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1966: Colgate and White
Neutrino emission from 
stellar implosion 

1985: Neutrino-heating explosion
was proposed by Bethe and Wilson

1933-: Baade and Zwicky 
Hypothesized Connection between neutron star and “super-nova”

1938-: Observations of extragalactic supernova and their remnants
(See e.g., Baade 1938)

1967-:  Discovery of the first radio pulsar (Hewish et al. and Gold)

1974: Observation of Hulse-Taylor binary 

1987: IMB, Kamiokande-II made the first direct 
detections of SN neutrinos

1998: GRB-SN connection

2019-: Diversity
(SL-SNe, FBOT etc..)

Future

Past

1985-: Bruenn documented “Core” of SN theory

2015: Dawn of GW-astronomy

2010: Discovery of 2 Msun NS
1990-: Recognizing importance of fluid instabilities
on SN (Mezacappa, Janka, and Burrows……)

2001-: Establishing 1D-Boltzmann SN models 
(Liebendörfer et al., Sumiyoshi et al…..)

2015-: Multi-dimensional SN models with high-fidelity of input physics

A Chronological table: progress of SN (and NS) research

Successful SN explosions on big iron  →  Connecting observations
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Neutrino-heating mechanism of core-collapse supernova (CCSN)
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Neutrino Heating Mechanism:  
why it works
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long as shock is located far enough. 

✓Neutrino heating occurs outside gain radius.
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Fig. 2. Schematic profiles of density, temperature, and mass
accretion rate between neutrinosphere at radius Rν and shock
at Rs some time after core bounce. Rg denotes the position of
the gain radius. At the shock, ρ and T jump discontinuously
from their preshock values ρp and Tp to the postshock val-
ues ρs and Ts, respectively. For r < Reos the density declines
steeply because the pressure is mainly caused by the nonrela-
tivistic Boltzmann gases of free neutrons and protons. Outside
of Reos the gas is radiation dominated and the density decrease
much flatter. In general, some of the gas falling into the shock
at rate Ṁ may stay in the region of neutrino heating while
another part (rate Ṁ ′) is advected into the nascent neutron
star. Note that Ṁ(r) is continuous at the shock in the rest
frame of the star only in case of a stalled shock front. Between
Rν and Reos the temperature can be considered roughly as
constant, whereas its negative gradient in the radiation domi-
nated region ensures hydrostatic equilibrium. There is net en-
ergy loss between Rν and Rg where T (r) exceeds the temper-
ature TH=C ∼ Tν(Rν/r)1/3, for which neutrino heating equals
cooling. Net energy deposition occurs between Rg and Rs

below the neutrinospheric value. If, instead, the temper-
ature would rise significantly above this latter value, the

matter would become optically thick to the energetic neu-
trinos produced in the hot gas (the opacity increases
roughly with the square of the neutrino energy) and the
neutrinosphere would move farther out to a lower density
(and thus typically a lower temperature).

Below a density between 109 g/cm3 and 1010 g/cm3,
relativistic electron-positron pairs and radiation deter-
mine the pressure, provided the temperature is suffi-
ciently high, typically around 1 MeV or more (see Woosley
et al. 1986). Exterior to the corresponding radius Reos,
where this transition from the baryon-dominated to the
radiation-dominated regime takes place, the temperature
must therefore decrease so that the negative temperature
gradient can yield the force which balances gravity.

The gain radius Rg is located at the radial position
where the temperature profile T (r) intersects with the
curve of temperature values, TH=C(r), for which heating
is equal to cooling by neutrinos, roughly given by

TH=C(r) ∼ Tν ·
(

Rν

r

)1
3

(1)

(Bethe & Wilson 1985). In Eq. (1) Tν means the temper-
ature at the radius Rν of the neutrinosphere. The shock
at Rs is taken to be infinitesimally thin compared to the
scales considered. Within the shock the density and tem-
perature therefore jump from their preshock values ρp and
Tp, to the postshock values ρs and Ts, respectively. A part
of the gas which falls into the shock with a mass accretion
rate Ṁ can stay in the region of neutrino heating, whereas
another part is advected with rate Ṁ ′ through the cooling
region to be added to the neutron star inside Rν .

The approach to the problem of shock revival taken
in this paper is considerably different from the discussion
of steady-state accretion or winds. Steady-state assump-
tions, for example, were also used by Burrows & Goshy
(1993) in their theoretical analysis of the explosion mecha-
nism. Having realized the fact, however, that the mass and
energy in the gain layer vary because of different rates of
mass flow through the boundaries and additional neutrino
heating, one is forced to the following conclusions. Firstly,
the discussion has to be time-dependent, which means that
the time derivatives in the continuity and energy equations
cannot be ignored. (Dropping the total time-derivative in
the momentum equation by assuming hydrostatic equi-
librium is less problematic and yields a reasonably good
approximation.) Secondly, the properties of the shock and
of the gain layer must be determined as solutions of an
initial value problem rather than from a steady-state pic-
ture. This reflects essential physics, namely that the shock
behavior is controlled by the cumulative effects of neutrino
heating and mass accumulation in the gain layer. For these
reasons conservation laws for the total mass and energy
in the gain layer will be derived by integrating the hy-
drodynamic equations of continuity and energy, including
the terms with time derivatives, over the volume of the
gain layer. The treatment will therefore retain the time-
dependence of the problem.

Janka 2001
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Figure 1. Total emitted neutrino energy (TONE) as a function of
post-bounce time. Color distinguishes models. Solid and dashed
lines represent explosion and non-explosion models, respectively.

although the 3D models are also available in Vartanyan et al.
(2019a); Burrows et al. (2020). The reason of this choice is
that the 2D simulation is computationally much cheaper than
that of 3D, which allows the simulation of CCSN for a longer
time (⇠ 4 s after core bounce). We also find that the angular-
averaged neutrino signal is almost the same as that obtained
from 3D models; hence, we adopt the angle-averaged neutrino
data of the 2D models in this study. These models cover the
most of accretion phase in CCSN, which is the focused phase
in this study.
In these simulations, we cover a wide range of progen-

itor masses, spanning a zero-age main sequence mass of
9 � 25 M�. The initial conditions for the stellar progeni-
tors are provided in Sukhbold et al. (2018), and 2D simula-
tions were calculated, following the stellar collapse and post-
bounce evolution through ⇠ 4 s. Among the (18) models,
shock revival is achieved for all except for the 12- and 15 M�
models. The detailed analysis of their CCSN dynamics can
be found in (Burrows & Vartanyan 2021), and that of the
neutrino signal are presented in (Nagakura et al. 2021c).
Figure 1 shows the time evolution of TONE for our CCSN

models. As discussed in (Nagakura et al. 2021c), its time evo-
lution has rich progenitor-dependent features. As shown in
the figure, the 9M� model has the lowest TONE among all
models. This model has the steepest density gradient around
the core at the presupernova phase (see Fig. 1 in Burrows &
Vartanyan 2021), indicating that the mass accretion rate be-
comes the smallest among our CCSN models. This suppresses
the accretion component of neutrino emission, resulting in the
lowest TONE. On the contrary, 21M� model has the high-
est TONE. Contrary to the case of 9M� model, it has the
shallowest density gradient in the core at the presupernova
stage, leading the highest mass accretion rate onto PNS and
hence the highest TONE.
We show the time evolution of the PNS mass in the left

panel of Fig. 2 obtained from our CCSN simulations. This
displays the mass accretion history for each CCSN model,
which clearly shows that 9 and 21M� models have the lowest
and highest mass accretion rate onto the PNS, respectively

(consistent with the above discussion). By comparing TONE
and PNS mass, the correlation is obvious; the TONE becomes
higher for larger PNS mass. In the next section (Sec. 4), we
quantify the correlation. In the right panel of Fig. 2, on the
other hand, we display PNS radius as a function of time. We
find that the higher PNS mass tends to have the larger ra-
dius, and that the PNS shrinks monotonically with time. It
should be noted that the progenitor dependence of PNS ra-
dius becomes weaker with increasing time; indeed, all models
eventually follow the universal time evolution at & 1 s. We
also quantify these time-dependent features of PNS radius in
the next section.

4 CORRELATION BETWEEN TONE AND PNS

STRUCTURE

Let us first inspect a correlation between TONE and PNS
mass in the same time snapshots. In Fig. 3, we collect TONE
and PNS mass of each CCSN model at the time of 0.2, 0.5
and 2 s in each panel. As illustrated in the plot, the PNS
mass has a strong correlation to TONE. The red line in each
panel is a quadratic fit for the correlation; the coe�cients are
displayed in each panel.
It should be mentioned that the fitting function evolves

with time, indicating that we can obtain TONE by specifying
PNS mass and post-bounce time. In other words, we can draw
the time evolution of TONE along a constant PNS mass. We
fit them by a seventh degree function;

E52(t) =
7X

i=0

ait
i, (1)

where E52 denotes TONE in the unit of 1052erg, and t rep-
resents the time measured from core bounce in the unit of
second. The fitting coe�cients for PNS mass in the range of
1.2�2.2M� are summarized in Tab. 1. The time evolution of
TONE for selected PNS masses are displayed in Fig. 4. There
are two important remarks in our results. First, our fitting is
only valid in the post bounce time of 0.1 s . t . 4 s. In the
very early post-bounce phase (. 0.1 s), the time evolution
of TONE is rather steep, and it would be necessary to use
higher polynomials to fit the data. On the other hand, there
are other systematic errors in our method at . 0.2 s in our
method (see Secs. 5 and 6 for more detail); this drawback
in our method needs to be improved, although addressing
the issue is postponed to future work. We also note that our
neutrino data on CCSN models are available up to ⇠ 4 s, in-
dicating that our fitting functions are not reliable after that
time. Another remark is that we provide coe�cients for PNS
mass for each 0.1M� from 1.2� 2.2M� in Tab. 1. For cases
with other PNS masses, we can simply use a linear interpo-
lation or extrapolation from the adjacent data points.
As shown in Fig. 2, the time evolution of PNS radius is

insensitive to CCSN models. However, we find that the PNS
radius tends to be (slightly) larger for higher PNS mass at
. 1s. We, hence, evaluate the correlation quantitatively; the
results are summarized in Fig. 5. As expected, we find that
the PNS radius has a positive correlation to its mass at the
early post-bounce phase. It should be mentioned that the
correlation disappears in the late phase (see right panel of
Fig. 5). However, we confirm that the variance of PNS radius
is very small (see right panel in Fig. 5); hence, the fitting
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Figure 2. Time evolution of PNS mass (left) and radius (right). In this plot, we determine the PNS radius by the angle-averaged isodensity
with 1011g/cm3.
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Figure 3. Relation between PNS mass and TONE at a given post-bounce time. From left to right, we display the result at 0.2 s, 0.5 s,
and 2 s after bounce. The triangle points represent simulation results, and we fit them with a quadratic function. The coe�cients are also
displayed in each panel; MPNS and E52 denote the PNS mass (with the unit of M�) and TONE (with the unit of 1052erg), respectively.

data is still useful. We also note that the uncertainty of EOS
would be more influential to estimate the radius in the late
phase, which will be discussed in Sec. 6.
We fit the relation between PNS mass and radius linearly at

each time snapshot. This allows us to estimate PNS radius by
giving PNS mass and time. This indicates that we can draw
the time evolution of PNS radius for a constant PNS mass.
We fit them by polynomial functions as

lnR10(t) =
7X

i=0

bit
i, (2)

where R10 denotes the PNS radius in the unit of 10 km; the
fitting coe�cients are summarized in Tab. 2. We also draw
the time evolution of PNS radius for selected PNS masses in
Fig. 6. In the next section, we demonstrate how these fitting
functions can be used for data analysis in real observations.

