Kilonova from different points of view: Combining 3D radiative transfer and numerical-relativity simulations

N NUCLEAR PHYSICS AND RELATED AREAS

MICRA2023: Microphysics in Computational Relativistic Astrophysics

Numerical Relativity Code – BAM [Brügmann et al. 2008]

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\nabla_{\mu}T^{\mu\nu} = 0$$

$$\nabla_{\mu}(\rho_{0}u^{\mu}) = 0$$

$$\partial_{t}q + \partial_{k} f^{k}(q) = s$$

9/12/2023

Numerical Relativity Code – BAM [Brügmann et al. 2008]

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\nabla_{\mu}T^{\mu\nu} = 0$$

$$\nabla_{\mu}(\rho_{0}u^{\mu}) = 0$$

$$\partial_{t}q + \partial_{k} f^{k}(q) = s$$

Numerical Relativity Code – BAM [Brügmann et al. 2008]

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\nabla_{\mu}T^{\mu\nu} = 0$$

$$\nabla_{\mu}(\rho_{0}u^{\mu}) = 0$$

$$\partial_{t}q + \partial_{k} f^{k}(q) = s$$

- 3D Monte-Carlo simulations
- main steps:
 - setting up model
 - creating photons
 - propagating photons
 - collecting photons

- 3D Monte-Carlo simulations
- main steps:
 - setting up model
 - creating photons
 - propagating photons
 - collecting photons

- 3D Monte-Carlo simulations
- main steps:
 - setting up model
 - creating photons
 - propagating photons
 - collecting photons

- 3D Monte-Carlo simulations
- main steps:
 - setting up model
 - creating photons
 - propagating photons
 - collecting photons

- 3D Monte-Carlo simulations
- main steps:
 - setting up model
 - creating photons
 - propagating photons
 - collecting photons
- requires at reference time t_0 : $(\rho_0, v_x, v_y, v_z, Y_e)$
- assumes homologous expansion with:
 $r_i = v_i (t t_{merger})$

Homologous Expansion

Neuweiler et al. 2023 (*Phys. Rev. D* **107**, 023016)

Homologous Expansion

Neuweiler et al. 2023 (*Phys. Rev. D* **107**, 023016) Numerical Relativity

Radiative Transfer

3D Results

NSbh – Simulation

$$M^{
m BH} = 0.5 \ M_{\odot}$$

 $M_g^{
m NS} = 1.4 \ M_{\odot}$

Markin et al. 2023 (accepted in: *Phys. Rev. D*)

- careful with assumptions:
 homologous expansion
 > spherical / axial symmetries
- need long-term and accurate numerical-relativity simulations
 - microphysics
 - ➢ neutrinos
 - magnetic fields

Thank you for your Attention!

9/12/2023

Kilonova from different points of view

Simulations with Neutrino Transport

 $t - t_{merger} = 45.57[ms]$

Schianchi et al. 2023 (accepted in: *Phys. Rev. D*)

Numerical Relativity

Radiative Transfer

Simulations with Neutrino Transport

