General-relativistic multigroup radiation transport scheme in Gmunu and applications MICRA 2023

14 Sep 2023

Patrick Chi-Kit Cheong patrick.cheong@berkeley.edu

N3AS postdoc fellow University of New Hampshire

PHYSICS FRONTIER CENTER

Agenda

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire

Why do we need ν treatment?

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

► Microphysics

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

► Microphysics

► EOS

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant

MICRA 2023

Patrick Chi-Kit CHEONG

3

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant
 - ▶ affortable/efficient

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant
 - \blacktriangleright affortable/efficient
- ▶ (General) Relativistic

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant
 - ▶ affortable/efficient
- ► (General) Relativistic
 - \blacktriangleright BH/NS formations

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant
 - ▶ affortable/efficient
- ► (General) Relativistic
 - \blacktriangleright BH/NS formations
 - ► HMNS is rapidly rotating

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

MICRA: Microphysics In Computational Relativistic Astrophysics Minimally, we will need:

- ► Microphysics
 - ► EOS
 - ▶ neutrino
- ► Computational methods
 - \blacktriangleright accurate and consistant
 - ▶ affortable/efficient
- ► (General) Relativistic
 - \blacktriangleright BH/NS formations
 - ► HMNS is rapidly rotating
 - relativistic jets

N3AS postdoc fellow University of New Hampshire

How do we model ν ?

1

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu},$$

$$\nabla_{\mu} (\rho u^{\mu}) = 0,$$

$$\nabla_{\mu}T^{\mu\nu} = 0,$$

$$\nabla_{\mu} (\rho Y_{e}u^{\mu}) = S_{Y_{e}},$$

$$p = p (\rho, T, Y_{e} \cdots),$$

$$\nabla_{\mu}F^{\mu\nu} = \mathcal{J}^{\nu}, \ \nabla_{\mu}^{*}F^{\mu\nu} = 0,$$

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}}$$

(Einstein equation)

(cons. rest mass) (cons. energy/momentum) (composition evolution) (equation of state) (Maxwell equations)

(Boltzmann equation)

$$T^{\text{total}}_{\mu\nu} = T^{\text{fluid}}_{\mu\nu} + T^{\text{EM}}_{\mu\nu} + T^{\text{rad}}_{\mu\nu} + \cdots$$

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}}$$

(Boltzmann equation)

 $f(x^i, p^i, t)$, a 7-dimensional problem for each radiation species, so expansive possible solutions

▶ (advanced spectral) neutrino leakage + heating schemes

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}} \tag{B}$$

(Boltzmann equation)

 $f(x^i, p^i, t)$, a 7-dimensional problem for each radiation species, so expansive possible solutions

▶ (advanced spectral) neutrino leakage + heating schemes

▶ Truncated moment schemes (one-, two-, three-,... moment schemes)

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}} \tag{1}$$

(Boltzmann equation)

 $f(x^i, p^i, t)$, a 7-dimensional problem for each radiation species, so expansive possible solutions

▶ (advanced spectral) neutrino leakage + heating schemes

▶ Truncated moment schemes (one-, two-, three-,... moment schemes)

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

$_{\rm Intro}$

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}} \tag{B}$$

(Boltzmann equation)

 $f(x^i, p^i, t)$, a 7-dimensional problem for each radiation species, so expansive possible solutions

► (advanced spectral) neutrino leakage + heating schemes

- ▶ Truncated moment schemes (one-, two-, three-,... moment schemes)
- ▶ fully solve it! (see Nagakura-san's talk)

N3AS postdoc fellow University of New Hampshire

Gmunu: A new code for generic astrophysical simulations

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

- Two-moment radiative transfer Source terms
- Results
- Summary
- Backup slides

Gmunu (General-relativistic multigrid numerical solver) [1, 2, 3, 4, 5]

Physics modules

- ► Consternated-evolution scheme for Einstein equation
 - ► Conformally flat condition (CFC)
- ► GRMHD
 - $\blacktriangleright ideal/({\bf resistive} + dynamo)$
 - ► hyperbolic cleaning
 - constrained transport
 - elliptic cleaning
- ▶ Radiative transfer
 - ▶ Two-moment scheme
 - ► grey/multi-group

54

Numerical features

- Block-based Adaptive Mesh Refinement (AMR) (provided by MPI-AMRVAC)
- ► Parallelised with MPI (provided by MPI-AMRVAC)
- ▶ Multi-dimensional (1-3D)
- ▶ Curvilinear geometries
 - ► Cartesian
 - ► Cylindrical
 - ► Spherical

Examples

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transf Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire 54 Examples

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire

Examples

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire 54

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Source terms

Results

Summary

Backup slides

The *comoving-frame* zeroth-, first-, second- and third-order moments are defined as

$$\mathcal{J}(x^{\mu},\varepsilon) \equiv \frac{\varepsilon}{4\pi} \int f(x^{\mu},\varepsilon,\Omega) \,\mathrm{d}\Omega,
\mathcal{H}^{\alpha}(x^{\mu},\varepsilon) \equiv \frac{\varepsilon}{4\pi} \int \ell^{\alpha} f(x^{\mu},\varepsilon,\Omega) \,\mathrm{d}\Omega,
\mathcal{K}^{\alpha\beta}(x^{\mu},\varepsilon) \equiv \frac{\varepsilon}{4\pi} \int \ell^{\alpha} \ell^{\beta} f(x^{\mu},\varepsilon,\Omega) \,\mathrm{d}\Omega,
\mathcal{L}^{\alpha\beta\gamma}(x^{\mu},\varepsilon) \equiv \frac{\varepsilon}{4\pi} \int \ell^{\alpha} \ell^{\beta} \ell^{\gamma} f(x^{\mu},\varepsilon,\Omega) \,\mathrm{d}\Omega,
.$$
(1)

 ε is the radiation energy observed in the comoving frame while $d\Omega$ is the solid angle in the comoving frame. This is now (ndir+1)-d problem

