Nuclear Matter Properties in Neutron-Star Mergers

Max Jacobi

in collaboration with: Federico Guercilena Sabrina Huth Giacomo Ricigliano Almudena Arcones Achim Schwenk

> MICRA 2023 September 13, 2023

Characterizing EOS effects in mergers

Usually: study EOS effects in mergers with selection of EOSs from literature ► Vary in many aspects and underlying microphysics This work: use EOSs based on the same Skyrme EDF parametrization

Lattimer & Swesty, NuPhA 535 (1991), Schneider, Roberts, Ott, PRC 96 (2017)

- Consistent microphysics
- Systematically vary parameters one by one

The properties of nuclear matter

Change model parameters to vary expansion parameters

Parametrization of bulk energy density

Lattimer & Swesty, NuPhA 535 (1991)

$$\epsilon(n, Y_{e}, T) = \sum_{t} \frac{\tau_{t}(n, Y_{e}, T)}{2m^{*}(n)} - Y_{e}n\Delta$$

$$+ [a + 4bY_{e}(1 - Y_{e})]n^{2} + cn^{1+\delta}$$

$$Fix n_{0}, B, E_{sym}, K$$

$$\rightarrow 4 \text{ free parameters: } a, b, c, \delta$$

SROEOS code \rightarrow add non-uniform nuclear matter, electrons, positrons, photons $_{\rm Schneider,\ Roberts,\ Ott,\ PRC\ 96\ (2017)}$

Schneider+, PRC 100 (2019); Yasin+, PRL 124 (2020); Andersen+, PRC 923 (2021); Fields+ APJ 952 (2023)

BNS simulations with the Einstein Toolkit

- One simulation per EOS
- Total mass $2.73 M_{\odot}$, mass ratio = 1
- $M_{
 m chirp} = 1.188 M_{\odot}$ (GW170817)

Abbott+ PRL 119 (2017)

Einstein Toolkit + WhiskyTHC

einsteintoolkit.org; Radice+, CQGra 31, (2014)

- Neutrino transport:
 - Emission: local leakage scheme

Galeazzi+, PRD 88 (2013)

Absorption: ray-by-ray "M0" scheme

Radice+, MNRAS 460 (2016)

Variations based on LS220 Yasin+, PRL 124 (2020)

Variations based on LS220 $_{\rm Yasin+,\ PRL\ 124\ (2020)}$

$$K = (175, 220, 255) \,\mathrm{MeV}$$

- $\uparrow K \rightarrow \uparrow$ slope of $P_{cold}(\rho = \rho_0)$
- $\blacktriangleright \uparrow P$ at high ρ
- Collapse outcome

Variations based on LS220 Yasin+, PRL 124 (2020) 2. $m^*/m_n = (1, 0.8, 0.634)$ $\downarrow m^*$ $\downarrow m^*$ $\downarrow L, K_{sym} \rightarrow P_{cold}$

Variations based on LS220 Yasin+, PRL 124 (2020) 2. $m^*/m_n = (1, 0.8, 0.634)$ $\downarrow m^*$ $\uparrow L, K_{sym} \rightarrow P_{cold}$ Slope of $P \rightarrow$ timescale of contraction

Variations based on LS220 Yasin+, PRL 124 (2020)

3. Systematically match Shen EOS

Shen+, PThP 100 (1998)

• $\rho \approx \rho_0 \rightarrow \text{similar}$ • $\rho > \rho_0 \rightarrow \text{diverge}$

Variations based on LS220 Yasin+, PRL 124 (2020)

 \blacktriangleright softer EOS $\rightarrow \uparrow$ shock heating

►
$$\uparrow \Gamma_{th} \rightarrow \uparrow$$
 shock heating

- Higher K, lower $m^* \rightarrow$ heavier disk
- Disk definition is ambiguous
- NS deformation linked to incompressibility?

Gravitational waves

• Post-merger GW amplitude decay $\rightarrow m = 2$ deformation

Gravitational waves

- Post-merger GW amplitude decay $\rightarrow m = 2$ deformation
- Peak frequency correlated with compactness
- \Rightarrow Results match universal relations (±10%)

Rezzolla & Takami, PRD 93 (2016),

Bauswein+, EPJA 52 (2016),

Kiuchi+, PRD 101 (2020)

Gravitational waves

- Post-merger GW amplitude decay $\rightarrow m = 2$ deformation
- Peak frequency correlated with compactness
- \Rightarrow Results match universal relations $(\pm 10\%)$

Rezzolla & Takami, PRD 93 (2016),

Bauswein+, EPJA 52 (2016),

Kiuchi+, PRD 101 (2020)

- Shen and SkShen very similar
- \Rightarrow GW spectrum depends on EOS at n_0

 \blacktriangleright Tidal ejecta: low Y_{e} , equatorial

- ▶ Tidal ejecta: low Y_e, equatorial
- ▶ Shock heated ejecta: broad Y_{e} , θ

- ► Tidal ejecta: low Y_e, equatorial
- ▶ Shock heated ejecta: broad Y_{e} , θ
- **b** Disk ejecta: spiral wave + ν -driven wind

Talk by Giacomo Ricigliano tomorrow \Rightarrow Nucleosynthesis and lightcurves

Summary

- BNS simulations with systematic EOS variations
- Investigated dependence of
 - Remnant contraction, heating, & deformation
 - GW amplitude & frequencies
 - Ejection of matter
- Differentiate stiffness of EOS at nuclear & supranuclear densities

Summary

- BNS simulations with systematic EOS variations
- Investigated dependence of
 - Remnant contraction, heating, & deformation
 - GW amplitude & frequencies
 - Ejection of matter
- Differentiate stiffness of EOS at nuclear & supranuclear densities

Thank you for the attention

