introduction

- High n_B matter composition can be constrained with the new gen GW detectors
- Generalize to finite T the new 1^{st} order p.t. framework between MC and GC

Method

- New framework: leptons are divided in local (η) and global (1η) charge neutrality
- SN matter: (n_B, Y_e, T, η) as free variables

Results

- Mixed phase composition under control
- $P \neq$ const. even for MC mixed phase (SN matter: more than one global conserved charges)

Outlooks

- Application to BNSM simulations to study the post-merger GW signal
- $\bullet\,$ More degrees of freedom, different EOS models, trapped neutrinos, $\ldots\,$
- Application to PNS cooling

Identify observables for quark phase and for the nature of the transition

∜

Backup: Free energy minimization

Constraints:

- Baryon number conservation: $(1-\chi)(y_n+y_p)+\chi(y_u+y_d+y_s)/3=1$
- Lepton number conservation: $(1 \chi)\eta y_{eH} + \chi\eta y_{eQ} + (1 \eta)y_{eM} = Y_e$
- Local charge neutrality: $y_p y_{eH} = (2y_u y_d y_s)/3 y_{eQ} = 0$
- Global charge neutrality: $(1-\chi)y_p + \chi(2y_u y_d y_s)/3 y_{eM} = 0$

Minimization of f wrt $y_p, y_n, y_u, y_d, y_s, y_{eH}, y_{eQ}, y_{eM}, \chi$ with constraints

- Mechanical eq. : $P_H + \eta P_{eH} = P_Q + \eta P_{eQ}$
- Strange weak eq. : $\mu_d = \mu_s$
- Neutral strong eq. : $\mu_n = \mu_u + 2\mu_d$
- Charged strong eq. : $\mu_{p} = 2\mu_{u} + \mu_{d} \eta(\mu_{eH} \mu_{eQ})$

 $(n_B, \{y_i\}, T, \chi, \eta) \rightarrow (n_B, Y_e, T, \eta)$

Backup: Isoentropic temperature

Backup: Particle fractions

Backup: Quark fraction

Backup: NS vs SN matter

If $\eta = 1 \; (\sigma o \infty)$

- NS matter: n_B
 - one global conserved charge
 - *P* is flat in mixed phase (proper MC)
- SN matter: n_B, Y_e, T
 - more than one global conserved charges
 - P is not flat in mixed phase

Backup: Results

Backup: Results

Backup: Results

Backup: QCD Phase Diagram

QCD

- Confinement, asymptotic freedom
- Different degrees of freedom

Hadron-to-quark transition

- high *T*, low *n_B*: smooth crossover (Lattice QCD)
- high n_B: unknown

From: Universe (2019), 5(5), 129

Backup: High density systems

Neutron stars (NS)

- $M\sim 1.4 M_{\odot}$, $R\sim 10$ km $\rightarrow \bar{n}_B\simeq 3M/(4\pi R^3)/m_B\sim (2-3)n_0$
- $T \sim {
 m keV}$, $E_F \sim [m_B^2 + (3\pi^2 ar{n}_B)^{1/3}]^{1/2} m_B \sim 0.1~{
 m GeV} o T \sim 0$
- in NS mergers (BNSM): $T\sim 0.5 m_B v_{merger}^2 \sim 80$ MeV
- in accretion of Proto NS (PNS): $T \sim 0.5 m_B v_{fall}^2 \sim 20$ MeV

NS and related phenomena are astrophysical laboratories for high-density conditions

Key element: Equation of state (EOS)

- NS properties, hydrodynamic simulation of CCSN and BNSM
- Still unknown in the high-density regime
- Degrees of freedom: hadrons, leptons, ... , free quarks?

Backup: EOS for astrophysical application

Main challenges:

- Huge ranges of conditions
- Different degrees of freedom (nuclei, nucleons, quarks, ...)

Variables:

• $n_B, \{y_i = n_i/n_B\}, T$

Assumptions:

- Baryon number conservation
- Charge neutrality

	n_B/n_0	T [MeV]	Y _e
Isolated NS	$10^{-8} - 10$	\sim 0	0.01-0.3
Core Collapse Supernovae (CCSN)	$10^{-8} - 10$	0 - 50	0.25-0.55
Proto NS (PNS)	$10^{-8} - 10$	0 - 50	0.01-0.3
Binary NS Mergers (BNSM)	$10^{-8} - 10$	0 - 100	0.01-0.6

Composition: From Eur. Phys. J. A (2019) 55: 10

Backup: Present EOS constraints at T = 0

Low density regime \rightarrow EOS decently known

- $n_B \sim n_0$ and $y_p \sim y_n$: Nuclei proprieties
- $n_B \lesssim 2n_0$: Ab-initio calculations

High density regime \rightarrow extrapolation

- NSs global proprieties (X-rays, pulsars, gravitational waves) e.g. Legred et al. 2021
 - Maximum mass $M\gtrsim 2M_{\odot}$
 - Radius 10 km $\lesssim R \lesssim$ 14 km
 - Tidal deformability (e.g. $170 \lesssim \Lambda_{1.4} \lesssim 680)$

Note: The global proprieties of NS does only depend on $P(\varepsilon)$ and not on the matter composition

Backup: Future observables

Current GW detectors (Virgo, Ligo) \rightarrow inspiral Third gen GW detectors (Cosmic explorer, Einstein Telescope) \rightarrow inspiral and **Post-merger**

