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Number-Conservative Spectral O(v/c) Two-Moment Model1
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I Number flux equation
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I Angular moments of kinetic distribution f
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I Closed by specifying Kij and Lijk in terms of D and I i

I Components of fluid three-velocity v i

I Comoving-frame spherical-polar momentum coordinates (ω, ε)

1Liau, E, Harris, Zelledge, Mezzacappa arXiv:2309.04429



Collision Term

C[f , f̄ ](p) = (1− f (p)) η(p)− χ(p) f (p) (Emission/absorption)
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I Opacities depend nonlinearly on matter state (e.g., ρ, T , and Ye)

I Pauli blocking factors: (1− f )

I Scattering and pair processes couple in momentum space: O(N2
p)

I Pair processes couple neutrinos and antineutrinos



Toolkit for High-Order Neutrino Rad-Hydro (Thornado4)

I Discontinuous Galerkin (DG) methods

I Hydrodynamics2

I Spectral, two-moment neutrino transport3

I Tabulated microphysics (weaklib)

I Equations of State

I Neutrino opacities

I GPU offloading with OpenMP or OpenACC

I Distributed parallelism and AMR through AMReX or Flash-X

2Pochik et al. (2021), ApJS, 253:21; Dunham et al. (arXiv:2307.10904)
3Chu et al. (2019), JCP, 389, 62; Laiu et al. (2021), ApJS, 253:52; Laiu et al. (arXiv:2309.04429)
4github.com/endeve/thornado
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weaklib5

I Library for tabulated microphysics (EoS and weak interactions)

I Tabulation in terms of matter states (e.g., ρ,T , and Ye) and neutrino energy (ε)

I Basic functionality for hydrodynamics and neutrino transport algorithms

I Interpolation on shared grids (EoS and weak interactions)

I EoS inversions (e.g., ε → T and s → T )

I GPU offloading with OpenMP or OpenACC

5github.com/starkiller-astro/weaklib
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Self-Gravitating Neutrino Radiation Hydrodynamics

I Hydrodynamics (Euler equations with nuclear EoS)

dtu = T u(u,Φ) + Cu(U , u)

Hyperbolic system with sources — u ∈ R6 per spacetime point

I Neutrino transport (spectral two-moment model)

dtU = TU (U , u) + CU (U , u)

Hyperbolic system with sources — U ∈ R6×4×32=768 per spacetime point

I Gravity (Poisson equation)
F (Φ, u) = 0

Elliptic equation for scalar potential Φ



Coupling Thornado with Flash-X

I First-order Lie–Trotter splitting

I Flash-X: Euler–Poisson system with finite-volume and RK methods

dtu = T u(u,Φ)

F (Φ, u) = 0

I Thornado: Two-moment model with DG and IMEX-RK methods

I Phase-space advection (explicit)

dtU = TU (U , u)

I Collisions (implicit)

dtu = Cu(U , u)

dtU = CU (U , u)

I Fluid fields u require finite-volume and DG representations



Neutrino-Matter Solver: Moment Update

I Implicit update on primitive moments M = (D, Ij )ᵀ(
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η, χ, and κ depend on M, M̄, and u

I Modified Richardson iteration with step size λ = 1/(1 + |v |)
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Realizability-preserving with guaranteed convergence∗

I Write as fixed-point map

M[k+1] = G(M[k], u)



Neutrino-Matter Solver: Fluid Update

I Fluid system for u = ( ρ, ρvj , ρεf , ρYe )ᵀ: Enforce conservation laws

ρ = ρn
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Sj , E, and N: neutrino momentum, energy, and number densities

I Write as fixed-point map
u = g(M, u)



Neutrino-Matter Solver: Nested Algorithm6

I Coupled nonlinear system

u = g(M, u) and M = G(M, u)

I Solved in nested manner

u[k+1] = g
(
M̂

[k]
, u[k]

)
(k = 1, . . . , kmax),

where M̂
[k]

is limit point of inner iteration sequence

M[k,`+1] = G
(
M[k,`], u[k]

)
(` = 1, . . . , `max).