5 DEMONSTRATION

In this section, we demonstrate retrievals of time evolution of
PNS mass and radius from observed neutrino data by using
our proposed method. For the input data, we employ mock
data of observed neutrinos in Nagakura et al. (2021c), which
were computed by a detector software, SNOwGLoBES3. The
original CCSN models for these mock data are the same
as those used in this paper (Burrows & Vartanyan 2021).
By assuming neutrino oscillation models and the distance to
CCSN, we estimated the energy- and flavor dependent neu-
trino flux at Earth, and then the neutrino event count at
each detector were estimated through SNOwGLoBES (see
Nagakura et al. (2021c) in more detail). In this study, we

3 The software is available at https://webhome.phy.duke.edu/

~schol/snowglobes/.
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Figure 2. Time evolution of PNS mass (left) and radius (right). In this plot, we determine the PNS radius by the angle-averaged isodensity
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data is still useful. We also note that the uncertainty of EOS
would be more influential to estimate the radius in the late
phase, which will be discussed in Sec. 6.
We fit the relation between PNS mass and radius linearly at

each time snapshot. This allows us to estimate PNS radius by
giving PNS mass and time. This indicates that we can draw
the time evolution of PNS radius for a constant PNS mass.
We fit them by polynomial functions as

lnR10(t) =
7X

i=0

bit
i, (2)

where R10 denotes the PNS radius in the unit of 10 km; the
fitting coe�cients are summarized in Tab. 2. We also draw
the time evolution of PNS radius for selected PNS masses in
Fig. 6. In the next section, we demonstrate how these fitting
functions can be used for data analysis in real observations.

5 DEMONSTRATION

In this section, we demonstrate retrievals of time evolution of
PNS mass and radius from observed neutrino data by using
our proposed method. For the input data, we employ mock
data of observed neutrinos in Nagakura et al. (2021c), which
were computed by a detector software, SNOwGLoBES3. The
original CCSN models for these mock data are the same
as those used in this paper (Burrows & Vartanyan 2021).
By assuming neutrino oscillation models and the distance to
CCSN, we estimated the energy- and flavor dependent neu-
trino flux at Earth, and then the neutrino event count at
each detector were estimated through SNOwGLoBES (see
Nagakura et al. (2021c) in more detail). In this study, we

3 The software is available at https://webhome.phy.duke.edu/

~schol/snowglobes/.
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Nagakura and Vartanyan 2021, 2023

Correlation: GWs - PNS mass Nagakura et al. 2020, Vartanyan et al. 2023, Nagakura and Vartanyan 2023
24

FIG. 10. The gravitational-wave energy from matter motions (in M� c2) for all the 3D models highlighted in this paper as a
function of time after bounce (in seconds). Note that the total GW energy radiated di↵ers by ⇠three orders of magnitude from
the least massive, 9-M� to the most massive, 23-M� progenitor. This energy grows by three orders of magnitude for the most
massive progenitors over the first ⇠2 seconds of simulation, but is already asymptoting shortly after one second post-bounce.
All models show rapid growth in the first ⇠50 ms, associated with the onset of prompt convection driven by the overturn of
the shocked mantle dynamically generated at and after bounce as the shock stalls initially into accretion. After this phase, the
neutrino-driven turbulence between the shock and the proto-neutron star core grows in vigor over a period of ⇠100 milliseconds
and excites a spectrum of core pulsational f- and some p-modes and likely generates a GW component due to the impinging of
the plumes onto the PNS that all together constitute the bulk of the gravitational radiation issuing from the supernova. This
phase can last from hundreds of milliseconds to 1.5 seconds, depending upon progenitor, after which the strains subside to a
hum dominated by the fundamental ` = 2 f-mode and (weakly) overtones. This last phase can last for many seconds. However,
the signals from those models destined to leave black holes are still vigorous for a longer period of time, since accretion persists
for these models until the black hole forms, after which the signal ceases abruptly. See the text for a discussion.
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FIG. 2. Left: Plots of flavor- and time-integrated total neutrino energy (E⌫) versus PNS mass (MPNS). Di↵erent color indicates
di↵erent post-bounce time (Tb) at which the correlation between MPNS and E⌫ is displayed. Right: Plots of radiated energy of
GW (EGW) versus PNS mass (MPNS) for CCSN models in [44] (red filled circles). We fit them quadratically (black solid line).

C. Gravitational waves

Let us turn our attention to GWs. The characteristic
property of GWs in Fornax CCSN models have been
studied in [7, 13, 58, 59], and very recently Vartanyan
et al. [44] carried out a systematic study with long-term
3D simulations (> 1s) and we quantify the total emitted
energy of GWs (EGW). Although the high computational
cost still limits the number of models, we find a robust
correlation between EGW and the compactness of the
progenitor for explosion models. Observationally, this is
useful, since EGW may be the most easily constrained in
real observations even for cases with no detections [23].
We note that EGW is dominated by aspherical matter
motions in the frequency range of >⇠ 100 Hz, whereas
the low frequency components including GW emission
by anisotropic neutrino emission has a negligible contri-
bution [1, 59, 60].

Let us describe the rationale behind the correlation be-
tween EGW and the compactness of presupernova progen-
itor. The progenitor with the higher compactness core, in
general, has higher mass accretion onto PNS in the post-
bounce phase (see also [61]), that also leads to heavier
MPNS. Strong turbulent energy fluxes are accompanied
by the large mass accretion onto PNS for explosion mod-
els, which is the major driving force emitting GWs. Here,
we should make an important remark. The turbulence
in post-shock region tends to be weak for non-exploding
(or black hole formation) cases [44], since the accretion
is more spherical and the post-shock accretion flow has
higher temperature (i.e., low Mach number) than those
in explosion models. This indicates that the correlation
between EGW and the compactness disappears in non-
exploding models. For this reason, we adopt only explo-
sion models in this correlation study. Although it is a
limitation of the present work, the failure of explosion

seems to be perhaps rarer than ordinary CCSNe [47, 62];
hence, our proposed method will be applied in the ma-
jority of the death of massive stars.
In the right panel of Fig. 2, we plot MPNS (in the unit

of solar mass, M�) as a function of radiated GW energy
(EGW in the unit of 1046erg) for 3D explosion models
in [44]. We note that GW strain is estimated by using
the quadrupole approximation [63]. The positive corre-
lation can be clearly seen, and we show the quadratic
fit as a black solid line in this figure. We note that
the minimum mass of MPNS obtained from the fitting
function, 1.36M�, is not physical but rather an artifact
due to the accuracy of polynominal fitting. The actual
minimum PNS can be lower. We also quantify the co-
e�cient of determination and standard deviation for the
fitting function, which are 0.988 and 0.018, respectively.
The latter is estimated based on a normalized error de-
fined as (MPNS(d) � MPNS(f))/MPNS(f), where MPNS(d)

and MPNS(f) denote PNS mass at data point and that
estimated by the fitting function, respectively.

D. Demonstration

Below we describe how to place a constraint on p̄ by us-
ing these three progenitor-independent correlations. We
provide a flowchart of our proposed method in Fig. 3.
For readers seeking more detailed understandings of our
method, necessary references at each procedure are also
described. As the first step, we need to set Tb. Ac-
cording to [44], EGW is mostly saturated up to Tb ⇠ 2s,
meanwhile the correlation of neutrino signal which we
discussed in [42, 56] is guaranteed up to Tb ⇠ 4s; hence it
should be set in the range of 2s <⇠ Tb

<⇠ 4s. Next, we esti-
mate MPNS from EGW (see the right panel in Fig. 2), and
then E⌫ can be obtained from the correlation to MPNS

4



5

Neutrino Emission from Supernovae 11

Thermal Equilibrium 𝜈𝑒𝑝 ↔ 𝑛𝑒+ 
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Free  
streaming 

Diffusion 

Scattering Atmosphere 
𝜈𝑁 → 𝑁𝜈 

𝜈𝑁 ↔ 𝑁𝜈 
𝜈𝑒 ↔ 𝜈𝑒 
𝑁𝑁 ↔ 𝑁𝑁𝜈𝜈 
𝑒+𝑒− ↔ 𝜈𝜈 
𝜈𝑒𝜈𝑒 ↔ 𝜈𝜇𝜈𝜇 

Electron flavor  (𝝂𝒆 and 𝝂𝒆) 

Other flavors  (𝝂𝝁, 𝝂𝝁, 𝝂𝝉, 𝝂𝝉) Neutrino sphere 

Transport sphere Energy sphere 
Fig. 4 Sketch of the transport properties of electron-flavor neutrinos and antineutrinos (upper part)
compared to heavy-lepton neutrinos (lower part). In the supernova core ne and n̄e interact with
the stellar medium by charged-current absorption and emission reactions, which provide a major
contribution to their opacities and lead to a strong energetic coupling up to the location of their
neutrinospheres, outside of which both chemical equilibrium between neutrinos and stellar matter
(indicated by the black region) and diffusion cannot be maintained. In contrast, heavy-lepton neu-
trinos are energetically less tightly coupled to the stellar plasma, mainly by pair creation reactions
like nucleon bremsstrahlung, electron-position annihilation and nen̄e annihilation. The total opac-
ity, however, is determined mostly by neutrino-nucleon scatterings, whose small energy exchange
per scattering does not allow for an efficient energetic coupling. Therefore heavy-lepton neutrinos
fall out of thermal equilibrium at an energy sphere that is considerably deeper inside the nascent
neutron star than the transport sphere, where the transition from diffusion to free streaming sets in.
The blue band indicates the scattering atmosphere where the heavy-lepton neutrinos still collide
frequently with neutron and protons and lose some of their energy, but cannot reach equilibrium
with the background medium any longer. (Figure adapted from Raffelt, 2012, courtesy of Georg
Raffelt)

tion to free streaming at their corresponding energy-averaged neutrinosphere. This
sphere is also called transport sphere (sometimes also “scattering sphere”), whose
radius Rn ,t is determined by solving Eq. (9) with a suitable spectral average of the
total opacity ktot ⌘ kabs+kscatt, which includes all contributions from scattering and
absorption processes. Equilibration between neutrinos and the stellar background is
possible up to the so-called average energy sphere (also termed “number sphere”,
because outside of this location the number of neutrinos of a certain species is es-
sentially fixed). When scatterings increase the zig-zag path of neutrinos diffusing
through the medium and thus increase the probability of neutrinos to be absorbed,
the radius Rn ,e of the energy sphere is given by the condition

teff =
Z •

Rn ,e
dr rkeff =

2
3

(20)

Optically thick Optically thin

Figure by Janka 2017

Modeling of neutrino radiation field requires kinetic theory
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Fig. 2.— Left: Discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial
direction corresponds to neutrino energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right:
The Lorentz-transformed mesh in the fluid-rest frame. The blue lines correspond to the radial lines whereas the black lines are transformed
from the concentric circles in the left panel. The brown dots show an isoenergy circle in the fluid-rest frame for comparison. Matter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equations in the next

section, we present our idea to overcome these difficul-
ties. We then demonstrate our successful handling of the
isoenergetic scatterings in the realistic supernova simu-
lations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of Boltzmann equa-
tion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

(δf

δτ

)

col
, (1)

which is valid even in curved space-time. In the above
expression, f(= f(xµ, pi)) denotes the neutrino distri-
bution function in phase space; xµ and pµ are space-
time coordinates and four-momentum of neutrino, re-
spectively; since the latter satisfies the on-shell condition:
pµpµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spatial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interactions.