New generation GW detectors will be have access to:

- BNSM post-merger frequency peak shift
- g-modes excited in BNSM or in a PNS

that are strongly composition and temperature dependent \rightarrow Modeling

Backup: Fermi integrals

We are interested in models with a single-particle energy spectrum

$$\epsilon_k = E_k + U(n) = \sqrt{k^2 + m^2} + U(n)$$

$$n = g \int \frac{d^3k}{(2\pi)^3} \frac{1}{1 + \exp\frac{\epsilon_k - \mu}{T}} = g \int \frac{d^3k}{(2\pi)^3} \frac{1}{1 + \exp\frac{E_k - \nu}{T}}$$
$$\varepsilon = g \int \frac{d^3k}{(2\pi)^3} \frac{\epsilon_k}{1 + \exp\frac{\epsilon_k - \mu}{T}} = g \int \frac{d^3k}{(2\pi)^3} \frac{E_k}{e^{(E_k - \nu)/T} + 1} + \varepsilon_V$$

- \circ Zero temperature \rightarrow analytical results
- Finite temperature \rightarrow numerical approach (JEL method *Johns et al. 1996*)

Backup: Hadrons EOS

Zhao-Lattimer (ZL) Hadron EOS

• Effective model based on the energy density functional

$$\varepsilon_{H} = \sum_{i=p,n} \tau_{i} + 4n_{B}^{2} y_{n} y_{p} \left\{ \frac{a_{0}}{n_{0}} + \frac{b_{0}}{n_{0}} \left[\frac{n_{B}}{n_{0}} (y_{n} + y_{p}) \right]^{\gamma - 1} \right\} + n_{B}^{2} (y_{n} - y_{p})^{2} \left\{ \frac{a_{1}}{n_{0}} + \frac{b_{1}}{n_{0}} \left[\frac{n_{B}}{n_{0}} (y_{n} + y_{p}) \right]^{\gamma_{1} - 1} \right\}.$$

- a_0 , b_0 , a_1 , b_1 , γ fitted to nuclei proprieties at $n_B \sim n_0$
- γ_1 chosen to reproduce astrophysical observations at $n_B\gtrsim 2n_0$
- XOA parametrization (Constantinou et al. 2021)
- Similar to what ones can obtain starting from a Lagrangian with an effective vectorial interaction evaluated at the mean field level

Backup: Quarks EOS

vMIT Quark EOS

$$egin{aligned} \mathcal{L} &= \sum_i [ar{\psi}_i (i\partial - m_i - B) \psi_i + \mathcal{L}_{int}] \Theta \ \mathcal{L}_{int} &= -G_{v} \sum_i ar{\psi} \gamma_\mu V^\mu \psi + rac{m_V^2}{2} V_\mu V^\mu \end{aligned}$$

$$arepsilon_Q = \sum_{i=u,d,s} au_i + rac{1}{2} \left(rac{G_v}{m_V}
ight)^2 n_B^2 (y_u + y_d + y_s)^2 + B$$

- Bag (B) simulate the energy density needed to deconfine quarks
- Perturbative terms replaced by vectorial repulsive effective interaction

Backup: First order phase transition

• Three different phases:

$$X(n_B, \{y_i\}, T) = \begin{cases} X_{\mathcal{H}}(n_B, \{y_i\}, T) \\ X^*(n_B, \{y_i\}, T) \\ X_{\mathcal{Q}}(n_B, \{y_i\}, T) \end{cases}$$

Maxwell Construction

- $\sigma \to +\infty$
- Local charge neutrality
- *P* = *const* in the mixed phase
- NSs can not support a mixed phase

 $n_B < n_{B,1}(\{y_i\}, T)$ $n_{B,1}(\{y_i\}, T) < n_B < n_{B,2}(\{y_i\}, T)$ $n_B > n_{B,2}(\{y_i\}, T).$

Gibbs Construction

- $\sigma \rightarrow 0$
- Global charge neutrality
- $P \neq const$ in the mixed phase
- NSs can support a mixed phase

Backup: Neutron Star matter

 $\mathsf{ZL}+\mathsf{vMIT}$ with XOA parametrization:

- Compatible with astrophysical constraints (*Legred et al. 2021*)
- MC does not support quark phase
- KW support more massive NSs than GC
- A mixed phase is supported for $M \gtrsim 1.75 M_{\odot}$ NSs

Backup: Parametrization

Model	Parameter	XOA	Units
	a_0	-96.64	MeV
	b_0	58.85	MeV
ZL	γ	1.40	
	a_1	-25.19	MeV
	b_1	7.18	MeV
	γ_1	2.45	
	m_{u}	5.0	MeV
	m_d	7.0	MeV
vMIT	m_s	150.0	MeV
	а	0.20	fm ²
	$B^{1/4}$	180	MeV
KW	μ_0	1.8	GeV
	T_0	170	MeV

Quantity References	Exp. data
$egin{aligned} n_0 & & \ E_{sat} - m_B & \ K_{sat} & & \ E_{sym} & \ L_{sym} & \end{aligned}$	$\begin{array}{c} 0.16 \pm 0.01 \ \text{fm}^{-3} \\ -16.0 \pm 1 \ \text{MeV} \\ 240 \pm 20 \ \text{MeV} \\ 32 \pm 2 \ \text{MeV} \\ 55 \pm 15 \ \text{MeV} \end{array}$