A New Neutrino Transport Module Available in FLASH-X

 $First$ Endeve^{1,2} Austin Harris 1 , Vassilios Mewes 1 , Paul Laiu 1 , Ran Chu 2 , Bronson Messer¹, Tony Mezzacappa²

¹Oak Ridge National Laboratory†

²University of Tennessee, Knoxville

endevee@ornl.gov

Research supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. DOE Office of Science and the National Nuclear Security Administration

Micra Workshop, Trento, September 11-15, 2023

†Managed by UT Battelle, LLC under Contract No. De-AC05-00OR22725 for the U.S. Department of Energy.

Number-Conservative Spectral $\mathcal{O}(v/c)$ Two-Moment Model¹

 \blacktriangleright Number equation

$$
\partial_t (\mathcal{D} + v^i \mathcal{I}_i) + \partial_i (\mathcal{I}^i + v^i \mathcal{D}) - \frac{1}{\varepsilon^2} \partial_\varepsilon (\varepsilon^3 \mathcal{K}_k^i \partial_i v^k) = \frac{1}{4\pi} \int_{\mathbb{S}^2} C[f] \, d\omega
$$

\blacktriangleright Number flux equation

$$
\partial_t (\mathcal{I}_j + v^i K_{ij}) + \partial_i (\mathcal{K}^i_j + v^i \mathcal{I}_j) - \frac{1}{\varepsilon^2} \partial_\varepsilon \left(\varepsilon^3 \mathcal{L}^i_{kj} \partial_i v^k \right) + \left(\mathcal{I}^i \partial_i v_j - \mathcal{L}^i_{kj} \partial_i v^k \right) = \frac{1}{4\pi} \int_{\mathbb{S}^2} \mathcal{C}[f] \ell_j d\omega
$$

Angular moments of kinetic distribution f

$$
\{\mathcal{D},\mathcal{I}^i,\mathcal{K}^{ij},\mathcal{L}^{ijk}\}(\varepsilon,\mathbf{x},t)=\frac{1}{4\pi}\int_{\mathbb{S}^2}f(\omega,\varepsilon,\mathbf{x},t)\{1,\ell^i,\ell^i\ell^j,\ell^j\ell^j\ell^k\}d\omega
$$

- \blacktriangleright Closed by specifying K^{ij} and \mathcal{L}^{ijk} in terms of $\mathcal D$ and $\mathcal I^i$
- Components of fluid three-velocity v^i
- **In Comoving-frame spherical-polar momentum coordinates** (ω, ε)

¹Liau, E, Harris, Zelledge, Mezzacappa arXiv:2309.04429

Collision Term

$$
C[f, \bar{f}](\boldsymbol{p}) = (1 - f(\boldsymbol{p})) \eta(\boldsymbol{p}) - \chi(\boldsymbol{p}) f(\boldsymbol{p})
$$
 (Emission/absorption)
+
$$
(1 - f(\boldsymbol{p})) \int_{V_{\boldsymbol{p}}} R^{\text{IN}}(\boldsymbol{p}, \boldsymbol{p}') f(\boldsymbol{p}') dV_{\boldsymbol{p}'}
$$
 (Scattering)
-
$$
f(\boldsymbol{p}) \int_{V_{\boldsymbol{p}}} R^{\text{OUT}}(\boldsymbol{p}, \boldsymbol{p}') (1 - f(\boldsymbol{p}')) dV_{\boldsymbol{p}'}
$$

+
$$
(1 - f(\boldsymbol{p})) \int_{V_{\boldsymbol{p}}} R^{\text{PRO}}(\boldsymbol{p}, \boldsymbol{p}') (1 - \bar{f}(\boldsymbol{p}')) dV_{\boldsymbol{p}'}
$$
 (Pair processes)
-
$$
f(\boldsymbol{p}) \int_{V_{\boldsymbol{p}}} R^{\text{ANN}}(\boldsymbol{p}, \boldsymbol{p}') \bar{f}(\boldsymbol{p}') d\boldsymbol{p}'
$$

D Opacities depend nonlinearly on matter state (e.g., ρ , T, and Y_e)

