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+ What do we need to model v?

MICRA: Microphysics In Computational Relativistic Astrophysics
Minimally, we will need:
» Microphysics
> EOS
» neutrino
» Computational methods
> accurate and consistant
» affortable/efficient
P (General) Relativistic
» BH/NS formations
» HMNS is rapidly rotating
P relativistic jets
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Intro y Ry, — 5gWR =T, (Einstein equation)
Vo (pu!) =0, (cons. rest mass)
V. T" =0, (cons. energy/momentum)
Vo (pYeu!) = Sy, (composition evolution)
p=pp,T,Ye ), (equation of state)
VuF' =J%, YV, F" =0, (Maxwell equations)

0 g O af
1 — Tk p“p == Boltzmann equation
(p (‘).T'“ O(s'?] p ([)p“ tf 07_ ol ( 1 )
CO
total fluid EM ad
N3AS postdoc fellow /11;1(1)/ Y= T/1 Il/ll( + j—ru,l/ + /11;1111/( +-
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Intro

15] g 0 > <0 ]") )
1 7 a | .
Pl —T0ep™ " o— | f=| - (Boltzmann equation)
< oxk & OpH ot/ .o

f (1’ Pt t), a 7-dimensional problem for each radiation species, so expansive
possible solutions

P (advanced spectral) neutrino leakage + heating schemes
» Truncated moment schemes (one-, two-, three-,... moment schemes)
>

P fully solve it! (see Nagakura-san’s talk)
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Gmunu: A new code for generic astrophysical simulations
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R Gmunu (General-relativistic multigrid numerical solver) [1, 2, 3, 4, 5]
atric “hi-Kit ) ? ? )

CHEONG
Physics modules Numerical features
Method °/ » Consternated-evolution scheme for » Block-based Adaptive Mesh

Einstein equation Refinement (AMR) (provided by
» Conformally flat condition (CFC) MPI_AMRVAC)

» GRMHD » Parallelised with MPI (provided by
» ideal/(resistive + dynamo) MPI-AMRVAC)
» hyperbolic cleaning
> constrained transport » Multi-dimensional (1-3D)
> clliptic cleaning » Curvilinear geometries

» Radiative transfer » Cartesian
» Two-moment scheme P Cylindrical
» grey/multi-group » Spherical

N3AS postdoc fellow S p
University of New
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Radiative transfer

MICRA 2023

Patrick Chi-Kit The comoving-frame zeroth-, first-, second- and third-order moments are defined as
S He,Q)dQ,
Tw 10 j (I ) 4ﬂ- '/ f <I 7 / )
H (2", ¢) = i /(“f (z",¢,Q)dQ,
KP (zh)e) = AP (e, Q) dQ, (1)
LOPY (zH e) = — /M Of (*,6,Q)dQ,

¢ is the radiation energy observed in the comoving frame while df2 is the solid angle

in the comoving frame.
xaas postaoe feow | T'his is now (ndir+1)-d problem
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Two-moment
radiative transfer
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The monochromatic energy-momentum tensor 7+ and the third-rank momentum
gy

moment U*"? can be Lagrangian decomposed with respect to the comoving observer

with four-velocity u* as follows

THY — juuuu +H;1u1/ + utHY + ICNU, (2)
urrr :E(ju“u”u”—i—?—[“’u"u’)—&—u”?—[”’u,p—&—u“’u"?-[ﬂ
_i_,C;wup —‘r’CVpU,'“ —‘FICPMU,V +£;lup>.’

in case you want to collect all the energy-space

r‘;g:/ 477527—“”(15:/ T dVL, (4)
0 Jo
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However, we are working on Eulerian code, so:
9 le) 9
T;Ll/ :5”;1/”1/ + funll + nufl/ + 73;11/’
UMYP —=¢ (Zn“n”n” + VP nf + nHY"n? + nHntYr (5)
+ X + XYM 4 XPERY + WW’)),

The evolution equation is

1 0
€2 Oe

VTR -

2 L .
<5 u’“’f’vpuz,) .

recall that Tf,f;ml = T,T},"d + TNF‘,;\' + T;;,id + .-+, the radiation four-force S*, describes
the interaction between the radiation and the fluid (anything else).