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

The monochromatic energy-momentum tensor $\mathcal{T}^{\mu\nu}$ and the third-rank momentum moment $\mathcal{U}^{\mu\nu\rho}$ can be Lagrangian decomposed with respect to the comoving observer with four-velocity u^{μ} as follows

$$\mathcal{T}^{\mu\nu} = \mathcal{J}u^{\mu}u^{\nu} + \mathcal{H}^{\mu}u^{\nu} + u^{\mu}\mathcal{H}^{\nu} + \mathcal{K}^{\mu\nu}, \qquad (2)$$

$$\mathcal{U}^{\mu\nu\rho} = \varepsilon \Big(\mathcal{J}u^{\mu}u^{\nu}u^{\rho} + \mathcal{H}^{\mu}u^{\nu}u^{\rho} + u^{\mu}\mathcal{H}^{\nu}u^{\rho} + u^{\mu}u^{\nu}\mathcal{H}^{\rho} + \mathcal{K}^{\mu\nu}u^{\rho} + \mathcal{K}^{\nu\rho}u^{\mu} + \mathcal{K}^{\rho\mu}u^{\nu} + \mathcal{L}^{\mu\nu\rho} \Big),$$
(3)

in case you want to collect all the energy-space

$$T_{\rm rad}^{\mu\nu} = \int_0^\infty 4\pi\varepsilon^2 \mathcal{T}^{\mu\nu} \,\mathrm{d}\varepsilon = \int_0^\infty \mathcal{T}^{\mu\nu} \,\mathrm{d}V_\varepsilon \,, \tag{4}$$

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Results

Summary

Backup slides

However, we are working on Eulerian code, so:

$$\mathcal{T}^{\mu\nu} = \mathcal{E}n^{\mu}n^{\nu} + \mathcal{F}^{\mu}n^{\nu} + n^{\mu}\mathcal{F}^{\nu} + \mathcal{P}^{\mu\nu},$$

$$\mathcal{U}^{\mu\nu\rho} = \varepsilon \Big(\mathcal{Z}n^{\mu}n^{\nu}n^{\rho} + \mathcal{Y}^{\mu}n^{\nu}n^{\rho} + n^{\mu}\mathcal{Y}^{\nu}n^{\rho} + n^{\mu}n^{\nu}\mathcal{Y}^{\rho} + \mathcal{X}^{\mu\nu}n^{\rho} + \mathcal{X}^{\nu\rho}n^{\mu} + \mathcal{X}^{\rho\mu}n^{\nu} + \mathcal{W}^{\mu\nu\rho} \Big),$$
(5)

The evolution equation is

$$\nabla_{\nu} \mathcal{T}^{\mu\nu} - \frac{1}{\varepsilon^2} \frac{\partial}{\partial \varepsilon} \left(\varepsilon^2 \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right) = \mathcal{S}^{\mu}$$

recall that $T_{\mu\nu}^{\text{total}} = T_{\mu\nu}^{\text{fluid}} + T_{\mu\nu}^{\text{EM}} + T_{\mu\nu}^{\text{rad}} + \cdots$, the radiation four-force S^{μ} , describes the interaction between the radiation and the fluid (anything else).

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$\mathcal{T}^{\mu\nu} = \mathcal{E}n^{\mu}n^{\nu} + \mathcal{F}^{\mu}n^{\nu} + n^{\mu}\mathcal{F}^{\nu} + \mathcal{P}^{\mu\nu}$$
$$\nabla_{\nu}\mathcal{T}^{\mu\nu} - \frac{1}{\varepsilon^{2}}\frac{\partial}{\partial\varepsilon}\left(\varepsilon^{2}\mathcal{U}^{\mu\nu\rho}\nabla_{\rho}u_{\nu}\right) = \mathcal{S}^{\mu}$$
(6)

The equations here are exact.

In two-moment schemes, we evolve the first two moments,

$$\frac{\partial}{\partial t} \left[\sqrt{\gamma/\hat{\gamma}} \mathcal{E} \right] + \hat{\nabla}_{i} \left[\sqrt{\gamma/\hat{\gamma}} \left(\alpha \mathcal{F}^{i} - \mathcal{E}\beta^{i} \right) \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \varepsilon} \left[-\varepsilon^{2} n_{\mu} \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right] \\
= \sqrt{\gamma/\hat{\gamma}} \left[-\mathcal{F}^{j} \partial_{j} \alpha + \mathcal{P}^{ij} K_{ij} \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \mathcal{S}^{\mu} n_{\mu}, \\
\frac{\partial}{\partial t} \left[\sqrt{\gamma/\hat{\gamma}} \mathcal{F}_{i} \right] + \hat{\nabla}_{i} \left[\sqrt{\gamma/\hat{\gamma}} \left(\alpha \mathcal{P}^{i}_{j} - \mathcal{F}_{j} \beta^{i} \right) \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \varepsilon} \left[\varepsilon^{2} \gamma_{i\mu} \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right] \\
= \sqrt{\gamma/\hat{\gamma}} \left[-\mathcal{E} \partial_{i} \alpha + \mathcal{F}_{k} \hat{\nabla}_{i} \beta^{k} + \frac{1}{2} \alpha \mathcal{P}^{jk} \hat{\nabla}_{i} \gamma_{jk} \right] + \alpha \sqrt{\gamma/\hat{\gamma}} \mathcal{S}^{\mu} \gamma_{i\mu},$$
(8)

N3AS postdoc fellow University of New Hampshire 54 With a (analytic) closure $\mathcal{P}^{\mu\nu} = \mathcal{P}^{\mu\nu} (\mathcal{E}, \mathcal{F}^{\mu}).$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

$$\frac{\partial}{\partial t} \left[\sqrt{\gamma/\hat{\gamma}} \mathcal{E} \right] + \hat{\nabla}_{i} \left[\sqrt{\gamma/\hat{\gamma}} \left(\alpha \mathcal{F}^{i} - \mathcal{E} \beta^{i} \right) \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \varepsilon} \left[-\varepsilon^{2} n_{\mu} \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right] \\
= \sqrt{\gamma/\hat{\gamma}} \left[-\mathcal{F}^{j} \partial_{j} \alpha + \mathcal{P}^{ij} K_{ij} \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \mathcal{S}^{\mu} n_{\mu}, \\
\frac{\partial}{\partial t} \left[\sqrt{\gamma/\hat{\gamma}} \mathcal{F}_{i} \right] + \hat{\nabla}_{i} \left[\sqrt{\gamma/\hat{\gamma}} \left(\alpha \mathcal{P}^{i}_{j} - \mathcal{F}_{j} \beta^{i} \right) \right] - \alpha \sqrt{\gamma/\hat{\gamma}} \frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \varepsilon} \left[\varepsilon^{2} \gamma_{i\mu} \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right] \\
= \sqrt{\gamma/\hat{\gamma}} \left[-\mathcal{E} \partial_{i} \alpha + \mathcal{F}_{k} \hat{\nabla}_{i} \beta^{k} + \frac{1}{2} \alpha \mathcal{P}^{jk} \hat{\nabla}_{i} \gamma_{jk} \right] + \alpha \sqrt{\gamma/\hat{\gamma}} \mathcal{S}^{\mu} \gamma_{i\mu}, \tag{10}$$

$$\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}} \partial_j \left[\sqrt{\hat{\gamma}} oldsymbol{f}^j
ight] + rac{1}{arepsilon^2} \partial_arepsilon \left[arepsilon^2 oldsymbol{f}_oldsymbol{arepsilon}
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{grav}}$$