On the spherical coordinates in flat space-time, which
are the coordinates we employ for the laboratory frame in
our Eulerian approach, Eq. (1) is cast into the following

conservation form:

∂f

∂t
+

µν

r2

∂

∂r
(r2f) +

√

1− µ2
ν cos φν

rsin θ

∂

∂θ
(sin θf)

+

√

1− µ2
ν sin φν

rsin θ

∂f

∂φ
+

1

r

∂

∂µν
[(1 − µ2

ν)f ]

−
√

1− µ2
ν

r

cos θ

sin θ

∂

∂φν
(sin φνf) =

(δf

δt

)lb

col
, (2)

where r, θ, φ denote the spatial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cos θν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well justified
as long as neutrino oscillations are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory time t, is related with the original collision
term in equation (1) as

(δf

δτ

)

col
= εlb

(δf

δt

)lb

col
, (3)

where εlb(≡ pt) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper time of
each fluid element (t̃) as

(δf

δτ

)

col
= εfr

(δf

δt̃

)fr

col
, (4)

where εfr(≡ pt̃ ≡ −uµpµ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

dN = f(t,p,x)d3pd3x (1)

Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver

that incorporate detailed microphysics and general rela-
tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann
equations and hydrodynamical equations simultaneously
in multi-dimensions.
Unlike the previous 1D codes, we adopt an Eulerian

picture in this paper. There are several reasons for this
choice. Among other things, we have in mind that the
Boltzmann solver will be coupled with a Multi-D Eule-
rian hydrodynamics and gravity solvers, which have been
well established and widely used in the high-energy as-
trophysical community. In addition, the Eulerian pic-
ture has a benefit to easily handle the left hand side
of Boltzmann equation, i.e., advection terms. In gen-

(Time evolution + Advection Term) (Collision Term)

and remembering the definition

dpt

dτ
¼ dxα

∂τ
∂pt

∂xα
!!!!
pi
þ dpi

dτ
∂pt

∂pi

!!!!
xμ

¼ pα ∂pt

∂xα
!!!!
pi
− Γi

αβpαpβ ∂pt

∂pi

!!!!
xμ
: (19)

The conservative form is also derived for a local
orthonormal frame. Starting from Eq. (3) with the choice
of ûa ¼ eað0Þ and Eqs. (12), (14)–(16), we obtain

1
ffiffiffiffiffiffi−gp

∂ð ffiffiffiffiffiffi−gp
ν−1pαfÞ

∂xα
!!!!
qðiÞ

þ 1

ν2
∂
∂ν ð−νfp

αpβ∇αe
β
ð0ÞÞ

þ 1

sin θ̄
∂
∂θ̄

#
ν−2 sin θ̄f

X3

j¼1

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂θ̄
$

þ 1

sin2θ̄
∂
∂φ̄

#
ν−2f

X3

j¼2

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂φ̄
$

¼ Srad; (20)

or a practical form

1
ffiffiffiffiffiffi−gp

∂
∂xα

!!!!
qðiÞ

%#
eαð0Þ þ

X3

i¼1

lðiÞeαðiÞ

$
ffiffiffiffiffiffi−gp

f
&

−
1

ν2
∂
∂ν ðν

3fωð0ÞÞ þ
1

sin θ̄
∂
∂θ̄ ðsin θ̄fωðθ̄ÞÞ

þ 1

sin2θ̄
∂
∂φ̄ ðfωðφ̄ÞÞ ¼ Srad; (21)

where

ωð0Þ ≔ ν−2pαpβ∇αe
β
ð0Þ ¼

X3

i¼1

lðiÞ

#
γi00 þ

X3

j¼1

γi0jlðjÞ

$
;

ωðθ̄Þ ≔
X3

j¼1

ωðjÞ
∂lðjÞ

∂θ̄ ;

ωðφ̄Þ ≔
X3

j¼2

ωðjÞ
∂lðjÞ

∂φ̄ ; (22)

and

ωðjÞ ≔ ν−2pαpβ∇αe
β
ðjÞ

¼ γ0j0 þ
X3

i¼1

lðiÞ

'
ðγ0ji þ γij0Þ þ

X3

k¼1

γijklðkÞ

(
: (23)

γαβγ ¼ −γβαγ is the Ricci rotation coefficients defined by
γαβγ ≔ eaðαÞe

b
ðγÞ∇bðeðβÞÞa. We also used

∇a

)
eað0Þ þ

X3

i¼1

lðiÞeaðiÞ
*
¼
X3

i¼1

)
γi0i− γ0i0lðiÞ þ

X3

k¼1

γikilðkÞ

*
;

−cot θ̄
∂lðjÞ

∂θ̄ −
1

sin2θ̄

∂2lðjÞ

∂φ̄2
¼lðjÞ;

∂lðiÞ

∂θ̄
∂lðjÞ

∂θ̄ þ 1

sin2θ̄

∂lðiÞ

∂φ̄
∂lðjÞ

∂φ̄ ¼ δij−lðiÞlðjÞ:

Note that the partial derivative with respect to xα that
appears in the first term for Eqs. (20) and (21) has to be
taken fixing ν, θ̄, and φ̄ (not fixing pi). For Eq. (21), it is
trivially seen that N ¼

R
dN is the conserved quantity [see

Eqs. (4) and (9)].
It is soon found that ωð0Þ is related to ωðiÞ by

ωð0Þ ¼ −
X3

i¼1

ωðiÞlðiÞ: (24)

Since lðiÞ, ∂lðiÞ=∂θ̄, and ð∂lðiÞ=∂φ̄Þ= sin θ̄ constitute an
orthonormal set of the unit vector in the local three-
momentum space of subscript ðiÞ, we find that ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ are the independent components of ωðiÞ.
½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are independent projection components of
the ωðiÞ vector, satisfying

ω2
ð0Þ þ ω2

ðθ̄Þ þ
1

sin2θ̄
ω2
ðφ̄Þ ¼

X3

i¼1

ω2
ðiÞ: (25)

We note that ωð0Þ and ωðjÞ are composed of nine basis
functions of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 2 and 0 ≤ jmj ≤ 2,
where Ylm is the spherical harmonics function. Also,
ωðθ̄Þ sin θ and ωðφ̄Þ are composed of fourteen basis functions
of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 3 and 0 ≤ jmj ≤ 2. Thus, in
general, ½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are written as functions of these
basis functions, although with a good choice of the tetrad,
they can be written in a simple form in particular for
spacetime of a special symmetry (see below).

C. Explicit form in black hole spacetime

1. Schwarzschild black hole

As an illustration, we explicitly describe the con-
servative form of Boltzmann’s equation in black-hole
spacetime. As the simplest case, first, we choose the
Schwarzschild background for which the line element is
written as

ds2 ¼ −
#
1 −

2M
r

$
dt2 þ

#
1 −

2M
r

$−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; (26)
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where òn and dòn are the value of energy at the nth cell center
and the width of the same cell, respectively.

In Figure 3, we show the radial profiles of the error function
rescaled by the number of energy mesh points Nò. It is seen that
the rescaled error functions for the different energy resolutions
almost coincide with one another, except for Nò= 20. This
indicates that the error function is inversely proportional to Nò,
roughly implying the first-order convergence. This is expected,
since the energy advection term is evaluated with a first-order
finite-difference scheme as described in Appendix A.

4.1.2. Angular Advection Tests

The greatest advantage of directly solving the Boltzmann
equation is that we are able to obtain information not only on
energy but also on the angular distribution in momentum space.
The direction of the neutrino momentum is specified by the
zenith and azimuth angles, (θν, fν; see Figure 1). Note that the
distribution function depends on θν alone in the spherical

symmetry assumed in this section. As a neutrino moves
nonradially, the zenith angle θν, which is measured from the
local radial direction, changes even in the flat spacetime. This
angular advection is shown schematically in Figure 4. The blue
curve is one of the geodesic curves along which the free
neutrino moves in the Schwarzschild spacetime. Note that it is
no longer a straight line due to gravity. In this example, the
neutrino moves outward and the zenith angle approaches
θν= 0, i.e., the outward radial direction, with the increasing
radius r. Since the geodesic curve is bent inward by gravity, the
approach is slower for the Schwarzschild spacetime than in the
flat spacetime. In this subsection, we test the capability of our
code to reproduce this angular advection.
The numerical setting is essentially the same as in the

previous test for the energy advection; we put the monochro-
matic neutrino source uniformly on a sphere with a certain
radius by setting f= 1 on an single energy bin there and f= 0

Figure 2. Neutrino distributions in energy space as a function of radius for the energy advection tests. The left and right panels show the results for the redshift and
blueshift tests, respectively. The arrows indicate the directions of the neutrino motions, and the white dashed curves show the trajectory of the massless particles
emitted from the source, truncated at the radius the massless particles reach at the time of the snapshot t = 2 × 10−4 s.

Figure 3. Radial profiles of the rescaled error function defined in the text.
Different colors indicate the number of energy mesh points: blue, green,
yellow, and red curves are for Nò = 20, 30, 40, and 60, respectively.

Figure 4. Schematic picture of the angular advection in momentum space angle
θν for Schwarzschild spacetime. The blue curve indicates the trajectory of a
massless particle emitted from the source located outside the photon sphere.
The blue arrows are the tangent vectors of the trajectory; the black arrows are
the radial vectors, with the dashed lines indicating the radial ray from the
coordinate center. The angle θν is the angle between these two vectors.

5

The Astrophysical Journal, 909:210 (17pp), 2021 March 10 Akaho et al.Gravitational redshift in Black hole spacetime

Akaho, Nagakura et al. 2020
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Fig. 2.— Left: Discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial
direction corresponds to neutrino energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right:
The Lorentz-transformed mesh in the fluid-rest frame. The blue lines correspond to the radial lines whereas the black lines are transformed
from the concentric circles in the left panel. The brown dots show an isoenergy circle in the fluid-rest frame for comparison. Matter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equations in the next

section, we present our idea to overcome these difficul-
ties. We then demonstrate our successful handling of the
isoenergetic scatterings in the realistic supernova simu-
lations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of Boltzmann equa-
tion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

(δf

δτ

)

col
, (1)

which is valid even in curved space-time. In the above
expression, f(= f(xµ, pi)) denotes the neutrino distri-
bution function in phase space; xµ and pµ are space-
time coordinates and four-momentum of neutrino, re-
spectively; since the latter satisfies the on-shell condition:
pµpµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spatial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interactions.

