Quasi-universal relations of gravitational wave signal from binary neutron star mergers **Konrad Topolski**, Samuel Tootle, Luciano Rezzolla GU Frankfurt

MICRA2023 Trento 13.09.2023

Motivation:

- easily identifiable frequencies in the GW signal strongly correlate with
 - ▶ total mass of the system *M*_{tot},
 - mass ratio of the components q,
 - EOS-specific quantites, e.g. tidal deformability $\kappa_2^T = \kappa_2^T$ (EOS)

Here:

- propose new, accurate universal relations for these frequencies
- investigate the subdominant m = 1 mode and its secular growth
- report findings consistent across 3 codes and 3 initial data solvers

- waveforms from GU group¹², and others³ (CoRe database)
- ▶ in total, ~ 120 simulations in GRHD (no *B* field, $s_1 = s_2 = 0, e < 0.01$)
- ▶ 12 EOS, some including a strong 1-st order PT and deconfined quark phase
- $M_{\text{tot}} \in [2.4, 3.33] M_{\odot}, q \in [0.485, 1.0], \kappa_2^T \in [33, 458]$

¹Tootle et al.; Astrophys.J.Lett. **922** (2021) 1, L19 ²Tootle et al.; SciPost Phys. **13** (2022) 109 ³Gonzalez et al.; 2022, Class.Quant.Grav. **40** (2023) 8, 085011

Waveform - amplitude, frequency, spectral density

Three characteristic frequencies identifiable:

- merger frequency f_{mer}
- quenched-quadrupole moment frequency f_0
- long-lived post-merger frequency f_2

Figure: *

Takami et al.; Phys.Rev.D **91**, 064001 (2015)

Relation between

$$(f_{\text{mer}}, f_0, f_2) \longleftrightarrow (M_{\text{tot}}, q, \kappa_2^T)$$
?

Augment previous Ansatz ^{4 5} with mass ratio corrections:

$$\log_{10}\left[\frac{M_{\text{tot}}}{M_{\odot}}\frac{f}{\text{Hz}}\right] = a_0 + (b_0 + b_1 q + b_2 q^2)(\kappa_2^T)^n$$

5 parameters a_0, b_0, b_1, b_2, n sufficient, previous Ansatz had 3.

⁴Rezzolla, Takami; Phys.Rev.D **93**, 124051 (2016) ⁵Read et al.; Phys. Rev. D **88**, 044042 (2013)

Result of the fits

Result of the fits

`ÄТ

FRANKFURT AM MAIN

Modes of radiation

m=2

Secular growth of the subdominant mode

- contribution of the m = 1 mode to the overall strength of the signal is generic
- ▶ initial (~ 10 ms) contribution dependent on mass asymmetry
- ▶ secular growth of the m = 1 mode, might dominate as early as ~ 20 50 ms

• dominant
$$m = 1$$
 frequency is $\sim \frac{1}{2}f_2$

Potential uses

Accurate universal relations on large datasets can be useful for:

- ► informing the phase part of the waveform models; $(M_{\text{tot}}, q, \text{EOS}) \rightarrow (f_{\text{mer}}, f_0, f_2) \rightarrow f_{\text{GW}}(t)$
- identifying universality-breaking physics (HQ PT, new DOF, etc.)
- inference of the underlying EOS and/or parameters of binary

Dominance of the subdominant mode long-term:

- potential for detection by present detectors with high SNR or by 3G detectors
- might couple to post-merger differently from m = 2 mode (viscosity, phase transitions)

Conclusion

In summary:

 suggest new functional relations for the merger and post-merger frequencies

$$\log_{10}\left[\frac{M_{\text{tot}}}{M_{\odot}}\frac{f}{\text{Hz}}\right] = a_0 + (b_0 + b_1 q + b_2 q^2)(\kappa_2^T)^n$$

which use a smaller number of parameters and are more accurate

- identify a new frequency f_0 and explain its origin using a toy model
- confirm the secular growth of the m = 1 mode for generic binaries

Secular growth - all datasets

Detector sensitivity

Comparing the fits

Quantifying the equation of state dependence

Tidal forces acting on a companion star impact the GW frequency. To lowest order, this influence is related to:

$$k_2 = rac{Q_{ij}}{arsigma_{ij}} \qquad \Big(rac{ ext{response}}{ ext{tidal field}}\Big)$$

We then define $\Lambda = \frac{2}{3} \frac{k_2}{\mathscr{C}^5}$, with $\mathscr{C} = \frac{M_{ADM}}{R}$. Finally, we parametrize the joint interaction with:

$$\kappa_2^T = \frac{M_1 M_2}{M^2} \left[\left(\frac{M_1}{M}\right)^3 \Lambda_1 + \left(\frac{M_2}{M}\right)^3 \Lambda_2 \right] = \kappa_2^T (M_{\text{total}}, q, \text{EOS})$$

By invoking *quasi-universality*, we mean that we can construct fits for the frequencies that involve κ_2^T , but that it does not matter which EOS this κ_2^T comes from originally (degeneracy).

Toy model for the f_0 frequency

ERANKEURT AM MAIN

• with tuning of the initial paramteres, the f_0 frequency can be mimicked UNIVERSITY

Fit parameters

Freq.	a_0	b_0	b_1	b_2	n	$\langle \Delta f/f \rangle$	$\max(\Delta f/f)$	χ^2	$\chi^2_{\rm red}$	R^2
						[%]	[%]		$\times 10^{-3}$	
$f_{ m mer}^{\psi_4}$	4.589	-0.581	0.543	-0.236	0.20	0.65	4.52	0.135	1.19	0.934
f_{mer}^h	4.201	-0.330	0.198	-0.067	0.20	0.32	2.99	0.035	0.30	0.957
$f^{\psi_4}_{\mathrm{mer}}$	6.067	-2.142	0.970	-0.410	0.07^{\dagger}	0.59	4.24	0.114	1.00	0.938
f_{mer}^h	4.457	-0.578	0.262	-0.087	0.14^\dagger	0.32	2.94	0.034	0.30	0.957
$f_{0}^{\psi_{4}}$	6.550	-2.099	0.518	-0.304	0.06^{+}	1.38	4.22	0.477	4.92	0.611
f_2	4.617	-0.170	-0.264	0.160	0.20^{\dagger}	0.45	1.34	0.030	0.48	0.926

Table 1. Best-fit values for the coefficients of the functional form \mathcal{F}_1 . Also reported are the maximal and average relative difference, as well as the χ^2 , χ^2_{red} and R^2 coefficients of the fit. Indicated with a \dagger are the best-fit values of n when this coefficient is constrained by the fit.