Two moment scheme
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LV 1 a 29 v . (())
. V,,T‘ - ?% (8 M‘ ‘)V,,u,,) - Sl

The equations here are exact.
In two-moment schemes, we evolve the first two moments,

5 [Wf} + Vi {m (a}—i — Eﬁi)} - umé% {fsgn,,,u““"v,,uy}
v/4 {7.ij)j()é + Pinij} — av/v/48"n,.,
% {m}—l} +V; {m <oz77ij — ]-"jﬁiﬂ — ozmé% {EQ’WMUHUPVPUV}

v/4 {—&‘)m + FuViBF + Q(I,PJAVZ""/jk:| + a/v/ASH i,

(7)

(8)

N3AS postdoc fellow
of

With a (analytic) closure PH* = PH” (€, F").
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g [VI73€] + 9 [VATR (o7~ 68")] ~ a3 gy g [-tmatd "9
v/4 [—]:jajOé‘F,Pinij} — av//48" ny,
53 VAT + 9 VAT (aP = 538)] - /a7y g [t "V ]

~ 2 1 J k& ~ 4
v /4 {—5@-@ + F Vit + ZaPJkajk] + /73S i,

(9)

(10)

01q+ {ffj} —205 {EQfs] = Sgrav + Sgeom + Sint
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Evolution of lowest two moments

Two-moment 15
radiative transfer 1 ~ 2
dfq+ .f] Oe |e fs = Sgrav t+ Sgeom t+ Sint
2

P explicit in spatial space

P explicit in energy space

P implicit, due to its stiffness, in general in both spatial and energy spaces

This is already a huge problem, i.e. at each grid point, resolve energy space

(Nz x Ny x N, x N¢). This indeed even larger when deal with source terms properly.

N3AS postdoc fellow
University of New
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Radiative transfer

VvV, TH — L 05 <€2M’1V’)V0uu> =S

If we energy-integrated it, due to the energy conservation

VLT — / S*dv.
JO

usually refer as energy-integrated scheme or grey scheme.

» Grey two-moment scheme is getting popular in NS mergers

» Largely reduce the problem size, computational much cheaper
» Not an option for CCSNe, where the cross sections of v (o £2)

P spectra of v is quite non-thermal in CCSNe



Radiative transfer
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These capture the gravitational and Doppler redshifts, e.g.

" fee :af;/,'ﬁx/“_//ﬁf [P, UM PV ]
—y \/v/ﬁfs{ w

(Z«Uz‘ _ yi) Bicx — V' 0 B°

o1 1 m e <
— OzXAI <27/’ drn"/k’i - A]x‘i)

n {Z@tw — 3,0, (ww"ﬂ n {ayi . Zﬁl} oW

. {axk" - yk,ﬂ’} o; (W@k’) ] }

N3AS postdoc fellow
f New

¢ 2 . . . .
The &2 (E Z/{‘“'pvpu,,) terms describe the coupling of the radiation in energy
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v+ 1 0] — «

= 1.0
Two-moment 18 —
radiative transfer +0.81 1 |
2 analytic

O <G
12 1 munu |
-

1.0 1 1

10! 102 100" 102 10°10! 102 10°
r [km] r [km] r [km]
N3AS postdoc fellow

University of New Figure: also see Bernuzzi’s talk
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n o op “w " “w \
ST = So a + SL‘lasLi(: + Sinolasl,i(: + Spair +oey (16)
S t 19
Beta processes Neutrino-pair processes
Vet+n<rpte” e +et v+
Da+p<—>n+e+ N+N< N+N+v+©p
ve+ (A, Z — 1)+ (A, Z)+ e
Elastic scattering Inelastic scattering
v+ N+ v+ N v+e <vite

v+ (A, Z) v+ (A Z)
Vv+tas=rv+a

copled to NuLib. see also Weakhub, a recent paper arXiv:2309.03526

N3AS postdoc fellow
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The mean-free-path of these interactions are usually small in the interested regions,
Tinteraction > THuid, SUper expansive if we evolve it explicitly

qn+1 _ qn,(kr> + Atsstiff (qn+1) ! (17)