On the spherical coordinates in flat space-time, which
are the coordinates we employ for the laboratory frame in
our Eulerian approach, Eq. (1) is cast into the following

conservation form:

∂f

∂t
+

µν

r2

∂

∂r
(r2f) +

√

1− µ2
ν cos φν

rsin θ

∂

∂θ
(sin θf)

+

√

1− µ2
ν sin φν

rsin θ

∂f

∂φ
+

1

r

∂
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[(1 − µ2

ν)f ]

−
√

1− µ2
ν

r

cos θ

sin θ

∂

∂φν
(sin φνf) =

(δf

δt

)lb

col
, (2)

where r, θ, φ denote the spatial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cos θν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well justified
as long as neutrino oscillations are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory time t, is related with the original collision
term in equation (1) as

(δf

δτ

)

col
= εlb

(δf

δt

)lb

col
, (3)

where εlb(≡ pt) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper time of
each fluid element (t̃) as

(δf

δτ

)

col
= εfr

(δf

δt̃

)fr

col
, (4)

where εfr(≡ pt̃ ≡ −uµpµ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

dN = f(t,p,x)d3pd3x (1)

Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver

that incorporate detailed microphysics and general rela-
tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann
equations and hydrodynamical equations simultaneously
in multi-dimensions.
Unlike the previous 1D codes, we adopt an Eulerian

picture in this paper. There are several reasons for this
choice. Among other things, we have in mind that the
Boltzmann solver will be coupled with a Multi-D Eule-
rian hydrodynamics and gravity solvers, which have been
well established and widely used in the high-energy as-
trophysical community. In addition, the Eulerian pic-
ture has a benefit to easily handle the left hand side
of Boltzmann equation, i.e., advection terms. In gen-

(Time evolution + Advection Term) (Collision Term)

and remembering the definition

dpt

dτ
¼ dxα

∂τ
∂pt

∂xα
!!!!
pi
þ dpi

dτ
∂pt

∂pi

!!!!
xμ

¼ pα ∂pt

∂xα
!!!!
pi
− Γi

αβpαpβ ∂pt

∂pi

!!!!
xμ
: (19)

The conservative form is also derived for a local
orthonormal frame. Starting from Eq. (3) with the choice
of ûa ¼ eað0Þ and Eqs. (12), (14)–(16), we obtain

1
ffiffiffiffiffiffi−gp

∂ð ffiffiffiffiffiffi−gp
ν−1pαfÞ

∂xα
!!!!
qðiÞ

þ 1

ν2
∂
∂ν ð−νfp

αpβ∇αe
β
ð0ÞÞ

þ 1

sin θ̄
∂
∂θ̄

#
ν−2 sin θ̄f

X3

j¼1

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂θ̄
$

þ 1

sin2θ̄
∂
∂φ̄

#
ν−2f

X3

j¼2

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂φ̄
$

¼ Srad; (20)

or a practical form

1
ffiffiffiffiffiffi−gp

∂
∂xα

!!!!
qðiÞ

%#
eαð0Þ þ

X3

i¼1

lðiÞeαðiÞ

$
ffiffiffiffiffiffi−gp

f
&

−
1

ν2
∂
∂ν ðν

3fωð0ÞÞ þ
1

sin θ̄
∂
∂θ̄ ðsin θ̄fωðθ̄ÞÞ

þ 1

sin2θ̄
∂
∂φ̄ ðfωðφ̄ÞÞ ¼ Srad; (21)

where

ωð0Þ ≔ ν−2pαpβ∇αe
β
ð0Þ ¼

X3

i¼1

lðiÞ

#
γi00 þ

X3

j¼1

γi0jlðjÞ

$
;

ωðθ̄Þ ≔
X3

j¼1

ωðjÞ
∂lðjÞ

∂θ̄ ;

ωðφ̄Þ ≔
X3

j¼2

ωðjÞ
∂lðjÞ

∂φ̄ ; (22)

and

ωðjÞ ≔ ν−2pαpβ∇αe
β
ðjÞ

¼ γ0j0 þ
X3

i¼1

lðiÞ

'
ðγ0ji þ γij0Þ þ

X3

k¼1

γijklðkÞ

(
: (23)

γαβγ ¼ −γβαγ is the Ricci rotation coefficients defined by
γαβγ ≔ eaðαÞe

b
ðγÞ∇bðeðβÞÞa. We also used

∇a

)
eað0Þ þ

X3

i¼1

lðiÞeaðiÞ
*
¼
X3

i¼1

)
γi0i− γ0i0lðiÞ þ

X3

k¼1

γikilðkÞ

*
;

−cot θ̄
∂lðjÞ

∂θ̄ −
1

sin2θ̄

∂2lðjÞ

∂φ̄2
¼lðjÞ;

∂lðiÞ

∂θ̄
∂lðjÞ

∂θ̄ þ 1

sin2θ̄

∂lðiÞ

∂φ̄
∂lðjÞ

∂φ̄ ¼ δij−lðiÞlðjÞ:

Note that the partial derivative with respect to xα that
appears in the first term for Eqs. (20) and (21) has to be
taken fixing ν, θ̄, and φ̄ (not fixing pi). For Eq. (21), it is
trivially seen that N ¼

R
dN is the conserved quantity [see

Eqs. (4) and (9)].
It is soon found that ωð0Þ is related to ωðiÞ by

ωð0Þ ¼ −
X3

i¼1

ωðiÞlðiÞ: (24)

Since lðiÞ, ∂lðiÞ=∂θ̄, and ð∂lðiÞ=∂φ̄Þ= sin θ̄ constitute an
orthonormal set of the unit vector in the local three-
momentum space of subscript ðiÞ, we find that ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ are the independent components of ωðiÞ.
½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are independent projection components of
the ωðiÞ vector, satisfying

ω2
ð0Þ þ ω2

ðθ̄Þ þ
1

sin2θ̄
ω2
ðφ̄Þ ¼

X3

i¼1

ω2
ðiÞ: (25)

We note that ωð0Þ and ωðjÞ are composed of nine basis
functions of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 2 and 0 ≤ jmj ≤ 2,
where Ylm is the spherical harmonics function. Also,
ωðθ̄Þ sin θ and ωðφ̄Þ are composed of fourteen basis functions
of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 3 and 0 ≤ jmj ≤ 2. Thus, in
general, ½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are written as functions of these
basis functions, although with a good choice of the tetrad,
they can be written in a simple form in particular for
spacetime of a special symmetry (see below).

C. Explicit form in black hole spacetime

1. Schwarzschild black hole

As an illustration, we explicitly describe the con-
servative form of Boltzmann’s equation in black-hole
spacetime. As the simplest case, first, we choose the
Schwarzschild background for which the line element is
written as

ds2 ¼ −
#
1 −

2M
r

$
dt2 þ

#
1 −

2M
r

$−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; (26)
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Conservative form of GR Boltzmann eq.

General relativistic 
full Boltzmann neutrino transport
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Sumiyoshi and Yamada, 2012
Nagakura et al. 2014, 2017, 2019
Akaho and Nagakura et al. 2021

Shibata and Nagakura et al. 2014, Cardall et al. 2013

See also Lindquist 1966
Ehlers 1971



Some Critical Assessments
✓Microphysics

‣ basic set

Kotake et al. ‘18

‣ extensions in leptonic sectors

Bollig et al. ‘18

•neutrino interactions are one of the most important ingredients. 
•6 species of ! interact with hadrons (nucleons and nuclei) and 
leptons (electrons, muons and other neutrinos).

Lepton Sectors (including muons):

between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant

50

100

150

200

250

R(
sh

oc
k)

 [k
m

]

0

1

2

3

4

5

1

M
as

s 
ac

cr
et

io
n 

ra
te

 [M
 /s

]

0.0 0.2 0.4 0.6
tpb [s]

25

30

35

40

R(
ρ=

10
11

g/
cm

3 ) [
km

]

Standard
Virial
Muons
Muons+Virial
Muons+Strangeness+Virial

0.0 0.2 0.4 0.6
tpb [s]

0
2

4

6

8

10

12

G
ai

n 
la

ye
r h

ea
tin

g 
[B

/s
]

FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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Extensions

Muon Contribution

Some Critical Assessments
✓Microphysics

‣ basic set

Kotake et al. ‘18

‣ extensions in leptonic sectors

Bollig et al. ‘18

•neutrino interactions are one of the most important ingredients. 
•6 species of ! interact with hadrons (nucleons and nuclei) and 
leptons (electrons, muons and other neutrinos).

Basic Sets:

Lentz et al. 2011, Kotake et al. 2018

Weak Interactions

See also Grang et al. 2020, Fisher et al. 2020, 
Sugiura et al. 2022

See talks on Tuesday
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Weak Interactions

Some Critical Assessments
✓Microphysics

‣ basic set

Kotake et al. ‘18

‣ extensions in leptonic sectors

Bollig et al. ‘18

•neutrino interactions are one of the most important ingredients. 
•6 species of ! interact with hadrons (nucleons and nuclei) and 
leptons (electrons, muons and other neutrinos).

Basic Sets:

Hadron Sectors (Nucleon scattering):

Extensions
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Fig. 3.— Explosion diagnostics for model 3Ds (thick lines) compared to the non-exploding model 3Dn (thin lines) as functions of post-bounce time tpb. Top

left: Angle-averaged shock radius (black), gain radius (red) and NS radius (blue; defined by a density of 1011 g cm�3); top right: diagnostic energy (positive
total energy behind the shock). Gray lines display the corresponding 2D models without (2Dn, thin) and with strangeness contributions (2Ds, thick); middle

left: mass-accretion rate (Ṁ) ahead of the shock (red) and baryonic NS mass (blue); middle right, bottom left and right: mass, non-radial kinetic energy, and
time-integrated neutrino-energy deposition in the gain layer, respectively.

ca according to

ca =
1
2
�±ga � g

s
a
�
, (3)

where the plus sign is for ⌫p and the minus sign for ⌫n scatter-
ing (see, e.g., Horowitz 2002; Langanke & Martı́nez-Pinedo
2003). Since g

s
a  0, the cross section for ⌫p-scattering is

increased and for ⌫n-scattering decreased.
Employing Eq. (2) with g

s
a = �0.2, Horowitz (2002) es-

timates 15, 21, 23% reduction of the neutral-current opac-
ity for a neutron-proton mixture with electron fractions Ye =
0.2, 0.1, 0.05, which are typical values for the layer be-
tween neutrinosphere (at density ⇢ ⇠ 1011 g cm�3) and ⇢ ⇠
1013 g cm�3 for hundreds of milliseconds after bounce. Since
strangeness does not a↵ect charged-current interactions and
NS matter is neutron-rich, the reduced scattering opacity al-
lows mainly heavy-lepton neutrinos (⌫x ⌘ ⌫µ, ⌫̄µ, ⌫⌧, ⌫̄⌧) to

leave the hot accretion mantle of the PNS more easily. This
was found to enhance the expansion of the stalled SN shock
in 1D models, although not enough for successful shock re-
vival (Liebendörfer et al. 2002; Langanke & Martı́nez-Pinedo
2003). However, below we will show that the situation can be
fundamentally di↵erent in 3D simulations.