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

- Results
- Summary
- Backup slides

Evolution of lowest two moments

$$\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}} \partial_j \left[\sqrt{\hat{\gamma}} oldsymbol{f}^j
ight] + rac{1}{arepsilon^2} \partial_arepsilon \left[arepsilon^2 oldsymbol{f}_oldsymbol{arepsilon}
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{geom}} + oldsymbol{s}_{ ext{int}}$$

- ▶ explicit in spatial space
- ▶ explicit in energy space
- ▶ implicit, due to its stiffness, in general in both spatial and energy spaces

This is already a huge problem, i.e. at each grid point, resolve energy space $(N_x \times N_y \times N_z \times N_{\varepsilon})$. This indeed even larger when deal with source terms properly.

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Results

Summary

Backup slides

 $\nabla_{\nu} \mathcal{T}^{\mu\nu} - \frac{1}{\varepsilon^2} \frac{\partial}{\partial \varepsilon} \left(\varepsilon^2 \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right) = \mathcal{S}^{\mu}$

If we energy-integrated it, due to the energy conservation

$$\Rightarrow \nabla_{\nu} T^{\mu\nu}_{\rm rad} = \int_0^\infty \mathcal{S}^\mu \, \mathrm{d} V_\varepsilon$$

usually refer as energy-integrated scheme or grey scheme.

▶ Grey two-moment scheme is getting popular in NS mergers

- ▶ Largely reduce the problem size, computational much cheaper
- ▶ Not an option for CCSNe, where the cross sections of $\nu \ (\propto \varepsilon^2)$
- ▶ spectra of ν is quite non-thermal in CCSNe

N3AS postdoc fellow University of New Hampshire 54

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

The $\frac{1}{\varepsilon^2} \frac{\partial}{\partial \varepsilon} \left(\varepsilon^2 \mathcal{U}^{\mu\nu\rho} \nabla_{\rho} u_{\nu} \right)$ terms describe the coupling of the radiation in energy space.

These capture the gravitational and Doppler redshifts, e.g.

-

$$f_{\varepsilon \varepsilon} = \alpha \psi^6 \sqrt{\bar{\gamma}/\hat{\gamma}} \left[n_\mu \mathcal{U}^{\mu\nu\rho} \nabla_\rho u_\nu \right] \tag{11}$$

$$=\psi^{6}\sqrt{\bar{\gamma}/\hat{\gamma}}\varepsilon \left\{ W\left[\left(\mathcal{Z}v^{i}-\mathcal{Y}^{i} \right)\partial_{i}\alpha - \mathcal{Y}_{k}v^{i}\partial_{i}\beta^{k} \right.$$
(12)

$$-\alpha \mathcal{X}^{ki} \left(\frac{1}{2} v^m \partial_m \gamma_{ki} - K_{ki}\right)$$
(13)

+
$$\left[\left[\mathcal{Z}\partial_t W - \mathcal{Y}_k \partial_t \left(W v^k \right) \right] + \left[\alpha \mathcal{Y}^i - \mathcal{Z}\beta^i \right] \partial_i W \right]$$
 (14)

$$-\left[\alpha \mathcal{X}_{k}^{i} - \mathcal{Y}_{k} \beta^{i}\right] \partial_{i} \left(W v^{k}\right) \bigg] \bigg\},$$

$$(15)$$

N3AS postdoc fellow University of New Hampshire

Figure: also see Bernuzzi's talk

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

m.....

radiative transfe

19

54

Source terms

Results

Summary

Backup slides

Depends on the physics considered, source terms can be very different. e.g.

$$S^{\mu} = S^{\mu}_{e/a} + S^{\mu}_{elastic} + S^{\mu}_{inelastic} + S^{\mu}_{pair} + \cdots, \qquad (16)$$

Beta processes	Neutrino-pair processes
$\nu_e + n \leftrightarrow p + e^-$	$e^- + e^+ \leftrightarrow \nu + \bar{\nu}$
$\bar{\nu}_e + p \leftrightarrow n + e^+$	$N+N\leftrightarrow N+N+\nu+\bar{\nu}$
$\nu_e + (A, Z - 1) \leftrightarrow (A, Z) + e^-$	
Elastic scattering	Inelastic scattering
$\nu + N \leftrightarrow \nu + N$	$\nu + e^- \leftrightarrow \nu + e^-$
$\nu + (A, Z) \leftrightarrow \nu + (A, Z)$	
$\nu + \alpha \leftrightarrow \nu + \alpha$	

copled to NuLib. see also Weakhub, a recent paper arXiv:2309.03526

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

20

54

Source terms

Results

Summary

Backup slides

The mean-free-path of these interactions are usually small in the interested regions, $\tau_{\text{interaction}} \gg \tau_{\text{fluid}}$, super expansive if we evolve it explicitly

$$\boldsymbol{q}^{\mathbf{n}+1} = \boldsymbol{q}^{\mathbf{n},(k)} + \Delta t \boldsymbol{s}_{\text{stiff}} \left(\boldsymbol{q}^{\mathbf{n}+1} \right).$$
(17)

We need to solve these implicitly. We adpot IMEX schemes

1

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

- Method
- Two-moment radiative transfer
- Source terms
- Results
- Summary
- Backup slides

$$\mathcal{S}^{\mu} = \mathcal{S}^{\mu} \left(\rho, T, Y_e, \varepsilon, \varepsilon', \nu_{\text{species}}, \nu'_{\text{species}}, \cdots \right)$$
(18)