I Opacities only evaluated in outer loop

I Fixed-point iteration avoids Jacobian and solution of dense linear system

I Easy to implement and extend for additional opacities

I Anderson acceleration can be applied separately to outer and inner loops

6Laiu, E, Chu, Harris, Messer, ApJS, 253:52



Anderson Accelerated Fixed-Point Method7: u = g(u)

u[1] = g(u[0]); F [0] = u[0] − g(u[0]);
for k = 1, . . . , kmax do

mk = min(k,M);

F [k] = u[k] − g(u[k]);
Solve

min
αj
||

mk∑
j=0

αj F [k−mk+j]|| subject to

mk∑
j=0

αj = 1

Update

u[k+1] =

mk∑
j=0

αj g(u[k−mk+j])

end
Algorithm 1: Anderson Accelerated Fixed-Point Iteration

I Uses information from previous iterates to improve convergence rate

I Memory M typically small. We use M = 2 or 3 (M = 1 is Picard iteration)

7Toth & Kelley (2015), SIAM J. Numer. Anal, 53, 805



Collisional Relaxation

I Space homogeneous, νe + ν̄e, tabulated Bruenn 85 opacities

I Emission/Absorption, Iso-energetic scattering, NES, and Pairs

I Goals: (i) Relaxation to equilibrium, (ii) iteration counts, and (iii) GPU timings

Problem Specifications

I Ωε = [εmin, εmax] = [0, 300] MeV

I Gaussian initial spectrum

D0(ε) =
1

2
× exp

[
−

(ε− 2kBT )2

200 MeV

]
Forward-isotropic distribution with |I0|/D0 = 0.5

I Initial matter states with low and high collisionality

I ρ0 = 1012 g cm−3, v0 = (0.1 c, 0, 0)ᵀ, T0 = 7.6 MeV, Ye,0 = 0.14
I ρ0 = 1014 g cm−3, v0 = (0.1 c, 0, 0)ᵀ, T0 = 15 MeV, Ye,0 = 0.27

I Nε = 16 (geometric; ∆ε1 = 1.9 MeV)

I Evolve to equilibrium: t = 100 ms. ∆t = 10−3 ms (low) and t = 1 ms (high). ∆t = 10−3 ms



Collisional Relaxation

(a) Initial and Final Spectra (b) Evolution of RMS Energies



Collisional Relaxation: Iteration Counts

(a) Outer Iterations (Low Collisionality) (b) Outer Iterations (High Collisionality)



Collisional Relaxation: GPU Timings

I One 83 × 16 grid block, 2 nodes per phase-space dimension

I Bruenn 85 + Bremsstrahlung (HR98), six neutrino species

I CPU:
I Summit: 7 OpenMP threads on 7 Power9 cores; NVIDIA compiler (22.5), ESSL libs
I Frontier: 7 OpenMP threads on 7 AMD Trento; CCE compiler (15.0.1), Cray LibSci

I GPU:
I Summit: NVIDIA V100 with OpenACC; NVIDIA compiler (22.5) and libs
I Frontier: AMD MI250X with OpenMP OL; CCE compiler (15.0.1), ROCm libs (5.4.0)



Collapse and Post-Bounce Evolution with Flash-X+Thornado

I 15 M� progenitor from Woosley & Heger (2007)

I Spark hydrodynamics from Flash-X

I Spectral, two-moment neutrino transport from Thornado

I Six species, 16 linear elements in ε ∈ [0, 300] MeV

I Updated weaklib opacities

I SFHo EoS tabulated with weaklib

I Five AMR levels ∆r = 4− 0.25 km
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Bounce Post-Bounce
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I TTrans/THD ∼ 12

I Collisions about 3 times more expensive than advection in rt-imex



Summary

I DG-IMEX method for O(v/c) two-moment model in Thornado

I Neutrino-matter coupling algorithm

I Ported to use GPUs with OpenMP or OpenACC

I Interface to multi-physics simulation framework Flash-X

I Simulate neutrino transport in CCSN models with DG methods

I Ongoing

I Multi-dimensional simulations

I General relativistic model

I Improvements to neutrino weak interaction physics
(e.g., muons, inelastic scattering on nucleons)