4. RESULTS

We compare 2D and 3D core-collapse simulations of the
20 M� star with strangeness corrections in neutrino-nucleon
scatterings, using g

s
a = �0.2 (models 2Ds, 3Ds), to corre-

sponding simulations without strange quark e↵ects (gs
a = 0;

models 2Dn, 3Dn) as in all SN simulations of the Garching
group so far. To explore “extreme” e↵ects, our choice of g

s
a

is by its absolute value somewhat bigger than theoretical and
experimental determinations of g

s
a ⇠ �0.1 (Ellis & Karliner

1997; Alexakhin et al. 2007; Airapetian et al. 2007).
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Nucleon Neutral Weak Current

2.2. NUCLEON NEUTRAL WEAK CURRENT

pµ
p�

µ

Z0

Figure 2.1: Depiction of the neutral weak nucleon vertex.

this insensitivity to neutrino flavor makes NCE interactions ideal for measuring neutrino

spectra from nearby supernovae since most of that flux is ⌫µ and ⌫⌧ [42, 43]. Several

proposals have been made to measure these events in existing detectors (e.g. [44, 45]).

The work presented here focuses on using neutrinos to measure nucleon structure. In

order to understand how this is possible, the formalism of the nucleon neutral weak current

is presented next.

2.2 Nucleon Neutral Weak Current

The diagram in figure 2.1 illustrates the neutral weak interaction with the nucleon. The

current for this interaction can be written

Jµ = hN(p0)|F1(Q2)�µ + F2(Q2)�µ⌫q
⌫ + GA(Q2)�µ�5|N(p)i (2.1)

where F1(Q2), F2(Q2), and GA(Q2) are the nucleon form factors and Q
2 is related to the

four-momentum transferred to the nucleon q
⌫ by

Q
2 = �(q⌫)2 = �(p⌫ 0 � p

µ)2. (2.2)
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CHAPTER 2. NEUTRAL CURRENT ELASTIC CROSS SECTIONS

The first two terms in the current are the vector contribution where F1(Q2) and F2(Q2)

are respectively the Dirac and Pauli form factors. The last term in the current is the axial

current where GA(Q2) is the nuclear axial form factor.

The Q
2 dependence of the form factors is typically parametrized using a dipole form.

As an example, the Q
2 dependence of the axial form factor is given here

GA(Q2) =
1
2

GA(0)
(1 + Q2/M2

A
)
⌧3 + G

s

A(Q2) (2.3)

where GA(0) is precisely determined from beta decay measurements, MA is the dipole cuto↵

mass, ⌧3 is +1 (�1) for proton (neutron) scattering, and a term due to the contribution

from strange quarks has been explicitly introduced.

Experiments have shown that strange quarks in the nucleon quark sea contribute to

nucleon mass and momentum (e.g. [46–48]). It is therefore important to consider possible

strange quark contributions to the neutral weak nucleon current. These contributions enter

the current as the additional form factors: F
s
1 (Q2), F

s
2 (Q2), and G

s

A
(Q2). The Q

2 evolution

of these form factors can also be parameterized by a dipoles:

F
s

1 (Q2) =
1
6

�r
2
sQ

2

(1 + Q2/M1
1 )2

(2.4)

F
s

2 (Q2) =
µs

(1 + Q2/M2
2 )2

(2.5)

G
s

A(Q2) =
1
2

�s

(1 + Q2/M2
A
)

(2.6)

where M1 and M2 are the relevant masses of the strange vector form factors2, rs is the

strange radius of the nucleon (analogous to the nucleon charge radius), µs is the strange

anomalous magnetic moment of the nucleon, and �s is the component of nucleon spin

carried by strange quarks.

Much e↵ort has been spent to understand the structure of the nucleon through measure-

ments of its strange and non-strange form factors with both electron and neutrino scattering

experiments. The results of the electron exeriments are discussed next.
2
These masses are commonly set to be equal to the vector cuto↵ mass MV : M1 = M2 = MV .
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Weak magnetism

Strangeness contribution

HOROWITZ, CABALLERO, LIN, O’CONNOR, AND SCHWENK PHYSICAL REVIEW C 95, 025801 (2017)

charge of the nucleon. The weak vector charge is Cv,n = −1/2
for scattering from a neutron n and Cv,p = 1/2 − 2 sin2 θW ≈
0 for scattering from a proton p. Here θW is the weak mixing
angle. The cross section in Eq. (2) neglects corrections of order
Eν/m from weak magnetism and other effects; for details, see
Ref. [28].

The free cross section per unit volume for scattering from
a mixture of neutrons and protons is then given by

1
V

dσ0

d$
= nn

dσ0

d$νn
+ np

dσ0

d$νp
, (3)

= G2
F E2

ν

16π2

[
g2

a(3 − cos θ )(nn + np) + (1 + cos θ )nn

]
.

(4)

In the medium this cross section is modified by the density
(vector) SV and the spin (axial) SA response. The response of
the system to density fluctuations is described by SV , while SA

describes the response of the system to spin fluctuations. The
response functions are normalized to unity in the low-density
limit SV ,SA → 1 as n → 0. The cross section per unit volume
in the medium is then given by

1
V

dσ

d$
= G2

F E2
ν

16π2

[
g2

a(3 − cos θ )(nn + np)SA

+ (1 + cos θ )nnSV

]
. (5)

Note that dσ/d$ reduces to the free cross section dσ0/d$ as
SA,SV → 1. In general both SV and SA depend on momentum
transfer q. However, in the limit q → 0 we can derive model-
independent virial results.

A. Virial equation of state

Next, we briefly review the virial equation of state for a
system with neutrons and protons [21]. We use this to calculate
SV and SA. The pressure P is expanded to second order in the
fugacities of neutrons, zn, and protons, zp,

P

T
= ln Q

V
= 2

λ3

[
zn + zp +

(
z2
n + z2

p

)
bn + 2zpznbpn

]
. (6)

Here T is the temperature, V is the volume of the system, and
Q is the grand-canonical partition function. The fugacities are
related to the neutron µn and proton µp chemical potentials
by zn = eµn/T and zp = eµp/T . Finally, the second virial
coefficients bn and bpn are calculated from nucleon-nucleon
elastic-scattering phase shifts. These are tabulated in Ref. [21].

The neutron nn and proton np densities follow from
derivatives of ln Q,

ni = zi

∂

∂zi

(
ln Q

V

)∣∣∣∣
V,T

. (7)

This gives

nn = 2
λ3

(
zn + 2z2

nbn + 2zpznbpn

)
, (8)

np = 2
λ3

(
zp + 2z2

pbn + 2zpznbpn

)
. (9)

B. Vector response

The vector response SV is equal to the static structure factor
Sq ; see, for example, Refs. [25,29]. For a single-component
system

SV (q = 0) = T

(∂P/∂n)T
. (10)

By using the virial equation of state this can be rewritten with
dP/dn = n/(T z)(dz/dn) as

SV = 1
n
z

∂

∂z
n. (11)

Following Ref. [7], we generalize this result to a mixture of
neutrons and protons:

SV = Cn
v

2Snn + 2Cn
v C

p
v Snp + C

p
v

2
Spp

Cn
v

2nn + C
p
v

2
np

, (12)

where

Snn = zn

∂

∂zn

nn = nn + 4
λ3

z2
nbn, (13)

Snp = zp

∂

∂zp

nn = 4
λ3

zpznbpn, (14)

Spp = zp

∂

∂zp

np = np + 4
λ3

z2
pbn. (15)

By using Eqs. (13)–(15), we have for SV

SV = 1 + 4
λ3

Cn
v

2z2
nbn + 2Cn

v C
p
v znzpbpn + C

p
v

2
z2
pbn

Cn
v

2nn + C
p
v

2
np

. (16)

In the limit C
p
v ≈ 0 this reduces to the neutron-matter

result [25]

SV = 1 + 4
λ3

z2
nbn

nn

. (17)

Here the impact of protons is to somewhat modify the neutron
fugacity zn because of the bpn term in the neutron density,
Eq. (8). The virial coefficient bn ≈ 0.32 is small and positive.
As a result, the vector response is slightly enhanced (larger
than one) as shown in Fig. 1. Attractive nucleon-nucleon
interactions increase the probability to find nucleons close
together. These density fluctuations increase the (local) weak
charge and produce a vector response SV > 1.

C. Axial response

To calculate the axial response SA we generalize our virial
equation of state to describe spin-polarized nuclear matter. Let
z+
p , z+

n be the fugacities for spin-up p and n, and z−
p , z−

n be the
spin-down fugacities. Generalizing the results of Ref. [25], we
have for the density of spin-up neutrons n+

n ,

n+
n = 1

λ3

[
z+
n + 2b+z+

n
2 + 2z+

n (b−z−
n + b+

pnz
+
p + b−

pnz
−
p )

]
.

(18)
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Many-body corrections

Core-collapse supernova explosion 2731

Figure 18. Shock radius evolution for the 11- and 19-M! progenitors, with
and without many-body corrections to the neutrino–nucleon scattering cross-
section. The inclusion of many-body effects is crucial for the explosion of the
19-M! progenitor, and strengthens the explosion of the 11-M! progenitor.

Fig. 18 provides a comparison of the evolution of the mean shock
radius with time after bounce for all the models in our modest
sensitivity study. From a comparison of models 19-M! (default:
678 × 128 × 256, green), 19-M!-LR (low-resolution: 678 × 64 ×
128, red), and 19-M!-HR (high-resolution: 678 × 256 × 512,
purple), we see that if the resolution is too low a model that otherwise
explodes will not. This is, of course, a qualitative difference and is
explained and analysed in more detail in Nagakura et al. (2019a).
The increased numerical viscosity at lower resolution inhibits the
turbulent pressure important in almost all neutrino-driven models
of explosion. We also see that the higher resolution model explodes
earlier. This result puts a premium on spatial resolution as a factor
in the interpretation of model results in the literature. We note that
this 19-M!-HR model is one of the highest resolution 3D supernova
models ever performed using a spherical grid.

From Fig. 18, we learn that, whereas the many-body correction
makes little qualitative difference for the 11-M! progenitor (11-M!
versus 11-M!-NoMB), without it (19-M!-NoMB, magenta) our
otherwise default 3D 19-M! model does not explode. The density
profile of the 11-M! progenitor all but ensures explosion for a range
of microphysics, but to get the 19-M! model (and, presumably, other
more massive progenitors) to explode the many-body correction, as
we have currently implemented it (Horowitz et al. 2017), has proven
supportive. The many-body effect decreases slightly the neutrino–
nucleon scattering rate, thereby accelerating the shrinkage of the
core. This raises by the resulting compression the temperatures
around the νe and ν̄e neutrinospheres and, as a result, the heating
rates due to absorption on nucleons near the stalled shock wave.
This facilitates explosion. What the effect may be of anticipated
improvements down the road in this class of corrections is yet to
be determined (Burrows & Sawyer 1998, 1999; Roberts, Reddy &
Shen 2012; Roberts & Reddy 2017).

Also in Fig. 18, we find that there is little difference between
models using the full multipole gravitational expansion (19-M!-
MP) and those that retain only the monopole. This is due to the
strong central concentration of the generic core-collapse structure
and the fact that all our initial models are non-rotating.

Fig. 19 plots the evolution with time after bounce of the diagnostic
energy of exploding models. We see that the many-body correc-
tion increases the explosion energy of the 11-M! progenitor by
∼20 per cent and that higher resolution does the same (at least in this
comparison study) for the 19-M! model. These are not qualitative

Figure 19. Diagnostic explosion energy for the 11- and 19-M! progenitors,
with and without many-body corrections to the neutrino nucleon scattering
cross-section. See the text for a discussion.