- Consider $N_{\varepsilon} = 18$ energy-bins, $N_{\text{species}} = 3$ species of neutrino $(\nu_e, \bar{\nu}_e, \nu_x)$, in $N_{\text{dim}} = 3$, coupled with energy-momentum equations of hydro (with $N_{\text{hydro}} = (1 + N_{\text{dim}})$ variables)
- $\blacktriangleright (N_{\rm dim} + 1) \times N_{\varepsilon} \times N_{\rm species} + N_{\rm hydro} = 220$
- \blacktriangleright calculate and invert (non-analytical) Jacobian of dimension 220^2
- ▶ tabulate/caculated these source terms at every iteration
- \blacktriangleright in GR cases, conserved to primitive transformation, and need to call tabulated EoS
- \blacktriangleright at each grid point, at each (sub)timestep

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

22

54

and

Source terms

Results

Summary

Backup slides

by default, we assume ρ, T, Y_e are fixed, and solve the radiation part only, by:

$$\boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n+1}} = \boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}} \left(\boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n+1}} \right).$$
(19)

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$
 (20)

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\,\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{21}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{22}$$

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Source terms

Results

Summary

Backup slides

by default, we assume ρ, T, Y_e are fixed, and solve the radiation part only, by: $\boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n+1}} = \boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}} \left(\boldsymbol{q}_{\mathrm{rad}}^{\mathsf{n+1}} \right).$ (23)

► multi-species multi-group (MSMG): $(N_{\text{dim}} + 1) \times N_{\varepsilon} \times N_{\text{species}}$

N3AS postdoc fellow University of New Hampshire
MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Source terms

Results

Summary

Backup slides

by default, we assume ρ, T, Y_e are fixed, and solve the radiation part only, by: $\boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n+1}} = \boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}} \left(\boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n+1}} \right).$ (23)

multi-species multi-group (MSMG): (N_{dim} + 1) × N_ε × N_{species}
 single-species multi-group (SSMG): N_{species} non-linear systems of (N_{dim} + 1) × N_ε.

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer

Source terms

Results

Summary

Backup slides

by default, we assume ρ, T, Y_e are fixed, and solve the radiation part only, by: $\boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n+1}} = \boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}} \left(\boldsymbol{q}_{\mathrm{rad}}^{\mathrm{n+1}} \right).$ (23)

• multi-species multi-group (MSMG): $(N_{\rm dim} + 1) \times N_{\varepsilon} \times N_{\rm species}$

► single-species multi-group (SSMG): N_{species} non-linear systems of $(N_{\text{dim}} + 1) \times N_{\varepsilon}$.

► single-species single-group (SSSG): $N_{\text{species}} \times N_{\varepsilon}$ non-linear systems of dimensions $(N_{\text{dim}} + 1)$.

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

24

54

Source terms

Results

Summary

Backup slides

 $\operatorname{However} \ldots$

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$
 (24)

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\,\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{25}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{26}$$

▶ still need to limit the timestep, especially because of Y_e

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

24

54

Source terms

Results

Summary

Backup slides

However...

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$
(24)

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{25}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{26}$$

still need to limit the timestep, especially because of Y_e
could break the lepton conservation

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

24

54

Source terms

Results

Summary

Backup slides

However...

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{24}$$

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{25}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{26}$$

still need to limit the timestep, especially because of Y_e
could break the lepton conservation
see Peter's and Eirik's talk, and [6]

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

Source terms

Results

Summary

Backup slides

However...

24

54

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$
(24)

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{25}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{26}$$

 \blacktriangleright still need to limit the timestep, especially because of Y_e

- ▶ could break the lepton conservation
- ▶ see Peter's and Eirik's talk, and [6]
- \blacktriangleright more efficient and robust solver are still under development

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

24

54

Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire However...

$$q_{\tau} \to q_{\tau} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{E}} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{24}$$

$$q_{S_i} \to q_{S_i} - \Delta t \sum_{\text{species}} \int s_{\text{rad}\mathcal{F}_i} \, \mathrm{d}V_{\nu} \,,$$

$$\tag{25}$$

$$q_{DY_e} \to q_{DY_e} + \Delta t m_{\rm u} \int \frac{\mathrm{d}V_{\nu'}}{\nu'} \left[s^{\mu}_{\mathrm{rad},\nu_{\rm e}} \left(\nu'\right) - s^{\mu}_{\mathrm{rad},\bar{\nu}_{\rm e}} \left(\nu'\right) \right] u_{\mu}, \tag{26}$$

▶ still need to limit the timestep, especially because of Y_e

- ▶ could break the lepton conservation
- ▶ see Peter's and Eirik's talk, and [6]
- ▶ more efficient and robust solver are still under development
- ▶ load-balancing can also be an issue

 $15 M_{\odot} CCSN$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

N3AS postdoc fellow University of New Hampshire

 $15 M_{\odot} CCSN$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

26

Results

Summary

Backup slides

Applications

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative trans Source terms

Results

Summary

N3AS postdoc fellow University of New Hampshire

Summary

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

- Method
- Two-moment radiative transfer
- Source terms

Results

Summary

Backup slides

28

54

- ▶ Presented the neutrino transport in Gmunu
 - ► General relativistic
 - ► Fully include energy-advection term
 - ► Fully include velocities dependents
 - ▶ discussed some ways to implicitly handle the radiation source

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

- P. C.-K. Cheong, L.-M. Lin, and T. G. F. Li, "Gmunu: toward multigrid based Einstein field equations solver for general-relativistic hydrodynamics simulations," *Classical and Quantum Gravity*, vol. 37, p. 145015, July 2020.
- [2] P. C.-K. Cheong, A. T.-L. Lam, H. H.-Y. Ng, and T. G. F. Li, "Gmunu: paralleled, grid-adaptive, general-relativistic magnetohydrodynamics in curvilinear geometries in dynamical space-times," MNRAS, vol. 508, pp. 2279–2301, Dec. 2021.
- [3] P. C.-K. Cheong, D. Y. T. Pong, A. K. L. Yip, and T. G. F. Li, "An Extension of Gmunu: General-relativistic Resistive Magnetohydrodynamics Based on Staggered-meshed Constrained Transport with Elliptic Cleaning," ApJS, vol. 261, p. 22, Aug. 2022.
- [4] P. C.-K. Cheong, H. H.-Y. Ng, A. T.-L. Lam, and T. G. F. Li, "General-relativistic Radiation Transport Scheme in Gmunu. I. Implementation of Two-moment-based Multifrequency Radiative Transfer and Code Tests," ApJS, vol. 267, p. 38, Aug. 2023.
- [5] H. H.-Y. Ng, P. C.-K. Cheong, A. T.-L. Lam, and T. G. F. Li, "General-relativistic radiation transport scheme in gmunu ii: Implementation of novel microphysical library for neutrino radiation – weakhub," 2023.

