Supplementing BNS Simulations with Artificial Neural Networks

Peter Hammond

NP3M Postdoctoral Fellow Pennsylvania State University Institute for Gravitation and the Cosmos

pph5189@psu.edu

13 September, 2023

- What are ANNs?
- How can they be useful for us?
- What does an ANN implementation look like?
- How does an ANN perform?

What is an Artificial Neural Network?

- Artificial Neural Networks (ANNs) are a collection of nodes connected by directed edges, arranged into layers.
- Each edge uses an activation function to transform the value at it's root to the value at it's head.
- Each node (other than those in the input layer) calculates a weighted sum of it's input edges and passes the result to it's output edges.

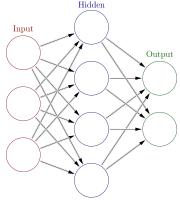


Figure 1: Schematic of an ANN with one hidden layer.

What is an Artificial Neural Network?

- Common activation functions are the ReLU, sigmoid, and tanh.
- The network can be trained by calculating an error on some training set, then using the derivative of that error with respect to the parameters in the network to calculate a new set of parameters.

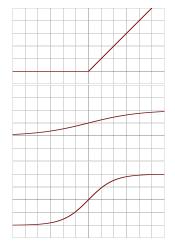


Figure 2: ReLU, sigmoid, and tanh activation functions.

- A Multi-Layer Perceptron (MLP) (feed-forward, fully-connected ANN with non-linear activation functions) can be used as a universal function approximator.
- We can therefore use an MLP to approximate functions that are either too expensive to calculate "on-the-fly", or which cannot be expressed algebraically.
- I will use as an example the problem of determining the equilibrium conditions in neutrino-opaque matter within a BNS simulation.

• Example problem:

- We want to calculate the equilibrium conditions that some NS fluid + neutrinos will reach.
- The simulation can give us the rest mass, total-energy, and lepton number densities:
 - $\rho = \rho_{\text{fluid}},$
 - $e_{\text{total}} = e_{\text{fluid}} + e_{\text{radiation}},$
 - $Y_{l} = Y_{q} + \sum_{x} (n_{\nu_{x}} n_{\overline{\nu}_{x}}) / n_{b}.$
- We need to calculate the temperature and species fractions.
- For simplicity we will consider only the electron-ic lepton species.

- If we know $(n_{\rm b}, T, Y_{\rm q} = Y_{\rm e})$ then we can calculate $(\rho, e_{\rm total}, Y_{\rm l} = Y_{\rm l,e})$ from the EoS and some simple functions, but the inverse is not possible.
- A typical approach might be to use Newton-Raphson to solve for the temperature and species fractions, however this can be unstable and/or slow, especially where there is not a good initial guess.
- We could use an ANN to:
 - obtain a solution directly,
 - ② obtain a good initial guess to stabilise the NR.

- Basic structure:
 - Inputs will be the rest mass density, total energy density, and lepton electron number.
 - Outputs will be the temperature and electron fraction.
- ANNs work best when inputs and outputs are in the range $-1 \le x \le 1$, so we apply the following transformations:
 - $I_1 = \log(\rho)$
 - $I_2 = \log \left(e_{\text{tot}} / \rho \right)$
 - $I_3 = Y_{l,e}$
 - $O_1 = \log{(T)}$

•
$$O_2 = Y_e$$

and re-scale each of these to the above interval using the entire EoS table as input.

What does an ANN implementation look like?

- Other considerations (hyperparameters):
 - number of hidden layers,
 - size of hidden layers,
 - activation functions,
 - optimisation method,
 - learning rate,
 - etc..
- For this example we use 3 hidden layers with 100 neurons each, the LeakyRLU activation function, and a limiter on the inputs and outputs to stop the values going beyond those in the table.

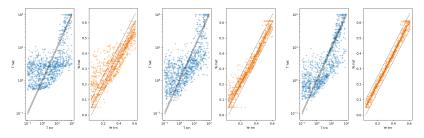


Figure 3: Output of ANN after 30 seconds, 5 minutes, and 1 hour of training on a consumer grade GPU. The error in $Y_{\rm e}$ is good enough for an initial guess, but not so much for $T \leq 10$ MeV.

- All is not lost!
- By using the calculated $Y_{\rm e}$ we can reduce the dimensionality of the problem to 1D.
- We can then use a stable method, e.g. bisection, to get our T guess.
- Because we have two equations and only one unknown we are free to pick for which function to find the root (or minimise a combination of both).
- Here for simplicity I will use $f(T) = Y_{l,e}(T) Y_{l,e} = 0$

How does an ANN perform?

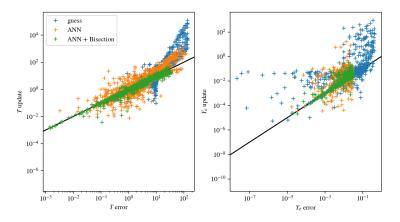


Figure 4: Update of first NR iteration against error.

- ANNs can be used to find approximate solutions to calculations that are too expensive to do on the fly, or which cannot be expressed algebraically.
- We have used an MLP to obtain better initial guesses for an unstable method like Newton-Raphson.
- Other applicable problems include Con2Prim, EoSs, ν -oscillation, etc..
- Last but not least, they are fast!