- \triangleright Pauli blocking factors: $(1 f)$
- Scattering and pair processes couple in momentum space: $\mathcal{O}(N_{\rho}^2)$
- \blacktriangleright Pair processes couple neutrinos and antineutrinos

Toolkit for High-Order Neutrino Rad-Hydro (ThORNADO^4)

- \triangleright Discontinuous Galerkin (DG) methods
	- \blacktriangleright Hydrodynamics²
	- **IF** Spectral, two-moment neutrino transport³
- \blacktriangleright Tabulated microphysics (WEAKLIB)
	- \blacktriangleright Equations of State
	- \blacktriangleright Neutrino opacities
- ▶ GPU offloading with OpenMP or OpenACC
- \triangleright Distributed parallelism and AMR through $AMREX$ or $FLASH-X$

²Pochik et al. (2021), ApJS, 253:21; Dunham et al. (arXiv:2307.10904)

³Chu et al. (2019), JCP, 389, 62; Laiu et al. (2021), ApJS, 253:52; Laiu et al. (arXiv:2309.04429)

⁴ <github.com/endeve/thornado>

WEAKLIB⁵

- \blacktriangleright Library for tabulated microphysics (EoS and weak interactions)
	- **I** Tabulation in terms of matter states (e.g., ρ , T, and Y_e) and neutrino energy (ε)
- \blacktriangleright Basic functionality for hydrodynamics and neutrino transport algorithms
	- Interpolation on shared grids (EoS and weak interactions)
	- EoS inversions (e.g., $\epsilon \rightarrow T$ and $s \rightarrow T$)
- ▶ GPU offloading with OpenMP or OpenACC

⁵ <github.com/starkiller-astro/weaklib>

Self-Gravitating Neutrino Radiation Hydrodynamics

 \blacktriangleright Hydrodynamics (Euler equations with nuclear EoS)

 $d_t u = T_u(u, \Phi) + C_u(u, u)$

Hyperbolic system with sources — $u \in \mathbb{R}^6$ per spacetime point

 \blacktriangleright Neutrino transport (spectral two-moment model)

 $d_t U = T_{\mathcal{U}}(\mathcal{U}, u) + C_{\mathcal{U}}(\mathcal{U}, u)$

Hyperbolic system with sources — $\mathcal{U} \in \mathbb{R}^{6 \times 4 \times 32 = 768}$ per spacetime point

 \triangleright Gravity (Poisson equation)

 $F(\Phi, u) = 0$

Elliptic equation for scalar potential Φ

Coupling THORNADO with FLASH-X

▶ First-order Lie–Trotter splitting

 \blacktriangleright FLASH-X: Euler–Poisson system with finite-volume and RK methods

 $d_t u = T_u(u, \Phi)$ $F(\Phi, u) = 0$

 \triangleright THORNADO: Two-moment model with DG and IMEX-RK methods

 \blacktriangleright Phase-space advection (explicit)

 $d_t U = T_{\mathcal{U}}(U, u)$

 \blacktriangleright Collisions (implicit)

 $d_t u = C_u(\mathcal{U}, u)$ $d_t U = C_U(U, u)$

 \blacktriangleright Fluid fields \boldsymbol{u} require finite-volume and DG representations

Neutrino-Matter Solver: Moment Update

Implicit update on primitive moments $\mathbf{M} = (\mathcal{D}, \mathcal{I}_j)^\intercal$

$$
(\mathcal{D} + \mathbf{v}^i \mathcal{I}_i) = \mathcal{N}^n + \Delta t (\eta - \chi \mathcal{D})
$$

$$
(\mathcal{I}_j + \mathbf{v}^i \mathcal{K}_{ij}) = \mathcal{G}_j^n - \Delta t \kappa \mathcal{I}_j
$$