N3AS postdoc fellow University of New Hampshire

References II

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

30

54

- [6] M. P. Laiu, E. Endeve, R. Chu, J. A. Harris, and O. E. B. Messer, "A DG-IMEX Method for Two-moment Neutrino Transport: Nonlinear Solvers for Neutrino-Matter Coupling," ApJS, vol. 253, p. 52, Apr. 2021.
- [7] I. Cordero-Carrión, P. Cerdá-Durán, H. Dimmelmeier, J. L. Jaramillo, J. Novak, and E. Gourgoulhon, "Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue," *Phys. Rev. D*, vol. 79, p. 024017, Jan. 2009.
- [8] N. Bucciantini and L. Del Zanna, "A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD," MNRAS, vol. 428, pp. 71–85, Jan. 2013.

Thank you for your attention. Q & A

PHYSICS FRONTIER CENTER

Einstein solver: xCFC scheme

MICRA 2023

Patrick Chi-Kit CHEONG

By following [7]

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

31

54

$$\begin{split} \tilde{\Delta}X^{i} &+ \frac{1}{3}\tilde{\nabla}^{i}\left(\tilde{\nabla}_{j}X^{j}\right) = 8\pi\tilde{S}^{i} \\ \tilde{A}^{ij} &\approx \tilde{\nabla}^{i}X^{j} + \tilde{\nabla}^{j}X^{i} - \frac{2}{3}\tilde{\nabla}_{k}X^{k}f^{ij} \\ \tilde{\Delta}\psi &= -2\pi\tilde{E}\psi^{-1} - \frac{1}{8}f_{ik}f_{jl}\tilde{A}^{kl}\tilde{A}^{ij}\psi^{-7} \\ \tilde{\Delta}(\boldsymbol{\alpha}\psi) &= (\alpha\psi)\left[2\pi\left(\tilde{E} + 2\tilde{S}\right)\psi^{-2} + \frac{7}{8}f_{ik}f_{jl}\tilde{A}^{kl}\tilde{A}^{ij}\psi^{-8}\right] \\ \tilde{\Delta}\boldsymbol{\beta}^{i} &+ \frac{1}{3}\tilde{\nabla}^{i}\left(\tilde{\nabla}_{j}\beta^{j}\right) = 16\pi\alpha\psi^{-6}f^{ij}\tilde{S}_{i} + 2\tilde{A}^{ij}\tilde{\nabla}_{j}\left(\alpha\psi^{-6}\right) \end{split}$$

$$\begin{split} & \text{Robin B. C.} \\ & \left. \frac{\partial \psi}{\partial r} \right|_{r_{\text{max}}} = \frac{1-\psi}{r}, \\ & \left. \frac{\partial \alpha}{\partial r} \right|_{r_{\text{max}}} = \frac{1-\alpha}{r}, \\ & \left. \beta^{i} \right|_{r_{\text{max}}} = 0 \end{split}$$

Einstein solver: Elliptic solvers

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

22

54

Conservative formulation + Reference metric

$$\left[\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}} \partial_j \left[\sqrt{\hat{\gamma}} oldsymbol{f}^j
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{geom}}$$

where $\hat{\gamma}_{ij}$ is a *time-independent* reference metric.

	$\Box D$	(Conserved Density)
	S_j	(Conserved Momentum)
$oldsymbol{q} \propto$	τ	(Energy density)
	B^i	(Magnetic field)
	E^i	(Electric field)

▶ No need to tailor make for different coordinates

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

22

54

Conservative formulation + Reference metric

$$\left[\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}}\partial_j \left[\sqrt{\hat{\gamma}}oldsymbol{f}^j
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{geom}}$$

where $\hat{\gamma}_{ij}$ is a *time-independent* reference metric.

	D	(Conserved Density)
	S_j	(Conserved Momentum)
$oldsymbol{q} \propto$	τ	(Energy density)
	B^i	(Magnetic field)
	E^i	(Electric field)

- ▶ No need to tailor make for different coordinates
- ▶ well suited for finite-volume method for *curvilinear* coordinates, see [2]

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

Conservative formulation + Reference metric

$$\left[\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}} \partial_j \left[\sqrt{\hat{\gamma}} oldsymbol{f}^j
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{geom}}$$

where $\hat{\gamma}_{ij}$ is a *time-independent* reference metric.

	D	(Conserved Density)
	S_j	(Conserved Momentum
$oldsymbol{q} \propto$	au	(Energy density)
	B^i	(Magnetic field)
	E^{i}	(Electric field)

- ▶ No need to tailor make for different coordinates
- ▶ well suited for finite-volume method for *curvilinear* coordinates, see [2]
- Momentum conserved $\sim \mathcal{O}(\text{machine precision})$

N3AS postdoc fellow University of New Hampshire

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

Conservative formulation + Reference metric

$$\left[\partial_t oldsymbol{q} + rac{1}{\sqrt{\hat{\gamma}}} \partial_j \left[\sqrt{\hat{\gamma}} oldsymbol{f}^j
ight] = oldsymbol{s}_{ ext{grav}} + oldsymbol{s}_{ ext{geom}}$$

where $\hat{\gamma}_{ij}$ is a *time-independent* reference metric.

Γ	D	(Conserved Density)
	S_j	(Conserved Momentum)
	au	(Energy density)
	B^i	(Magnetic field)
	E^{i}	(Electric field)

- ▶ No need to tailor make for different coordinates
- ▶ well suited for finite-volume method for *curvilinear* coordinates, see [2]
- Momentum conserved $\sim \mathcal{O}(\text{machine precision})$
- ► Solved with *high-resolution* shock-capturing (HRSC) method

N3AS postdoc fellow University of New Hampshire

54

 $m{q} \propto$

Equations needed to be solved

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

34

54

 $\nabla_{\mu} (\rho u^{\mu}) = 0,$ $\nabla_{\mu} T^{\mu\nu} = 0,$ $p = p (\rho, \epsilon, Y_{e} \cdots),$ $\nabla_{\mu} F^{\mu\nu} = \mathcal{J}^{\nu}, \quad \nabla_{\mu} {}^{*} F^{\mu\nu} = 0,$ (cons. rest mass) (cons. energy/momentum) (equation of state) (Maxwell equations)

$$T_{\mu\nu}^{\text{total}} = T_{\mu\nu}^{\text{fluid}} + T_{\mu\nu}^{\text{EM}}$$