We need to solve these implicitly. We adpot IMEX schemes
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St =8" (P, T, Ye,e¢, 5/5 Vspecies V;pociosa co ) (18)

P Consider N, = 18 energy-bins, Ngpecies = 3 species of neutrino (ve, Ve, Uz ), in
Naim = 3, coupled with energy-momentum equations of hydro (with
Nhydro = (1 + Ngim) variables)

( Ydim + l) X Ns X Nspe('ies + Nhydro =220
calculate and invert (non-analytical) Jacobian of dimension 2207

tabulate /caculated these source terms at every iteration

vvyyvyy

in GR cases, conserved to primitive transformation, and need to call tabulated

EoS

at each grid point, at each (sub)timestep

v
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by default, we assume p, T, Y, are fixed, and solve the radiation part only, by:
+1 n,(k) +1
q;lad =4dq;,q + Atsstiﬁ (q;‘ad) . (1())

Source terms 22

and

qr — qr — At Z / Sradg d‘/l/ ’ (20)

species *

qs/ — (]S, — A[ Z Srad]—", (1Vy s (21)

species *

' dvu’ L
qpYy, — 4DY, + Atnl“ / ! [Sru‘dd,u(, (l/> - S/I"‘(L(l.yljc (I//)} Ups (22)

N3AS postdoc fellow
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source terms

by default, we assume p, T, Y. are fixed, and solve the radiation part only, by:

n+1 n,(k

grad = 4,9 ) + Atsstii‘f (q?;r(il) .

P multi-species multi-group (MSMG): (Ngim + 1) X Ne X Ngpecies

(23)
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by default, we assume p, T, Y. are fixed, and solve the radiation part only, by:

n+1 n,(k

grad = 4,9 ) + Atsgtig (q;l;rcll) . (23)

P multi-species multi-group (MSMG): (Ngim + 1) X Ne X Ngpecies
P single-species multi-group (SSMG): Ngpecies n0n-linear systems of
(Ndim + 1) X Ns-



source terms

MICRA 2023

Patrick Chi-Kit
CHEONG

by default, we assume p, T, Y. are fixed, and solve the radiation part only, by:

n+1 n,(k

Source terms 23 grad = 4,,q ) + Atsgi (q?:lr(il) . (23)

P multi-species multi-group (MSMG): (Ngim + 1) X Ne X Ngpecies
P single-species multi-group (SSMG): Ngpecies n0n-linear systems of
(Ndim + 1) X Ns-

P single-species single-group (SSSG): Ngpecies X Ne non-linear systems of
dimensions (Ngim + 1).

N3AS postdoc fellow
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However...

qr — qr — At Z /Smdg d‘/1/7 (24)

species *

qs; — qs; — At Z / Srad F; dv, ; (25)

species *

" dV,
qpy, — qDY, + Atmu/ I/’I [stlady% (,/) _ Sffad.ﬁc (1/)} Uy, (26)

P still need to limit the timestep, especially because of Ye
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qr — qr — At Z /Sradg d‘/1/7 (24)

species *

Source terms 24 qE;,}y H qS) - At Z / Sl"&l(]f[' (1‘/1/ ) (25)

species *

" dV,
qpy, — qDY, + Atmu/ I/; [Sfad,uu (,/) _ Sffad.ﬁc (1/)} Uy, (26)