Figure 20. Heating efficiencies for the 11- and 19-M! progenitors, with
and without many-body corrections to the neutrino–nucleon scattering
cross-section. The inclusion of many-body effects leads to a more rapid
contraction of the PNS, resulting in slightly higher neutrino rms energies,
and, consequently, higher heating efficiencies. See text for a discussion.

differences, but important ones, as we attempt to determine, or at
least bracket, the salient quantities of theoretical CCSN explosions.

Fig. 20 displays the heating efficiencies (η) for all our sensitivity
calculations. The efficiency is defined as the ratio of the neutrino
power deposition rate by νe and ν̄e absorption in the gain region
behind the shock wave and the sum of the angle- and group-
integrated νe and ν̄e luminosities. This number does not include
the subdominant heating rate due to inelastic scattering, though
the simulations do. η is approximately a measure of the ‘optical
depth’ to neutrino absorption and ranges from ∼4 per cent to
∼8 per cent. Core-collapse supernovae are a ‘5–10 per cent’ effect,
not the ‘∼1 per cent’ effect often quoted. We see that during the first
∼0.2 s there is little difference between the various models with the
same progenitor mass. The high-resolution 19-M! model does have
a slightly higher energy deposition rate than the default model, and
higher still than the low-resolution realization. This is one of the
reasons for the qualitative difference in the outcomes (HR versus
LR) (Nagakura et al. 2019a). In addition, the default 11-M! model
with the many-body correction has a ∼3 per cent higher heating
rate early on, but in a time-averaged sense is not much different
after explosion. Not unexpectedly, the comparison between the two
models with and without the higher-order multipole gravity terms

MNRAS 491, 2715–2735 (2020)
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See talks on Tuesday
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- Nucleon bremsstrahlung of neutrino pairs

the parametrization and the one from the kernel treatment
are the same, as expected since the underlying interaction is
the same.
We briefly comment on the differences between the

bremsstrahlung treatments. The difference between the
T-matrix and OPE treatment is very obvious for densities
over 1014 g cm−3. There, the prescriptions derived from the
OPE potential give emissivities more than 10 times greater
than the T-matrix prescription. This suppression of the rates
at high densities, and also the more modest enhancement
of the rates at low density when compared to the OPE
interaction is a consequence of the T-matrix treatment
[38,48,50]. The parametrization, which is based on the
nondegenerate limit of the OPE generally produces com-
parable rates for the conditions used here. However, we
note that the high temperature at nuclear densities resulting
from Eq. (15) are higher then expected during the cooling
phase and therefore under those conditions we would
expect a larger deviation of the simplified rate from the
OPE results. The rates that are expected to be important

during the CCSN evolution are the ones near and around
the neutrinospheres where the neutrinos are decoupling
from the matter. At high densities, the neutrinos are in
equilibrium and the precise rate does not matter, and at low
densities the rate is so low that it does not contribute
appreciable to the overall neutrino emission. As pointed out
in [49], the key densities are around ρ≳ 1012 g cm−3

during the early core-collapse phase and upward of
ρ ∼ 1014 g cm−3 for the cooling phase. Over and above
this, it is important to note that the many competing
neutrino rates, and their strong temperature dependence,
like electron-positron annihilation, often reduce the impact
of changes in any one rate.
In addition to the differences that arise from the different

interactions (in the case of bremsstrahlung), differences
in the actual dynamical evolution can stem from the
differences in the transport treatment. As discussed above
in Sec. II A, for the simplified methods, the final state
neutrino blocking is not taken in account properly for the
emission, nor is the precise form of the annihilation

FIG. 1. Number emissivities for the different pair-production processes for heavy-lepton neutrinos. For the bremsstrahlung we show
the emissivity from the Hannestad and Raffelt (1998) [37] OPE potential kernel (green), the Guo et al. (2019) [38] T-matrix kernel (red),
and the parametrization from Burrows et al. (2006) [39] (purple). For the electron-positron annihilation we show the emissivity based on
the kernels (solid blue) and our parametrization of them (dashed blue), both from Bruenn (1985) [40]. We note that for the two electron-
positron interactions we expect the same emissivities as the underlying interaction is the same.

AURORE BETRANHANDY and EVAN O’CONNOR PHYS. REV. D 102, 123015 (2020)

123015-6

Major production channel of muon- and tau- neutrinos
Major role in proto-neutron star cooling phase

Betranhandy and O’Connor 2020

See talk by Aurore Betranhandy on Thursday
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- Towards first-principles CCSN simulations
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Sea of neutrinos

96 H. Nagakura and K. Hotokezaka

Figure 9. Neutrino spectra at the CCSN source modelled by our analytic formula (equation 12). The left-hand and right-hand panel correspond to νµ and ντ ,
respectively. The parameters are chosen so as to reproduce our Monte Carlo simulations for the early post-bounce phase (see the text for more details). The
solid lines represent the sum of thermal- and non-thermal component of neutrino spectrum. The dashed lines denote those of the thermal component. For νµ,
the spectrum is cut at the energy of muon rest mass (106 MeV) where we draw a thin vertical line in the left-hand panel.

post-bounce phase. Fig. 10 portrays the resultant spectrum of heavy
leptonic neutrinos for the late post-bounce phase in failed CCSN.

We must mention several caveats regarding our choice of the
parameters. Although the choice was made based on the emergent
spectra obtained by our Monte Carlo simulations, there remain sev-
eral uncertainties, indicating that the sensitivity of the detectability
to the parameters needs to be investigated. As we shall show below,
however, that there also remain large uncertainties in neutrino cross-
sections with detector materials, which prevents the quantitative
arguments; hence, our discussions are restricted to a qualitative level.
We postpone the detailed study of parameter dependence in future
until we remove or at least reduce the major uncertainties for the
estimation.

4.1.2 Neutrino oscillation

As we have described in Section 2, the neutrino shock acceleration
breaks the degeneracy of νµ and ντ in the energy of E > Mu, implying
that the treatment of three flavour of neutrinos is indispensable.
Three different flavours of neutrinos change into each other during
flight due to neutrino oscillation, which should be taken into account
to consider the event count in terrestrial detectors. In this paper,
we adopt a simple oscillation model but frequently used in the
literature: adiabatic Mikheyev–Smirnov–Wolfenstein (MSW) model
for normal and inverted mass hierarchies. Below, we describe the
essence of the model.

The CCSN core is the place where the matter potential of the
neutrino oscillation Hamiltonian dominates the vacuum one. The
matter potential is not identical among different flavours; for instance,
charged-current interactions in νe make the matter potential higher
than that for other heavy leptonic neutrinos. We also note that the
radiative corrections in matter reactions depend on the mass of
leptons (Botella, Lim & Marciano 1987), indicating that νµ and
ντ also feel the different matter potential. Although the radiative

correction is much smaller than the charged-current interactions,
the difference plays an important role to distinguish νµ and ντ ,
and in particular, the effect overwhelms the vacuum potential if the
matter density (ρ) becomes higher than ∼107–108 g cm−3 (Botella
et al. 1987; Dighe & Smirnov 2000). We find that the neutrino
shock acceleration occurs at the place where the matter density is
comparable or higher than the threshold; hence, we assume that the
three flavours of neutrinos are pinned at each three different mass
eigenstate in this study.

To see the relation between the flavour- and effective mass
eigenstate of neutrinos in matter, we need to compute the eigenvalues
of the oscillation Hamiltonian. For neutrinos, the Hamiltonian in the
flavour basis can be written as,

H = Hv + Hm, (16)

where

Hv = 1
2E
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U†, (17)

and
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In the expressions, mi (i = 1, 2, 3) denotes the three independent mass
of neutrinos. U represents the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix,10

U = U23U13U12, (19)

10We ignore the two Majorana phases in the PMNS matrix, since they do not
affect neutrino oscillations (Bilenky, Hošek & Petcov 1980; Langacker et al.
1987).
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Figure 9. Neutrino spectra at the CCSN source modelled by our analytic formula (equation 12). The left-hand and right-hand panel correspond to νµ and ντ ,
respectively. The parameters are chosen so as to reproduce our Monte Carlo simulations for the early post-bounce phase (see the text for more details). The
solid lines represent the sum of thermal- and non-thermal component of neutrino spectrum. The dashed lines denote those of the thermal component. For νµ,
the spectrum is cut at the energy of muon rest mass (106 MeV) where we draw a thin vertical line in the left-hand panel.

post-bounce phase. Fig. 10 portrays the resultant spectrum of heavy
leptonic neutrinos for the late post-bounce phase in failed CCSN.

We must mention several caveats regarding our choice of the
parameters. Although the choice was made based on the emergent
spectra obtained by our Monte Carlo simulations, there remain sev-
eral uncertainties, indicating that the sensitivity of the detectability
to the parameters needs to be investigated. As we shall show below,
however, that there also remain large uncertainties in neutrino cross-
sections with detector materials, which prevents the quantitative
arguments; hence, our discussions are restricted to a qualitative level.
We postpone the detailed study of parameter dependence in future
until we remove or at least reduce the major uncertainties for the
estimation.

4.1.2 Neutrino oscillation

As we have described in Section 2, the neutrino shock acceleration
breaks the degeneracy of νµ and ντ in the energy of E > Mu, implying
that the treatment of three flavour of neutrinos is indispensable.
Three different flavours of neutrinos change into each other during
flight due to neutrino oscillation, which should be taken into account
to consider the event count in terrestrial detectors. In this paper,
we adopt a simple oscillation model but frequently used in the
literature: adiabatic Mikheyev–Smirnov–Wolfenstein (MSW) model
for normal and inverted mass hierarchies. Below, we describe the
essence of the model.

The CCSN core is the place where the matter potential of the
neutrino oscillation Hamiltonian dominates the vacuum one. The
matter potential is not identical among different flavours; for instance,
charged-current interactions in νe make the matter potential higher
than that for other heavy leptonic neutrinos. We also note that the
radiative corrections in matter reactions depend on the mass of
leptons (Botella, Lim & Marciano 1987), indicating that νµ and
ντ also feel the different matter potential. Although the radiative

correction is much smaller than the charged-current interactions,
the difference plays an important role to distinguish νµ and ντ ,
and in particular, the effect overwhelms the vacuum potential if the
matter density (ρ) becomes higher than ∼107–108 g cm−3 (Botella
et al. 1987; Dighe & Smirnov 2000). We find that the neutrino
shock acceleration occurs at the place where the matter density is
comparable or higher than the threshold; hence, we assume that the
three flavours of neutrinos are pinned at each three different mass
eigenstate in this study.

To see the relation between the flavour- and effective mass
eigenstate of neutrinos in matter, we need to compute the eigenvalues
of the oscillation Hamiltonian. For neutrinos, the Hamiltonian in the
flavour basis can be written as,

H = Hv + Hm, (16)

where
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In the expressions, mi (i = 1, 2, 3) denotes the three independent mass
of neutrinos. U represents the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix,10

U = U23U13U12, (19)

10We ignore the two Majorana phases in the PMNS matrix, since they do not
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In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as
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where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D
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where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
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(2⇡)3
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`
0
(i)`(i))(f(q

0)� f̄
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(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
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(2⇡)3
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3X

i=1

`
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F
(i))(f

F
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0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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where D = (�p
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uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
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2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
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can be written as
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where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,
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where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.
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where f
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denotes the density matrix of neutrinos measured at
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where D = (�p
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[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
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[1, 2]); The leading order of V` can be written as
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where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
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where d

3
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trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,
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where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.
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In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
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FIG. 4. Space-time diagram for appearance of ELN crossings. The bold red line portrays a time
trajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock trajectory for non-exploding models. The color code for enclosed regions distinguishes types
of ELN crossing. The green, blue, and brown color denote Type I, Type II, and any type of crossings,
respectively. In each region, we provide some representative characteristics of ELN-crossings. The
remark ”Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent. In Sec. III B, we conduct an
in-depth analysis of their physical origin.