GRMHD

MICRA 2023

Patrick Chi-Kit CHEONG

Backup slides

 $F^{\mu\nu}$ is the Maxwell tensor and ${}^*F^{\mu\nu}$ the Faraday tensor. $T^{\mu\nu}_{\rm EM} = F^{\mu\alpha}F^{\mu}_{\ \alpha} - \frac{1}{4}g^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}$

$$E^{\mu} := F^{\mu\nu} n_{\nu}, \qquad B^{\mu} := {}^{*}F^{\mu\nu} n_{\nu}.$$

and

35

54

Define

$$e^{\mu} := F^{\mu\nu} u_{\nu} \qquad b^{\mu} := {}^{*}F^{\mu\nu} u_{\nu}$$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

26

54

The 3+1 components of the total energy-momentum tensor $T_{\mu\nu}$ can be expressed as $U = \rho h W^2 - p + \frac{1}{2} \left(E^2 + B^2 \right),$ $S_i = \rho h W^2 v_i + \epsilon_{ijk} E^j B^k,$ $S^{ij} = \rho h W^2 v^i v^j - E^i E^j - B^i B^j + \left[p + \frac{1}{2} \left(E^2 + B^2 \right) \right] \gamma^{ij}.$

just the GRHD, but with EM additional terms

GRMHD

MICRA 2023 Patrick Chi-Kit

CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

37

$\nabla_{\mu}F^{\mu\nu} = -\mathcal{J}^{\nu}, \qquad \nabla_{\mu}{}^{*}F^{\mu\nu} = 0,$

which give

GRMHD

$$\frac{1}{\sqrt{\gamma}}\partial_i\left(\sqrt{\gamma}E^i\right) = \rho_e$$
$$\partial_t\left(\sqrt{\gamma}E^j\right) + \partial_i\left(-\sqrt{\gamma}\epsilon^{jik}\hat{B}_k\right) = -\sqrt{\gamma}\left(\alpha J^j - \rho_e\beta^j\right),$$
$$\frac{1}{\sqrt{\gamma}}\partial_i\left(\sqrt{\gamma}B^i\right) = 0$$
$$\partial_t\left(\sqrt{\gamma}B^j\right) + \partial_i\left(\sqrt{\gamma}\epsilon^{jik}\hat{E}_k\right) = 0$$

where we have defined

$$\hat{E}_i := \alpha E_i + \epsilon_{ijk} \beta^j B^k, \qquad \hat{B}_i := \alpha B_i - \epsilon_{ijk} \beta^j E^k$$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

38

54

Closer look at Ampére's law

$$\partial_t \left(\sqrt{\gamma} E^j \right) + \partial_i \left(-\sqrt{\gamma} \epsilon^{j i k} \hat{B}_k \right) = -\sqrt{\gamma} \left(\alpha J^j - \rho_e \beta^j \right)$$

Ohm's law is needed to describe the coupling between EM fields and the fluid \blacktriangleright *ideal plasma*: $e^{\mu} = 0$ (only b^{μ} needed to be solved in this case)

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

38

54

Closer look at Ampére's law

$$\partial_t \left(\sqrt{\gamma} E^j \right) + \partial_i \left(-\sqrt{\gamma} \epsilon^{jik} \hat{B}_k \right) = -\sqrt{\gamma} \left(\alpha J^j - \rho_e \beta^j \right)$$

Ohm's law is needed to describe the coupling between EM fields and the fluid \blacktriangleright *ideal plasma*: $e^{\mu} = 0$ (only b^{μ} needed to be solved in this case) \blacktriangleright *resistive plasma*: $e^{\mu} = \eta j^{\mu}$, where $\sigma_{c} := 1/\eta$.

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

38

54

Closer look at Ampére's law

$$\partial_t \left(\sqrt{\gamma} E^j \right) + \partial_i \left(-\sqrt{\gamma} \epsilon^{jik} \hat{B}_k \right) = -\sqrt{\gamma} \left(\alpha J^j - \rho_e \beta^j \right)$$

Ohm's law is needed to describe the coupling between EM fields and the fluid *ideal plasma*: e^μ = 0 (only b^μ needed to be solved in this case) *resistive plasma*: e^μ = ηj^μ, where σ_c := 1/η. *resistive plasma* + dynamo: e^μ = ηj^μ + ξb^μ (see [8])

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

28

54

Closer look at Ampére's law

$$\partial_t \left(\sqrt{\gamma} E^j \right) + \partial_i \left(-\sqrt{\gamma} \epsilon^{jik} \hat{B}_k \right) = -\sqrt{\gamma} \left(\alpha J^j - \rho_e \beta^j \right)$$

Ohm's law is needed to describe the coupling between EM fields and the fluid \blacktriangleright *ideal plasma*: $e^{\mu} = 0$ (only b^{μ} needed to be solved in this case) \blacktriangleright *resistive plasma*: $e^{\mu} = \eta j^{\mu}$, where $\sigma_{c} := 1/\eta$.

• resistive plasma + dynamo: $e^{\mu} = \eta j^{\mu} + \xi b^{\mu}$ (see [8])

▶ other techniques are required, such as Implicit-Explicit (IMEX) time integrator approaches, see [3].

MICRA 2023

Patrick Chi-Kit CHEONG

Implicit-explicit (IMEX) Runge-Kutta schemes for

$$\partial_t \boldsymbol{q} = \mathcal{L}(\boldsymbol{q}) + \frac{1}{\epsilon} \mathcal{R}(\boldsymbol{q}),$$
 (27)

Backup slides

39

54

where $\mathcal{L}(\boldsymbol{q})$ is non-stiff, while $\mathcal{R}(\boldsymbol{q})/\epsilon$ is the stiff term with a relaxation parameter ϵ .

$$\partial_t \boldsymbol{q} = \mathcal{L}_{\text{non-stiff}}(\boldsymbol{q}) + \mathcal{L}_{\text{stiff}}(\boldsymbol{q})$$
 (28)