P still need to limit the timestep, especially because of Ye

» could break the lepton conservation
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qr — qr — Al Z /Sradg dv,, (24)
species *
e - qs;, — 4gs; — At Z / Srad F; dv, 5 (25)
species *
AV, N .y
qoy. = 4Dy, + Atmy ! Srad,v. (V ) ~ Srad, v, (I/ ) Up, (26)

P still need to limit the timestep, especially because of Ye
» could break the lepton conservation
P sce Peter’s and Eirik’s talk, and [6]
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However...

qr — qr — Al Z /Sradg dv,, (24)
species *
qs; — qs; — At Z / Srad F; dv, ; (25)
species *
AV, L .y
qoy. = 4Dy, + Atmy ! Srad,v. (V ) ~ Srad, v, (I/ ) Up, (26)

P still need to limit the timestep, especially because of Ye
» could break the lepton conservation
P sce Peter’s and Eirik’s talk, and [6]

» more efficient and robust solver are still under development
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However...

qr — qr — At Z /Sradg dv,, (24)
species *
qs; — qs, — At Z / Srar]}'é (1‘/11 5 (25)
species *
' d v’
qpy. = qpv, + Atmu/ " {Sfad,uu (l//> — Sf‘lﬂd.ﬁc (1/)} Uy, (26)

still need to limit the timestep, especially because of Ye
could break the lepton conservation

see Peter’s and Eirik’s talk, and [6]

vvyVvyy

more efficient and robust solver are still under development

» load-balancing can also be an issue
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== AGILE-BOLTZTRAN - VERTEX  =---- GR1D = Gmunu

1.5
B
S
z 1501 S e

Results 25 E o+ S T

=,

0.4 Ye AGILE-BOLTZTRAN
= Vi VERTEX
N N s A | N N A GR1D

0.3 e _A —— Gmunu

| | s i 01
1010 10" 10'2 10% 101 0 20 40 60 80 100 120
pe [g/cm?] t = thounce [ms]
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V{e,?) [MeV] L, [10°% erg 571

Results 26

0 50 100 150 0 50 100 150

t — thounce [mS] t — thounce [mS]
N3AS postdoc fellow
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B

Results
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0.000

—=0.001
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—0.004 i : : ; :
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Summary

» Presented the neutrino transport in Gmunu
» General relativistic
» Fully include energy-advection term
» Fully include velocities dependents
P discussed some ways to implicitly handle the radiation source
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By following [7]
1o/ ; =
AX" + gv[ <V,XJ> = 875"
. I
AV VX7 + VX — gkaA’f"J
Backup slides 31

Alon)) = (o) {zﬂ (B+28) v+ L fa fﬂgmfﬁjvﬂ

(e

AB'+ 5V (V,8) = 1670018, 4+ 249, (ap™°)

w

Robin B. C.

oY 1-9
ol 17
oo _l-a
7 Tmax N r
b”" =0

Pmax




Einstein solver: Elliptic solvers
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T e -
Method Complexity _/'/
Gauss-Seidel iteration O(N?) log( G;”é/( -
SOR O(N3/%)1o = SOR: O(N'9)
Conjugate Gradient O(N3/?) 10 i i;(l (f((g) tosV)
ADI O(Nlog(N

Backup slides (32 ) FRET O(N log(l\f
Multigrid (FMG) O(N)

og(N)
V-CYCLE
SMOOTHER

SMOOTHER 3 » fast and efficient
& RESIDUAL%% SMOOTHER
%’O &

DIRECT SOLVE

P suitable for non-linear problems

N3AS pn<!d oc fellow
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metric
5 \/ » No need to tailor make for different
= Sorav Soen .
tq + f grav + Sgeom coordinates

o Where ;5 is a time-independent reference
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metric.
D (Conserved Density)
S;  (Conserved Momentum)
q x T (Energy density)

B’ (Magnetic field)
E' (Electric field)
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Conservative formulation + Reference
metric

da+ {f F7] = sgrav + Sgeom

o Where ;5 is a time-independent reference

Backup slides

metric.
D (Conserved Density)
S;  (Conserved Momentum)
q x T (Energy density)
B’ (Magnetic field)
E' (Electric field)