 η , χ , and κ depend on \mathcal{M} , $\bar{\mathcal{M}}$, and μ

 \blacktriangleright Modified Richardson iteration with step size $\lambda = 1/(1 + |\nu|)$

$$
\mathcal{D}^{[k+1]} = \mathcal{D}^{[k]} + \lambda \frac{\left[\mathcal{N}^n - \left(\mathcal{D}^{[k]} + \mathsf{v}^j \mathcal{I}_{s,i}^{[k]}\right) + \Delta t \left(\eta^{[k]} - \chi^{[k]} \mathcal{D}^{[k]}\right)\right]}{(1 + \Delta t \chi^{[k]})}
$$
\n
$$
\mathcal{I}_j^{[k+1]} = \mathcal{I}_j^{[k]} + \lambda \frac{\left[\mathcal{G}_j^n - \left(\mathcal{I}_j^{[k]} + \mathsf{v}^j \mathcal{K}_{s,j}^{[k]}\right) - \Delta t \,\kappa^{[k]}\,\mathcal{I}_j^{[k]}\right]}{(1 + \Delta t \,\kappa^{[k]})}
$$

Realizability-preserving with guaranteed convergence[∗]

 \blacktriangleright Write as fixed-point map

$$
\boldsymbol{\mathcal{M}}^{[k+1]} = \boldsymbol{\mathcal{G}}(\boldsymbol{\mathcal{M}}^{[k]}, \boldsymbol{\mathit{u}})
$$

Fluid system for $\mathbf{u} = (\rho, \rho v_j, \rho \epsilon_f, \rho Y_e)^\intercal$: Enforce conservation laws

$$
\rho = \rho^n
$$

\n
$$
\rho v_j = \rho v_j^n - (S_j - S_j^n)
$$

\n
$$
\rho \epsilon_f = \rho \epsilon_f^n - (E - E^n)
$$

\n
$$
\rho Y_e = \rho Y_e^n - m_b (N - N^n)
$$

 S_j , E, and N : neutrino momentum, energy, and number densities

 \blacktriangleright Write as fixed-point map

$$
\mathbf{u} = \mathbf{g}(\mathcal{M}, \mathbf{u})
$$

Neutrino-Matter Solver: Nested Algorithm⁶

 \blacktriangleright Coupled nonlinear system

 $u = g(\mathcal{M}, u)$ and $\mathcal{M} = \mathcal{G}(\mathcal{M}, u)$

 \blacktriangleright Solved in nested manner

$$
\mathbf{u}^{[k+1]} = \mathbf{g}\big(\widehat{\mathbf{M}}^{[k]}, \mathbf{u}^{[k]}\big) \quad (k = 1, \ldots, k_{\text{max}}),
$$

where $\widehat{\bm{\mathcal{M}}}^{[k]}$ is limit point of inner iteration sequence

$$
\mathcal{M}^{[k,\ell+1]} = \mathcal{G}(\mathcal{M}^{[k,\ell]},\mathbf{u}^{[k]}) \quad (\ell=1,\ldots,\ell_{\max}).
$$

- \triangleright Opacities only evaluated in outer loop
- \blacktriangleright Fixed-point iteration avoids Jacobian and solution of dense linear system
- \blacktriangleright Easy to implement and extend for additional opacities
- Anderson acceleration can be applied separately to outer and inner loops

⁶Laiu, E, Chu, Harris, Messer, ApJS, 253:52

$$
\begin{aligned}\n\mathbf{u}^{[1]} &= \mathbf{g}(\mathbf{u}^{[0]}); \ \mathbf{F}^{[0]} = \mathbf{u}^{[0]} - \mathbf{g}(\mathbf{u}^{[0]}); \\
\text{for } k = 1, \dots, k_{\text{max}} \text{ do} \\
& m_k = \min(k, M); \\
& \mathbf{F}^{[k]} = \mathbf{u}^{[k]} - \mathbf{g}(\mathbf{u}^{[k]}); \\
& \text{Solve} \\
& \min_{\alpha_j} ||\sum_{j=0}^{m_k} \alpha_j \ \mathbf{F}^{[k-m_k+j]}|| \quad \text{subject to} \quad \sum_{j=0}^{m_k} \alpha_j = 1 \\
& \text{Update} \\
& \mathbf{u}^{[k+1]} = \sum_{j=0}^{m_k} \alpha_j \ \mathbf{g}(\mathbf{u}^{[k-m_k+j]}) \\
& \text{end}\n\end{aligned}
$$

