Accretion discs from binary neutron star mergers

Geometrical, Dynamical and Thermodynamical properties

A. Camilletti

In collaboration with A. Perego and F.M Guercilena

MICRA 2023

TIFPA Fundamental Physics and Applications

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Accretion discs from binary neutron star (BNS) mergers

- Formation: tidal interaction and shocks
- ► Timescale:
 - $\circ~$ formation timescale $\sim 10~{\rm ms}$
 - $\circ~$ viscous timescale $\sim 1~{\rm s}$

Credits: K. H. Lee et al 2020 ApJL 902 L23

Importance of accretion discs

Accretion discs formed during the merger of binary neutron stars:

- accrete into the central object: SGRBs (Berger 2014), induce collapse (Bernuzzi 2020)
- source of ejected matter: neutrino driven (Perego 2014) winds, viscous effects (Metzger 2010), magnetic stresses (Siegel 2017)

Properties of ejected matter are important for:

- r-process nucleosynthesis
- kilonova light-curves

Accretion discs simulations

- Used to investigate the effects of different mechanisms on the ejecta properties
- Idealized initial condition of disc.
 - constant specific angular momentum
 - constant entropy per baryon (~ $8k_B$ baryon⁻¹)
 - constant electron fraction (~ 0.3)

Aim:

- Characterization of accretion discs from BNS
 Improve/clarify the initial conditions

BNS merger simulations: numerical setup

- EinsteinToolkit
- ► Full General Relativity
- ► Hydro: WhiskyTHC
- ► Neutrino: Leakeage + M0

- ► Grid: Carpet, 7 nested refinement level
- Resolutions: HR (123m), SR (185m), LR (246m)
- Interpolation to a cylindrical grid

Disc extraction

- maximum density: $10^{13} \mathrm{g \ cm^{-3}}$
- ▶ minimum lapse: 0.3
- minimum density: such that $M_{\rm disc} = 0.95 M_{\rm tot}$
- Unbound matter removed: $|u_t| \ge c$

Simulation sample

- 5 equation of state (EOS): LS220, DD2, SFHo, SLy, BLh.
- ▶ $q = M_1/M_2 \in [1, 1.67]$

Classification:

- prompt: immediate black hole (BH) formation
- short-lived: collapse before simulations end
- Iong-lived: no BH

class	sim	q	longest (ms)
long-lived	20	1 - 1.66	103
short-lived	9	1 - 1.43	36
prompt	9	1.12 - 1.66	25

Total of 44 simulations.

- ▶ 38 with $M_{\rm chirp} = 1.18 \ M_{\odot}$ ($M_{\rm tot} \sim 2.6 \ M_{\odot}$)
- ▶ 6 simulations M_{chirp} = 1.44 M_☉ (M_{tot} ~ 3.3 M_☉)

Results

Aspect ratio

aspect ratio =
$$\left\langle \frac{\mathrm{H}(\phi)}{\mathrm{R}(\phi)} \right\rangle_{\phi}$$

- ► long/short-lived: decreases with the mass ratio and softness of the EOS (0.7 0.4)
- prompt/high mass: lower values and flatter $\sim 0.3 0.2$

Remark Discs from BNS mergers are **thick**

Mass and angular momentum

$$M_{\rm disc} = \int_{\rm disc} \sqrt{\gamma} \rho W \, r dr d\phi dz$$
$$J_{\rm disc} = \int_{\rm disc} \sqrt{\gamma} \rho h W^2 v_{\phi} \, r dr d\phi dz$$

- Trend independent from EOS, total mass, mass ratio, ...
- Why $J_{\rm disc}/M_{\rm disc} \approx {\rm const}$?

TIED.

BLh

short lived

DD2

Specific angular momentum

Remark

Specific angular momentum is almost constant: discs are **non Keplerian**

Disc specific angular momentum is in the range $3-5~\times 10^{16}~{\rm cm^2~s^{-1}}.$

Entropy per baryon

Small mass ratio ($q \lessapprox 1.3$)

Higher mass ratio ($q \gtrsim 1.3$)

Electron fraction

- Different trend between low-high mass ratio
- \blacktriangleright Sigmoidal distribution with ρ at $q \lessapprox 1.3$
- ► Transient between $\rho \sim 10^{11} 10^{13} \mathrm{g \ cm^{-3}}$: neutrino decoupling

Conclusions

Aspect ratio Discs from BNS mergers are thick

Constant specific angular momentum Non Keplerian discs

Entropy & electrion fraction

Not isentropic. Sigmoidal distribution with ρ at low mass ratio $q \lessapprox 1.3$