NBAS postdoc fellow
University of New
Hampshire 54

» No need to tailor make for different
coordinates

» well suited for finite-volume method
for curvilinear coordinates, see [2]
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e Conservative formulation + Reference
metric
C)lq + {\/7f } = Sgrav T Sgeom
Backup slides (53 Where ;5 is a time-independent reference
metric.
D (Conserved Density)
S;  (Conserved Momentum)
q x T (Energy density)
B (Magnetic field)
E* (Electric field)

NBAS postdoc fellow
University of New
Hampshire 54

» No need to tailor make for different
coordinates

» well suited for finite-volume method
for curvilinear coordinates, see [2]

» Momentum conserved
~ O(machine precision)
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Conservative formulation + Reference
metric

da+ {f F7] = sgrav + Sgeom

o Where ;5 is a time-independent reference

Backup slides

metric.
D (Conserved Density)
S;  (Conserved Momentum)
q x T (Energy density)
B’ (Magnetic field)
E' (Electric field)

NBAS postdoc fellow
University of New
Hampshire 54

» No need to tailor make for different
coordinates

» well suited for finite-volume method
for curvilinear coordinates, see [2]

» Momentum conserved
~ O(machine precision)

» Solved with high-resolution
shock-capturing (HRSC) method
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V., (put) = 0,
VHT;LII _ 0.’
Backup slides | 34 p=p(p,eYe ),

272 v *
VH,F *jv vll

N3AS postdoc fellow
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R — 0

(cons. rest mass)
(cons. energy/momentum)
(equation of state)

Maxwell equations)

rjwt()t'(ll o C[wﬂuid + rle]l\l

puv — tpv nv
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F*" is the Maxwell tensor and *F*” the Faraday tensor.

1

WY O Tl HY T af
EM — r F(\ - Zlq FaﬁF

Define
EY .= F"'n,, B* :="F"n,.
and

et = F'u, b= "F"q,



GRMHD
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The 3+ 1 components of the total energy-momentum tensor 7}, can be expressed as
-2 172 2
U = phW fp+§ E°+ B7),
v 172 J ok
Backup slides [ 26 Si = phW=v; + €, 7 B”,

S = phWv'?! — E'E’ — B'B7 + {p +3 (E2 + Bzﬂ .

just the GRHD, but with EM additional terms

N3AS postdoc fellow
University of New
Hampshire 54
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v/lF;u/ _ 7\71/7 V“,*FHU -0
which give
—f) VIE"
250 (ViE') =»
or (VAE) + 0, <—\ﬁej”“Bk> =~ (el = pe)
1 .
—0; ( 5 BZ) =
Vel v
Ot <\F,Bj) + 0; (ﬁe’jikEk> =0
where we have defined

]:777 = ak; + eijkg’ﬁj Bk’, ]91 = aB; — Q;jkﬂj EF



Resistive MHD and Ohm’s law
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Closer look at Ampére’s law

B (ﬁE-f) ) (—ﬁeﬂké’k;) S (an - p@ﬂj)
Ohm’s law is needed to describe the coupling between EM fields and the fluid

Backup stides (35 ) B jdeal plasma: | e” = 0| (only b* needed to be solved in this case)
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Closer look at Ampére’s law

B (ﬁE-f) ) (—ﬁeﬂké’k;) S (an - p@ﬂj)
Ohm’s law is needed to describe the coupling between EM fields and the fluid
Backup slides (35 ) B> jdeal plasma: (only b* needed to be solved in this case)

P resistive plasma: ., where o¢ 1= 1/n.
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Resistive MHD and Ohm’s law

Closer look at Ampére’s law

o (VAE') +0: (—vAe " By) = =7 (0 = pefs)
Ohm’s law is needed to describe the coupling between EM fields and the fluid
» ideal plasma: (only b* needed to be solved in this case)

P resistive plasma: ., where o¢ 1= 1/n.