Algorithm 1: Anderson Accelerated Fixed-Point Iteration

I Uses information from previous iterates to improve convergence rate

I Memory M typically small. We use $M = 2$ or 3 ($M = 1$ is Picard iteration)

⁷Toth & Kelley (2015), SIAM J. Numer. Anal, 53, 805

Collisional Relaxation

- **In Space homogeneous,** $\nu_e + \bar{\nu}_e$ **, tabulated Bruenn 85 opacities**
	- \blacktriangleright Emission/Absorption, Iso-energetic scattering, NES, and Pairs
- \triangleright Goals: (i) Relaxation to equilibrium, (ii) iteration counts, and (iii) GPU timings

Problem Specifications

- \blacktriangleright $\Omega^{\varepsilon} = [\varepsilon_{\min}, \varepsilon_{\max}] = [0, 300]$ MeV
- \blacktriangleright Gaussian initial spectrum

$$
\mathcal{D}_0(\varepsilon) = \frac{1}{2} \times \exp\big[-\frac{(\varepsilon - 2k_{\text{B}}\,T)^2}{200 \text{ MeV}}\big]
$$

Forward-isotropic distribution with $|\mathcal{I}_0|/\mathcal{D}_0 = 0.5$

 \blacktriangleright Initial matter states with low and high collisionality

 $\rho_0 = 10^{12}$ g cm⁻³, $v_0 = (0.1 \text{ c}, 0, 0)^{\top}$, $T_0 = 7.6$ MeV, $Y_{e,0} = 0.14$ $\rho_0 = 10^{14}$ g cm⁻³, $v_0 = (0.1 \text{ c}, 0, 0)^{\top}$, $T_0 = 15$ MeV, $Y_{e,0} = 0.27$

 $N^{\varepsilon} = 16$ (geometric; $\Delta \varepsilon_1 = 1.9$ MeV)

I Evolve to equilibrium: $t = 100$ ms. $\Delta t = 10^{-3}$ ms (low) and $t = 1$ ms (high). $\Delta t = 10^{-3}$ ms

Collisional Relaxation

Collisional Relaxation: Iteration Counts

Collisional Relaxation: GPU Timings

 \triangleright One $8^3 \times 16$ grid block, 2 nodes per phase-space dimension

- \triangleright Bruenn 85 + Bremsstrahlung (HR98), six neutrino species
- \blacktriangleright CPII \cdot
	- In Summit: 7 OpenMP threads on 7 Power9 cores: NVIDIA compiler (22.5), ESSL libs
	- ▶ Frontier: 7 OpenMP threads on 7 AMD Trento; CCE compiler (15.0.1), Cray LibSci
- \triangleright GPU:
	- ▶ Summit: NVIDIA V100 with OpenACC; NVIDIA compiler (22.5) and libs
	- Frontier: AMD MI250X with OpenMP OL; CCE compiler $(15.0.1)$, ROCm libs $(5.4.0)$

 \blacktriangleright 15 M_{\odot} progenitor from Woosley & Heger (2007)

 \blacktriangleright Spark hydrodynamics from FLASH-X

 \blacktriangleright Spectral, two-moment neutrino transport from THORNADO

 \triangleright Six species, 16 linear elements in $\varepsilon \in [0, 300]$ MeV

- \blacktriangleright Updated WEAKLIB opacities
- \triangleright SFHo EoS tabulated with WEAKLIB
- Five AMR levels $\Delta r = 4 0.25$ km

\blacktriangleright T_{Trans}/T_{HD} ~ 12

 \triangleright Collisions about 3 times more expensive than advection in rt-imex

Summary

- \triangleright DG-IMEX method for $\mathcal{O}(v/c)$ two-moment model in THORNADO
	- \blacktriangleright Neutrino-matter coupling algorithm
	- ▶ Ported to use GPUs with OpenMP or OpenACC
- Interface to multi-physics simulation framework $F_{\text{LASH-X}}$
	- \triangleright Simulate neutrino transport in CCSN models with DG methods
- \triangleright Ongoing
	- \blacktriangleright Multi-dimensional simulations
	- \blacktriangleright General relativistic model
	- \blacktriangleright Improvements to neutrino weak interaction physics (e.g., muons, inelastic scattering on nucleons)