Nucleosynthesis of light and iron-group elements in the ejecta of binary neutron star mergers

Leonardo Chiesa

Università degli Studi di Trento

in collaboration with A. Perego and F. M. Guercilena *(paper in preparation)*

MICRA2023 workshop - Trento (Italy)

September 15, 2023

Neutron-rich environment

sequence of rapid neutron captures

- GW170817 + AT2017gfo BNS mergers as sites for r-process nucleosynthesis
- BNS ejecta:

 $0.05 \lesssim Y_{
m e} \lesssim 0.4$

Dynamical ejecta
 (tidal + shock-heated)

Disk-wind ejecta
 (e.g. spiral-wave wind)

- Production of light elements (Z ≤ 38) in
 BNS ejecta (see also [Perego et al. 2022])
 - → nucleosynthesis pattern is more sensitive to binary parameters
 - → kilonova spectral identification (e.g. Strontium, [Watson et al. 2019])

MICRA2023 workshop

Methods

1. Parametric study wrt specific entropy (s), electron fraction (Y_{e}) , expansion timescale (τ)

Lippuner & Roberts (2015)

$$\rho(t) = \begin{cases}
\rho_0 e^{-t/\tau} & t \leq 3\tau, \\
\rho_0 \left(\frac{3\tau}{et}\right)^3 & t \geq 3\tau
\end{cases}$$

$$\rho_0 = \mathsf{NSE}(s, Y_e, T_0) \quad T_0 = 8.0 \,\,\mathsf{GK}$$

Compute final yields in 3
 BNS ejecta G

$$Y_{i}(t) = \frac{\sum_{\alpha} Y_{i}^{(\alpha)}(t) \times dm(\alpha)}{\sum_{\alpha} dm(\alpha)}$$
$$\equiv (s, \tau, Y_{e})$$

from SkyNot

38 numerical BNS simulations targeted to GW170817 (WhiskyTHC)

- ★ EOS \Rightarrow DD2, LS220. BLh, SFHo, SLy4
- ★ mass ratio $\Rightarrow 0.55 \le q \le 1.00$
- ★ neutrinos \Rightarrow LK + M0 scheme

 α

Results - parametric nucleosynthesis study

• Underproduction in the range $3 \le Z \le 19$: $Y \le 10^{-5}$

cf. [Perego et al. 2022]

• Iron-group elements ($24 \leq Z \leq 28$):

→ $Y_e \gtrsim 0.3$ and s \lesssim a few tens of k_B /baryon \Rightarrow Y ~ 10⁻³ - 10⁻²

→ gap around $Y_e \sim 0.4$ → $Y_e < 0.4$: weak *r*-process $Y_e > 0.4$: synthesis at NSE

Results - yields in dynamical ejecta

• Iron-group elements favoured by equal-mass binaries $(q \rightarrow 1)$ and soft EOS

shock-heated contribution (violent collision, high temperatures increase Y_a in the ejecta)

Results - dynamical vs spiral-wave

• Nucleosynthesis in spiral-wave wind:

 Iron-group elements (Y ≥ 10⁻⁴) comparable to or even higher than 2nd and 3rd r-process peaks in disk ejecta!

MICRA2023 workshop

Summary and conclusions

- Light elements important to constrain our understanding of BNS mergers
- Negligible production for Z < 20 (except H and He)
- Iron-group elements produced for $Y_{e} \gtrsim 0.3$ and low/moderate s

- Image: style="text-align: center;">favoured in equal-mass mergers with soft EOS

 Image: style="text-align: center;">in disk-wind ejecta, comparable with abundances of 2nd and 3rd r-process peaks
- - Possibile improvements \Rightarrow 1. more detailed information (e.g. single isotopes, angular distribution)
 - 2. more accurate neutrino treatment

Backup slides

Nuclear-chart distribution

s = 10 k_B/baryon, Y_e = 0.34, τ = 10 ms

Leonardo Chiesa

MICRA2023 workshop

Hydrogen and Helium production

 H ⇒ β-decay of free n for fast expanding ejecta

 He ⇒ α-rich freeze-out at high entropies

 Qualitative agreement with [Perego et al. 2022]

Leonardo Chiesa

MICRA2023 workshop

September 15, 2023 ¹⁰

Calcium production

- Ca potentially observable in kilonova spectra for lanthanide-poor ejecta
 [Domoto et al. 2021]
- Very specific conditions

 $\rm Y_{e}\,{\sim}\,0.4$ and s \lesssim 10 $\rm k_{B}^{}/\rm baryon$

- Negligible dependence on τ
- Abundance dominated by doubly-magic ⁴⁸Ca, synthesized during initial NSE conditions

Thermodynamics conditions in BNS ejecta

• Distribution peak moves towards higher values for increasing mass ratio

BNS simulation sample

Leonardo Chiesa

MICRA2023 workshop