We provide a schematic space-time diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all trends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convection and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convection in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 distinguishes types of ELN-crossings.
Below, we turn our attention to the physical origin of
ELN crossing generation.

B. Generation mechanism of ELN crossings

1. Type-II crossings at early post-bounce phase

Let us start by analyzing the Type-II crossings that
appear at the early post-bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentative case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide projections of the
ELN crossing and some important quantities at 130 km
for the 12 solar mass model case. We find that the Type
II crossing has a rather scattered distribution (see the

top left panel). To see the trend more quantitatively, we
show �Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here �Gout and �Gin

are defined as follows. The energy-integrated number of
neutrinos at µ = 1 and �1 are written as

Gout =

Z
d(

"3

3
)fout("),

Gin =

Z
d(

"3

3
)fin("),

(2)

respectively, where " denotes the neutrino energy in units
of MeV. We stress that both fout and fin in Eq. 2 are the
basic output of our angular reconstruction computation
complemented by the ray-tracing method (see Sec. II B).
Here �G is the di↵erence of the ⌫e and ⌫̄e G values:

�G = G⌫e �G⌫̄e , (3)

where we omit the subscript ”out” or ”in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-II
crossings. The one-to-one correspondence is attributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = �1
(incoming) direction.
We find some interesting correlations between the

Type-II crossings and other physical quantities. These
correlations provide useful insight for studying the phys-
ical origin of the crossings. To quantify the correlations,
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instabilities should, therefore, be expected [40–42]. Note
that in SNe, crossings of ELN distribution are not guar-
anteed (see e.g. Ref. [43]); they may only occur in the
presence of LESA for certain emission directions [42,44].
Therefore, fast conversions in supernovae may mainly
occur because of the non-negligible flux of neutrinos not
streaming in the radially forward direction [42]. In this
sense, the merger remnants offer a more natural environ-
ment than SNe for fast conversions.
In this paper, the neutrino angular distributions are taken

into account in the study of ν–ν interactions above merger
remnant disks for the first time. Similarly to core-collapse
SNe, an exact numerical solution of the flavor distribution
of propagating neutrinos in mergers is not yet affordable.
However, we can estimate whether favorable conditions for
fast flavor conversions are present in compact binary
merger remnants by adopting analytical tools. To this
purpose, we rely on the dispersion relation (DR) approach
recently developed in Ref. [42].
The outline of our manuscript is as follows. First, we

model the neutrino emission from compact binary merger
remnants by introducing a simple two-neutrino-emitting
disk model motivated by existing hydrodynamical simu-
lations in Sec. II. In Sec. III, we introduce the equation of
motion governing the neutrino flavor evolution and the DR
in the flavor space. Results on the occurrence of temporal
and spatial instabilities in the flavor space are presented in

Sec. IV and Sec. V, respectively. Caveats on our main
findings are discussed in Sec. VI, and conclusions are
reported in Sec. VII.

II. TWO-NEUTRINO-EMITTING DISK MODEL

In order to examine whether fast flavor conversion
occurs above the merger remnants, we refrain from relying
on a specific merger model given the uncertainties intrinsic
to the neutrino transport adopted in hydrodynamical
simulations of these objects. We instead rely on the simple
two-neutrino-emitting disk model shown in Fig. 1 (see also
Appendix A). The choice of the model parameters is,
however, guided by the hydrodynamical simulation of the
massive NS–disk evolution [12].
In addition to the overall protonization discussed in the

previous section, an important feature of merger remnants
is that the spectral-averaged decoupling surfaces of νe and
ν̄e are spatially well separated. This can be seen, for
example, in Fig. 12 of Ref. [11] and Fig. 3 of Ref. [34]
showing the size ratio of the decoupling surface of ν̄e to that
of νe ∼ 3=4. This is a consequence of the neutron richness
of the remnant system and the spatial extension of the
accretion disk which leads to a smaller density gradient
with respect to the SN proto-neutron star.
Based on the above discussion, we assume that for a

NS–disk remnant, νe and ν̄e decouple instantaneously at
surfaces approximated as finite-size disks of radii Rν̄e ¼
0.75Rνe and heights hνe=Rνe ¼ hν̄e=Rν̄e ¼ 0.25. They are
emitted half-isotropically from their respective surfaces
with a flux ratio α≡Φ0

ν̄e=Φ
0
νe ¼ 2.4 and propagate freely

afterwards. For the BH–torus, we model the ν-emitting tori
by setting an inner edge of the surface at R0 ¼ 0.15Rνe
[11], representing the innermost stable circular orbit. Since,
in the merger remnants, the nonelectron neutrinos share the
same properties, they do not enter the following analysis
and will be omitted.

III. DISPERSION RELATION IN FLAVOR SPACE

The equation of motion (EoM) for each momentummode
governing the evolution of free streaming neutrinos
is given by ð∂t þ v · ∂xÞϱ ¼ −i½H; ϱ&, where v ¼
ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the velocity of an ultra-
relativistic neutrino, whose 4-vector is vμ ¼ ð1; vÞ. The
Wigner-transformed density matrix ϱ in the flavor basis
encodes the flavor occupation numbers in the diagonal terms
and flavor correlations in the off-diagonal terms. The
Hamiltonian, H, consists of the contributions from the
vacuum mixing [45], coherent-forward scattering between
neutrinos and electrons, and that among neutrino themselves.
Dismissing the vacuum term and ignoring the

energy dependence since we are interested in fast
conversions, we express the neutrino density matrix in terms
of the “flavor isospin” ξ and the occupation numbers fνβ for
the neutrino flavor νβ: ϱ ¼ ½ðfνe þ fνxÞ þ ðfνe − fνxÞξ&=2
(ϱ̄ ¼ −½ðfνe þ fν̄xÞ þ ðfν̄e − fν̄xÞξ

'&=2) for neutrinos

FIG. 1. Geometry of νe (in red) and ν̄e (in blue) emitting
surfaces with radii Rνe and Rν̄e , heights hνe and hν̄e . R0 is the
innermost stable circular orbit for a BH-disk system (R0 ¼ 0 for a
NS-disk remnant). Inset: Example of crossings of the ELN
distribution (Φνe −Φν̄e ) as a function of the polar and azimuthal
angles cos θ and ϕ above the NS–disk. The exact shapes are
calculated at ðx; zÞ ¼ ð0.6Rνe ; 0.35RνeÞ with Rν̄e ¼ 0.75Rνe and
hνe=Rνe ¼ hν̄e=Rν̄e ¼ 0.25. The region shaded in red (blue)
corresponds to Φνe < Φν̄e (Φνe > Φν̄e ).
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at ∼36 km around t ∼ 0.08 ms. The inner sub-branch
moves at a similar group velocity of ∼0.4 and disappears
at t ∼ 0.5 ms. On the other hand, the outer one propagates
with a group velocity of ∼0.9, quick enough to reach
the free-streaming region where flavor mixing gets trans-
ported away from our simulation domain for positive vr
modes. Afterwards, the neutrino fields remain stable
(against oscillations) for a duration of ∼0.2 ms during
0.5 ms≲ t≲ 0.7 ms. At t ≈ 0.7 ms, the collisional insta-
bility appears once again around r ∼ 28 km after the
neutrino field self-regulates its distributions near the
decoupling region. Unlike the first instability discussed
above, the flavor mixing due to the second collisional
instability does not get transported away this time and
eventually freezes into a stationary state until the end of our
simulation at t ∼ 1 ms.
Figure 3 shows the maximum growth rates of flavor

instabilities among all Kr modes, ImðΩÞ, as a function of
radius for Model II at different times. These ImðΩÞ are
derived by numerically solving the linearized Eqs. (17) and
(18). At t ¼ 0 ms, ImðΩÞ peaks at r ≃ 27 km. The growth
of this instability thus dominates the evolution of the
system initially, consistent with results shown in Fig. 2.
When t ¼ 0.024 ms after flavor transformation occurs,
ImðΩÞ in 25 km≲ r≲ 32 km becomes smaller than
∼0.1 km−1, while its value maintain roughly the same
for r≳ 32 km. For t ¼ 0.42 ms when flavor mixings
around r ∼ 30 km gets suppressed, ImðΩÞ < 0.1 km−1

for all radii. At an even later time t ¼ 0.66 ms when flavor
conversion reappears (see Fig. 2), larger ImðΩÞ are found in
27 km≲ r≲ 31 km again.

We compare the maximum growth rates obtained from
the stability analysis at 0 ms with the numerical evolution
for Model II at four different radii. Figure 4 shows that the
time evolution of seμ of radial velocity vr ¼ 1 in the linear
regime perfectly agree with the prediction determined by
seμðt ¼ 0Þ exp½ImðΩÞt% at 28 km, 30 km, and 32 km,
respectively, which is expected since the growth of colli-
sional instability dominates over the disturbance from
advection.
Although positive ImðΩÞ are found for nearly all radii

larger than 20 km at all times, not all of them lead to the
growth of jhϱeμij in the simulation. This is because the
stability analyses can only tell how a perturbation evolves
around where the local condition can be maintained.
However, in realistic simulations where advection occurs
in the presence of inhomogenous neutrino number density,
the instability growth rate needs to compete with advection
for a perturbation to grow before it being transported away.
To illustrate this, we show in Fig. 2 a characteristic value of
advection rate as 5=r for Model II by the red solid line. We
take this function in an empirical way motivated by the
advection term in Eqs. (1) and (2) being generally propor-
tional to 1=r. Comparing Figs. 2 and 3, it seems to suggest
that when ImðΩÞ is roughly less than 5=r, the growth rate of
the instability is too small against the advection, such that
no significant flavor conversion can develop. For example,
although the stability analysis yields a positive ImðΩÞ at
r ¼ 40 km and t ¼ 0 ms, seμ decreases in the simulation as
shown in Fig. 4. In addition, ImðΩÞ are positive from
0.024 ms to 0.42 ms at r ¼ 27 km in Fig. 3, while seμ
decreases in Fig. 2.
Next, we examine the impact of flavor conversion due to

collisional instability on the property of neutrinos of all

FIG. 3. Growth rates ImðΩÞ from linear stability analysis as
functions of radius r for four simulation times in Model II. We
sample 31 values of Kr from −2 km−1 to 2 km−1 and show the
maximal values for each radius. The red curve indicates 5=r as an
empirical criteria to determine the growth of instability against
advection.