► explicit ▶ implicit

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

(40) into

Split

$$J^{i} = \rho_{e}v^{i} + \frac{W}{\eta} \left\{ \left[E^{i} + \epsilon^{ijk}v_{j}B_{k} - \left(E^{j}v_{j}\right)v^{i} \right] -\xi \left[B^{i} - \epsilon^{ijk}v_{j}E_{k} - \left(B^{j}v_{j}\right)v^{i} \right] \right\}$$

$$(29)$$

$$J_{\text{non-stiff}}^{i} := \rho_{e} v^{i}$$

$$J_{\text{stiff}}^{i} := \frac{W}{\eta} \left\{ \left[E^{i} + \epsilon^{ijk} v_{j} B_{k} - \left(E^{j} v_{j} \right) v^{i} \right] - \xi \left[B^{i} - \epsilon^{ijk} v_{j} E_{k} - \left(B^{j} v_{j} \right) v^{i} \right] \right\}.$$

$$(30)$$

$$(31)$$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

Results

Summary

Backup slides

41

54

$$\frac{\left(\sqrt{\gamma}\left(E^{j}\right)^{\mathbf{n}+1}\right) - \left(\sqrt{\gamma}\left(E^{j}\right)^{\mathbf{n}}\right)}{\Delta t} = -\sqrt{\gamma}\left[\alpha J^{j}\left(\left(E^{j}\right)^{\mathbf{n}+1}\right)\right]$$

Need to solve iteratively

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

42

Rewrite as

Define

$$\boldsymbol{q}^{\mathtt{n+1}} = \boldsymbol{q}^{\mathtt{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}} \left(\boldsymbol{q}^{\mathtt{n+1}} \right)$$

$$\boldsymbol{f}(\boldsymbol{q}) \equiv -\boldsymbol{q} + \boldsymbol{q}^{\mathrm{n},(k)} + \Delta t \boldsymbol{s}_{\mathrm{stiff}}(\boldsymbol{q})$$
$$J_{ij} \equiv \frac{\partial f_i}{\partial q_j} = -\delta_i^j + \Delta t \frac{\partial [s_{\mathrm{stiff}}]_i}{\partial q_j}$$
$$\Rightarrow q_j^{(m+1)} = q_j^{(m)} - \left[J_{ij}^{(m)}\right]^{-1} f_i^{(m)}$$

- \blacktriangleright Newton-Raphson method
- ▶ Broyden method
- \blacktriangleright analytic/finite difference Jacobian
- ▶ good initial guess helps a lot!

Divergenceless problem

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

$$\frac{1}{\sqrt{\gamma}}\partial_i\left(\sqrt{\gamma}B^i\right) = 0$$
$$\partial_t\left(\sqrt{\gamma}B^j\right) + \partial_i\left(\sqrt{\gamma}\epsilon^{jik}\hat{E}_k\right) = 0$$

"magnetic monopoles" are introduced if no treatment is used!

- ▶ hyperbolic cleaning (widely used)
- constrained transport

However...

- ▶ elliptic cleaning (unlike to see)
- ▶ vector potential (not available)

N3AS postdoc fellow University of New Hampshire

Hyperbolic cleaning

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

Also known as generalised Lagrange multiplier (GLM)

$$\nabla_{\nu} \left(F^{\mu\nu} - \Psi g^{\mu\nu} \right) = \mathcal{J}^{\mu} - \kappa_E n^{\mu} \Psi, \qquad (32)$$

$$\nabla_{\nu} \left({}^{*}F^{\mu\nu} - \Phi g^{\mu\nu} \right) = -\kappa_{B} n^{\mu} \Phi, \qquad (33)$$

where κ_E and κ_B are parameters.

This reduces to usual Maxwell equations if $\Psi = 0 = \Phi$. The scalar fields Ψ and Φ are being damped exponentially if $\kappa > 0$.

N3AS postdoc fellow University of New Hampshire

Hyperbolic cleaning

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

Results

Summary

Backup slides

45

54

$$\frac{1}{\alpha\sqrt{\gamma}} \left\{ \partial_t \left(\sqrt{\gamma}\Psi\right) - \partial_i \left[\sqrt{\gamma} \left(\alpha E^i - \Psi\beta^i\right)\right] \right\}$$

$$= -\kappa_E \Psi + E^i \partial_i \alpha / \alpha + \Psi\gamma^{ij} K_{ij} + \rho_e,$$

$$\frac{1}{\alpha\sqrt{\gamma}} \left\{ \partial_t \left(\sqrt{\gamma}\Phi\right) - \partial_i \left[\sqrt{\gamma} \left(\alpha B^i - \Phi\beta^i\right)\right] \right\}$$

$$= -\kappa_B \Phi + B^i \partial_i \alpha / \alpha + \Phi\gamma^{ij} K_{ij}.$$
(34)
(35)

and introduced additional source terms for EM fields:

$$s_{E^{i}} := \psi^{6} \sqrt{\bar{\gamma}/\hat{\gamma}} \left(\rho_{e} \beta^{i} - \alpha J^{i} - \alpha \gamma^{ij} \partial_{j} \Psi \right), \tag{36}$$

$$s_{B^{i}} := \psi^{6} \sqrt{\bar{\gamma}/\hat{\gamma}} \left(-\alpha \gamma^{ij} \partial_{j} \Phi \right).$$
(37)

Note that the modified Faraday equations are not hyperbolic since the existence of $\partial_j \Psi$ and $\partial_j \Phi$.

Constrained transport

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

4.6

54

By integrating the induction equation for each surface of the cell, together with Stokes' theorem:

$$\frac{\partial}{\partial t} \int_{\partial V\left(x_{i\pm 1/2,j,k}^{1}\right)} \sqrt{\gamma} B_{i\pm 1/2,j,k}^{1} dx^{2} dx^{3}$$
$$= \oint_{\partial A\left(x_{i\pm 1/2,j,k}^{1}\right)} \hat{E}_{k} dx^{k},$$

which can be written as

$$\frac{d}{dt}\Phi_{\mathtt{i}\pm\mathtt{1/2},\mathtt{j},\mathtt{k}} = \mathcal{E}_{\mathtt{i}\pm\mathtt{1/2},\mathtt{j},\mathtt{k}}.$$

Ζ

(38)
Constrained transport

MICRA 2023

Patrick Chi-Kit CHEONG

Backup slides

Hampshire

Numerically obtain RHS, update LHS, so that B fields is updated. How do we obtain the E fields at the cell edges?

$$\frac{d}{dt}\Phi_{i\pm1/2,j,k} = \mathcal{E}_{i\pm1/2,j,k}.$$
(39)

Arithmetic averaging

▶ NOT upwind (numerically unstable)

UCT-contact

- ▶ upwind
- ► cost is low
- ▶ automatically bounded to the Riemann solver used

N3AS postdoc fellow University of New \blacktriangleright seems stable 54

UCT-HLL

- ▶ upwind
- ▶ costy (need to apply limiter many times)
- ▶ suffer from overshoot problem
- ▶ bounded to HLL by construction (can be fixed, seems non-trivial)

Elliptic cleaning

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

48

54

Solve the following Poisson's equation, and update the B fields.

$$\hat{\nabla}^2 \Phi = \hat{\nabla}_i q_{B^i}^{\text{old}},\tag{40}$$

$$q_{B^i}^{\text{new}} = q_{B^i}^{\text{old}} - \left(\hat{\nabla}\Phi\right)^i.$$
(41)

Note that this Φ is not the one in GLM method.