P resistive plasma + dynamo: ‘e“ = njt + &£b*

(see [8])
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Closer look at Ampére’s law

B (ﬁE-f) ) (—ﬁeﬂké’k;) S (an - p@ﬂj)
Ohm’s law is needed to describe the coupling between EM fields and the fluid
Backup slides (35 ) B> jdeal plasma: (only b* needed to be solved in this case)

P resistive plasma: ., where o¢ 1= 1/n.

P resistive plasma + dynamo: ‘e“ = njt + &£b*

(see [8])

P other techniques are required, such as Implicit-Explicit (IMEX) time integrator
approaches, see [3].
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Implicit-explicit (IMEX) Runge-Kutta schemes for
. 1 .
oq = L(q) + ;R(CI% (27)

where £(q) is non-stiff,
while R(q)/e is the stiff term with a relazation parameter e.

atq = L"non—stif‘f(q) + Acstiff(q) (28)

» explicit
» implicit
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Jt = pev’ + ”{ {E': + ejjk’z/’jBk; — <Ej’vj) ’Uj}
n
(29)

Backup slides 10 ) into
i PN .
Jnon-stiff i= PeV (30)

g = ”{ {Ei + eijkvj By — <E‘j’uj> 'U'L}
n

- {Bi — TRy By — (ijj) 7;7} }

N3AS postdoc fellow
f
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At

(AN - (AN = (=)7)

Need to solve iteratively
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IMEX scheme

Rewrite as

qn+1 _ qn,(k‘,) + ALSsLi[I' (qn+1)

Define

f(g)=-q

ofi

']ij = (’ﬂi = —0

aj

:>qj(7n+1 )

» Newton-Raphson method
» Broyden method
» analytic/finite difference Jacobian

P good initial guess helps a lot!

N qm(k) + Atsgia (q)

() [5st1ﬂ}

+ At
dq.,

-1
_ qj(Tﬂ) - |:Jl(]m)} fi(Wn)
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However...
1 )
5 ( 5 Bl) =0
AWV
o (VB ) + i (Vae ™ ) =0
Backup slides 43

“magnetic monopoles” are introduced if no treatment is used!
P hyperbolic cleaning (widely used)

» constrained transport

P clliptic cleaning (unlike to see)

P vector potential (not available)

N3AS postdoc fellow
University of New
Hampshire 54
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Also known as generalised Lagrange multiplier (GLM)

Vo (F™ — Wgh) = T" — kpn'U, (32)
Vo (*F‘“/ — (Dg‘“/) = —kpntdP, (33)

where kg and kp are parameters.
This reduces to usual Maxwell equations if ¥ = 0 = ®. The scalar fields ¥ and &
are being damped exponentially if £ > 0.



Hyperbolic cleaning
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o oA o[y (aB' —ws)]} (31)
= —kpVU + E"’E)L-a/oz + ‘l’“/MKij + pe,
a% {0:(vA®) = 0: [\ (aB" - 05") |} (35)

= —kp® + B'd;a/a + Dy K.
and introduced additional source terms for EM fields:
spi =1°\/3/% (p@ﬂj —aJ' —ay"y; \IJ> , (36)
spi :==0°/7/% (—a’y""j(?j@) . (37)

Note that the modified Faraday equations are not hyperbolic since the existence of
0;¥ and 0;®.
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By integrating the induction equation for
each surface of the cell, together with
Stokes’ theorem:

ot . c')V(;B

which can be written as

1 2,3
VA Bit1/2,5,xdx"dz

1
it+1/2,5,k
46

Eydz”,

1
('I’ltl/z,j,k

—Pit1/2,5,6 = Eit1/2,5,k- (38)

dt

(gz)j‘k‘“.l/z (B pe12001/2

=

<Ey)1-1’2.k.\-1 2

}
b1

( y)J‘,k+1/2,l/ (EZ)J F1/2,k+1/2,
O —
~ ~—t (Bx)-+
(QA)J«'M j+1/2,k,1

L



Constrained transport
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Numerically obtain RHS, update LHS, so that B fields is updated.