- ▶ requires elliptic solver (e.g. multigrid solver)
- ► expansive
- ► boundary sensitive
- \blacktriangleright might be acausal
- ▶ useful in initialisation

Summary of divergenceless handling

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe

Results

Summary

Backup slides

		GLM	fluxCT	CT	elliptic
49	pros	1. easy to implement 2. can start with not-so-good ID	 not so difficult to implement divB can be suppressed low 	 divB ≤ ε_{DP} favour block-based AMR can be upwind 	 can be used for initialisation can be mixed with CT
	cons	1. divB still quite large 2. introduced free parameters 3. not hyperbolic	 not favour AMR not upwind 	1. implementation is complex	 slow maybe acasual divB still quite large

54

ideal GRMHD

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

50

54

- consider the conductivity of the fluid $\sigma_c \to \infty$ (or the resistivity $\sigma_c^{-1} \to 0$).
- the electric field in fluid-frame are required to be vanished, $e^{\mu} := F^{\mu\nu} u_{\nu} = 0$.

• In the observer frame, this relation reads $\hat{E}_i = -\epsilon^{ijk} \hat{v}_j B_k$.

- Electric fields are determinted, no need to evolve.
- ▶ the induction equation becomes

$$\partial_t \left(\sqrt{\gamma} B^j \right) + \partial_i \left[\sqrt{\gamma} \left(\hat{v}^i B^j - \hat{v}^j B^i \right) \right] = 0 \tag{42}$$

ideal GRMHD

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe Source terms

Results

Summary

Backup slides

51

54

$$\partial_t \left(\sqrt{\gamma} \boldsymbol{Q}\right) + \partial_i \left(\sqrt{\gamma} \boldsymbol{F}^i\right) = \sqrt{\gamma} \boldsymbol{S},\tag{43}$$

$$\boldsymbol{Q} = \begin{bmatrix} D\\S_{j}\\\tau\\B^{i} \end{bmatrix} = \begin{bmatrix} \rho W\\\rho h^{*}W^{2}v_{i} - \alpha b^{0}b_{i}\\\rho h^{*}W^{2} - p^{*} - (\alpha b^{0})^{2} - D \end{bmatrix}, \qquad (44)$$
$$\boldsymbol{F}^{i} = \begin{bmatrix} D(\alpha v^{i} - \beta^{i})\\S_{j}\hat{v}^{i} + \delta^{i}_{j}\alpha p^{*} - \alpha b_{j}B^{i}/W\\\tau \hat{v}^{i} + \alpha p^{*}v^{i} - \alpha^{2}b^{0}B^{i}/W\\\hat{v}^{i}B^{j} - \hat{v}^{j}B^{i} \end{bmatrix}, \qquad \boldsymbol{S} = \begin{bmatrix} 1\\2\alpha S^{ik}\partial_{j}\gamma_{ik} + S_{i}\partial_{j}\beta^{i} - U\partial_{j}\alpha\\\alpha S^{ik}K_{ik} - S^{i}\partial_{i}\alpha\\0 \end{bmatrix}. \tag{45}$$

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfe: Source terms

Results

Summary

Backup slides

52

54

and close the problem with a closure,

$$\mathcal{P}^{\mu\nu} = \mathcal{P}^{\mu\nu} \left(\mathcal{E}, \mathcal{F}^{\mu} \right). \tag{46}$$

▶ Many ways to obtain this closure relation

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

52

54

and close the problem with a closure,

$$\mathcal{P}^{\mu\nu} = \mathcal{P}^{\mu\nu} \left(\mathcal{E}, \mathcal{F}^{\mu} \right). \tag{46}$$

- ▶ Many ways to obtain this closure relation
- ▶ different closure could affect the accuracy

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

52

and close the problem with a closure,

$$\mathcal{P}^{\mu\nu} = \mathcal{P}^{\mu\nu} \left(\mathcal{E}, \mathcal{F}^{\mu} \right). \tag{46}$$

- ▶ Many ways to obtain this closure relation
- ▶ different closure could affect the accuracy
- \blacktriangleright still under debate

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

We adopt an *approximated* analytic closure which combines the optically thin and optically thick limits

$$\mathcal{P}^{\mu\nu} = d_{\rm thin} \mathcal{P}^{\mu\nu}_{\rm thin} + d_{\rm thick} \mathcal{P}^{\mu\nu}_{\rm thick},\tag{47}$$

) where

$$d_{\text{thin}} \equiv \frac{1}{2} (3\chi - 1); \ d_{\text{thick}} \equiv \frac{3}{2} (1 - \chi),$$
 (48)

where $\chi \in \left[\frac{1}{3}, 1\right]$ is the Eddington factor.

N3AS postdoc fellow University of New Hampshire

54

Closure relation

MICRA 2023

Patrick Chi-Kit CHEONG

Intro

Method

Two-moment radiative transfer Source terms

Results

Summary

Backup slides

54

54

Minerbo closure (also known as maximum-entropy closure)

$$\chi(\zeta) = \frac{1}{3} + \zeta^2 \frac{2}{15} \left(3 - \zeta + 3\zeta^2 \right), \tag{49}$$

where the flux factor ζ is defined as $\zeta \equiv \sqrt{\mathcal{H}^{\mu}\mathcal{H}_{\mu}/\mathcal{J}^2}$.

- Optically thin: $\zeta \approx 1$ and thus $\chi \approx 1$.
- Optically thick: $\zeta \approx 0$ and thus $\chi \approx 1/3$.
- We find $\zeta(\mathcal{E}, \mathcal{F}_{\mu})$ by solving $f(\zeta) = 0 = \left(\zeta^2 \mathcal{J}^2 \mathcal{H}^{\mu} \mathcal{H}_{\mu}\right) / \mathcal{E}^2$.
- ▶ M1 scheme? M1 closure?