Cueone How do we obtain the E fields at the cell edges?
d G
%q)iil/Q,j,k:giil/Q,j,k- (39)

Arithmetic averaging
» NOT upwind (numerically unstable) UCT-HLL

» upwind

Backup slides [ 47

UCT-contact

P costy (need to apply limiter many

» upwind times)

» cost is low » suffer from overshoot problem

» automatically bounded to the » bounded to HLL by construction (can
Riemann solver used be fixed, seems non-trivial)

N3AS postdoc fellow

P seems stable
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Elliptic cleaning

Solve the following Poisson’s equation, and update the B fields.

V20 = V,ga?,
g = g — (Vo).
Note that this ® is not the one in GLM method.
P requires elliptic solver (e.g. multigrid solver)
» expansive
» boundary sensitive
» might be acausal

» useful in initialisation
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GLM

fluxCT

oT

elliptic

divB < ep

can be used for initialisation

1. easy to implement 1. not so difficult to implement 1
3 : ' 2. favour block-based AMR
Oros P . - . <. Iavour bloc rased Al P . . N
E 2. can start with not-so-good ID | 2. divB can be suppressed low | . . 2. can be mixed with CT
3. can be upwind

1. divB still quite large . 1. slow
o 1 1. not favour AMR . Lo P

cons | 2. introduced free parameters . . 1. implementation is complex | 2. maybe acasual
o . 2. not upwind ) C .
3. not hyperbolic 3. divB still quite large
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» consider the conductivity of the fluid o, — oo (or the resistivity ool — 0).
P the electric field in fluid-frame are required to be vanished, e* := F*u, = 0.
» In the observer frame, this relation reads E; = —€e%; By,

» Electric fields are determinted, no need to evolve.

» the induction equation becomes

O (\ﬁB'j) + 0; [\F ({’iBj - ﬁjBiﬂ =0 )
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0 (VAQ) +0: (VIF') = V7S, (43)

D oW
S; ph*W2u; — ab®b;
= = < N 44
Backup slides 51 Q T_ [)h’*VVQ o p* o (Oébo)z o D / ( )
B* B
(az - B ) 0

B ij;i + 5;0(]; (‘beBf’/I/V %asmaf,{m + S,‘,(‘)j!{?i —Udja
T + (xp*v_’ — a_zbc_JB"’/I/V aS* K, — S0
9 BI — I B 0

NXAQ postdoc fellow
e
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and close the problem with a closure,

PH = PP (E,FM). (46)

©

Backup slides

» Many ways to obtain this closure relation
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Two moment sch

and close the problem with a closure,

,73/41/ _ PMI/ (87‘/7“) )

» Many ways to obtain this closure relation

» different closure could affect the accuracy

(46)
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Two moment sch

and close the problem with a closure,

,73/41/ _ PMI/ (87‘/7“) )

» Many ways to obtain this closure relation
» different closure could affect the accuracy

» still under debate

(46)
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Two moment scheme

We adopt an approximated analytic closure which combines the optically thin and

optically thick limits

v v Y
’]D# — (ltllillpﬁlin + dthi(ikpﬁljck7

where

dthin S (3X - ]) ) dthi(:k =

| =

where y € [%, 1} is the Eddington factor.

5

| @

I3

\}

(47)

(48)
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Minerbo closure (also known as maximum-entropy closure)

1 2 2
() =5+ (3-¢+3¢),

where the flux factor ¢ is defined as ¢ = /H;H ./ T?>.
» Optically thin: { ~ 1 and thus y =~ 1.
» Optically thick: ¢ ~ 0 and thus x ~ 1/3.

» We find ¢ (€, Fy.) by solving f (¢) = 0= (CCJ° — H'H,) /€.
» M1 scheme? M1 closure?

(49)
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