FIG. 4. Time evolution of the dimensionless ratio seμ of radial
velocity vr ¼ 1 for four different radii in Model II. Each of them
is compared with a black dashed line determined by seμðt ¼
0Þ exp½ImðΩÞt% with the growth rate ImðΩÞ in Fig. 3 at t ¼ 0 ms.
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FIG. 3. The ⌫ELN excess parameter D = 1 � n⌫̄e/n⌫e (upper row) and the frequency ⌦ = !P + i� of the normal mode with
the maximum growth rate � > 10�3 µs�1 (middle and lower rows) at three snapshots (as labeled) in the BH accretion disk
model M3A8m3a5 of Ref. [15]. The solid and dashed curves are the contours with F⌫e = 1/3 and F⌫̄e = 1/3, respectively. [See
Eq. (19)]. The dot-dashed curves are the contours with D = 0.

model can be found in Refs. [15, 25].
For the neutrino gases with discrete energy groups,

Eq. (6) becomes

X

j

{[⌦a + !e↵(Ei)]�ij + µgj�Ej}Sa
j = 0, (18)

where Ej , gj , and �Ej are the energy, the ⌫ELN weight,
and the width of the neutrino in the jth energy group, re-
spectively. (The antineutrinos are counted as the neutri-
nos with negative energies.) There are N normal modes
for N discrete neutrino energy groups, and ⌦a and Sa

(a = 1, . . . , N) are the eigenvalues and eigenvectors of the
matrix with the elements ⇤ij = �[!e↵(Ei)�ij +µgj�Ej ],
respectively. We solve the frequencies of the normal
modes in M3A8m3a5 with �m2 = 2.5⇥ 10�3 eV2, ✓ =
8.6°, and the emission and absorption rates of ⌫e and ⌫̄e
in Eq. (1) [26]. In Fig. 3 we show both the real and imag-
inary components of the frequency of the normal mode
that has the largest growth rate in each spatial grid. One
can see that the growth rates of the flavor instabilities are
the largest where the net ⌫ELN is negligible which is ex-
pected from the previous analysis.

Strictly speaking, Eqs. (6) and (18) are valid only for
a homogeneous and isotropic neutrino gas. Following
Ref. [25], we plot

F⌫(t, r) =

��R v f⌫(t, r,p) d3p
��

R
f⌫(t, r,p) d3p

=
1

3
(19)

in Fig. 3 for ⌫ = ⌫e and ⌫̄e as the solid and dashed curves,
respectively. The condition of homogeneity and isotropy
is approximately satisfied in the inner part of the disk
where F⌫ is small.
Throughout the BH-torus system, one has �/�̄ > 1 be-

cause the collision rates are dominated by the neutrino
absorption rates and there are more neutrons than pro-
tons in this region. Although the entire accretion disk
tends to emit more ⌫̄e than ⌫e, the density of ⌫e in the
inner torus is actually larger where the chemical poten-
tial of the electron is significant. Therefore, we expect
only the CFI of the plus type (with !P/µ ⇡ 0) can ex-
ist in the inner torus. Earlier in Fig. 1 we have shown
the frequency ⌦ of the normal mode with the largest
growth rate in the equatorial plane of the accretion disk
at t = 20ms. It is clear from Figs. 1 and 3 that the CFI
in the inner torus is indeed of the plus type, while the
instability in the outer region of the torus is of the minus
type [!P / (n⌫e �n⌫̄e)] if our analysis can be generalized
to the anisotropic environment.
Discussion and conclusions We have shown that

there exist two types of CFI in a dense neutrino gas that
preserves the homogeneity and isotropy. The CFI tran-
sitions from one type to the other where the net ⌫ELN is
zero and has a resonance-like instability that grows at a

rate / n1/2
⌫ . But this is only part of the story. There can

exist the CFI that breaks these symmetries or even in
the inhomogeneous and anisotropic environment as one
maps out the full dispersion relation ⌦(K) of the col-
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abstract

I. INTRODUCTION

II. BASIC EQUATIONS

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2

4
m

2
1 0 0
0 m

2
2 0

0 0 m
2
3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)

⇤
hirokin@astro.princeton.edu

where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).

- Global Simulations: code development
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FIG. 2. Radial profiles of three key quantities. Left: gain energy from neutrinos. Each color corresponds to a di↵erent model.
Middle: average energy of neutrinos. Line type distinguishes the species of neutrinos. Right: energy flux of neutrinos.

potentially hinders the delayed neutrino-heating mecha-
nism. It may be, however, premature to conclude that
FFCs play negative roles on explosions. As shown in
the same figure, neutrino cooling in optically thick re-
gion is higher in M3F than NFC. Indeed, we find that
the total energy flux of neutrinos at the outer boundary
is increased by ⇠ 33%. This leads to higher matter tem-
perature due to an e�cient contraction of PNS and then
the average energy of neutrinos would also be increased,
that would facilitate neutrino absorptions in the gain re-
gion. This suggests that feedback from neutrino-matter
interactions to fluid dynamics needs to be included to de-
termine whether FFC has a positive or negative role on
driving explosion. The detailed investigation on this is-
sue requires radiation-hydrodynamic simulations, which
is beyond the scope of this paper and will be addressed
in future work.

It is worthy of note that the average energy of electron-
type neutrinos (⌫e) and their antipartners (⌫̄e) in M3F
become higher than the case with NFC (see middle panel
in Fig. 2). This is attributed to the fact that some heavy-
leptonic neutrinos (⌫x), having the highest energy among
flavors, convert to ⌫e and ⌫̄e. On the other hand, energy
fluxes of ⌫e and ⌫̄e become lower (see the right panel of
Fig. 2), which is also due to lower energy flux of ⌫x in
NFC. These two e↵ects compete with each other regard-
ing neutrino heating, and the latter e↵ect dominates over
the former. We also find that the energy flux of ⌫x(ave),
averaging over ⌫x and ⌫̄x, are substantially increased in
M3F, whereas their average energy becomes lower than
the case with NFC. This trend is qualitatively in line with
results of radiation-hydrodynamic simulations of binary
neutron star merger remnant [24, 25].

We make remarks on model-dependent features on
neutrino heating. First, the impact of FFC in M2F is
less remarkable than M3F (see in the left panel of Fig. 2);
the net gain energy is ⇠ 16% lower than the case with
NFC. This indicates that ⌫e- and ⌫̄e conversions to heavy-
leptonic neutrinos are mild compared to the three fla-
vor framework, which is consistent with the di↵erence of

flavor equipartition between these frameworks. Our re-
sult exhibits the importance of three flavor framework to
quantify the actual impact of FFCs on CCSNe. Next, we
find that M3FGR has essentially the same result as M3F,
suggesting that GR e↵ects are subdominant. Quanti-
tatively speaking, however, we find neutrino cooling in
the semi-transparent region (⇠ 50km) is suppressed in
M3FGR. The lower neutrino cooling exhibits that the
number (or energy) density of ⌫e and ⌫̄e is higher than
those in the case with NFC, since the increase of neu-
trino population leads to larger blocking factor for neu-
trino emission and also higher neutrino absorption there.
The increase of neutrino number is a natural outcome
of redshift e↵ect, since the average-energy of neutrinos
becomes lower, resulting in the larger neutrino di↵usion
due to the lower opacity. Finally, we confirm that M3FH
model, which has the highest resolution with the modest
⇠, shows the essentially identical result to M3F.

In Fig. 3, we show energy-integrated angular distribu-
tions (top) and angular-integrated energy spectra (bot-
tom) for each flavor of neutrinos. Here, we again focus on
the result of M3F to discuss key rolls of FFCs in chang-
ing neutrino distributions in momentum space. The left
panels exhibit that FFC can change both angular dis-
tribution and energy spectrum of neutrinos in optically
thick region. One thing we do notice here is that an
ELN crossing appears at cos ✓⌫ ⇠ 0 in NFC, which guar-
antees that FFC occurs in M3F. The flavor conversion
is vigorous at cos ✓⌫ ⇠ 1, and the flavor equipartition
is nearly achieved in the same angular direction. ⌫̄e is
reduced more substantially than ⌫e, which seems to be
due to larger population of ⌫̄e than ⌫e in this direction.
For incoming neutrinos (cos ✓⌫ < 0), the conversion be-
comes ine�cient, but it is still noticeable for ⌫x(ave). The
substantial change of ⌫x(ave) can also be seen in the en-
ergy spectrum, whose feature is strongly dependent on
energy. In the high energy region (>⇠ 40MeV), ⌫x(ave) in
M3F is remarkably lower than NFC, whereas the di↵er-
ence between NFC and M3F is subtle for ⌫e and ⌫̄e. This
result exhibits that FFC o↵ers a new channel to absorb

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a 
CCSN simulation.

General relativistic effects are 
taken into account.

A wide spatial region is covered.

Three-flavor framework

Neutrino-cooling is enhanced by FFCs
Neutrino-heating is suppressed by FFCs Impacts on CCSN explosion !!

Neutrino heating/cooling
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K   (r-r component of Eddington tensor) becomes less than 1/3.rr
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Global Simulations of FFC in binary neutron star merger remnant
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FIG. 2. Top: di↵erence of ELN number density from the initial distribution, nELN(t)� nELN(0). Bottom: ELN-XLN number
density, nELN�XLN(t), in which we highlight its sign by red- (for positive) and black (for negative) colors. The boundary
between the two regions is a ELN-XLN Zero Surface (EXZS); see the text for more details. We displayed them at five di↵erent
time snapshots for M2h: t = 0.05, 0.1, 0.2, 0.4, and 0.8 ms from left to right.

FIG. 3. Color map for the ratio of the real part of the o↵-
diagonal component of f to the sum of the diagonal elements
at t = 0.8ms for M2h model.

where XLN denotes a heavy-leptonic-neutrinos lepton
number, is flipped (see bottom panels of Fig. 2). We
call the surface as ELN-XLN Zero Surface (EXZS).

As shown in Fig. 2, the EXZS at the ✓-boundary (✓max)
does not evolve with time. This is attributed to the ge-
ometry of neutrino spheres. In our models, ⌫̄e is more
populated than ⌫e in the inner region (r <⇠ r

⌫̄e
out). On

the other hand, the number density of ⌫e can dominate
over ⌫̄e at r ⇠ r

⌫e
out and ✓ ⇠ ✓

⌫e
out. This indicates that

EXZS appears at t = 0ms (since XLN is zero). We note
that the neutrinos injected into computational domain
from ✓ = ✓max are assumed to be fixed in time, and these
neutrinos have the primary contribution in the neutrino

number density; hence, the EXZS is nearly fixed.

However, the EXZS in the region of ✓ < ✓max is not
stationary, but dynamically evolving in the time scale
of global advection (an order of ⇠ 0.1ms). As shown
in the bottom panels of Fig. 2, the negative region of
nELN�XLN expands with time, in particular around the
z-axis. We find that ⌫e in the angular region where ⌫̄e

is absent (see also Fig. 1 in [8]) converts into ⌫x, that is
mainly responsible for the negative nELN�XLN there. One
thing we do notice here is that the flavor conversion is
less vigorous around the z-axis, despite the fact that the
neutrino radiation field is substantially changed. Indeed,
the amplitude of o↵-diagonal components of f is less than
a percent of the diagonal ones around the pole. On the
other hand, it is > 10% around the EXZS at t = 0.8ms
(see Fig. 3), suggesting that flavor conversions occur only
in the vicinity of EXZS, and then the FFC-experienced
neutrinos advect to other regions.

We compare ELN-XLN angular distributions between
two di↵erent spatial positions in Fig. 4. The left and
right panels portray the distribution at ✓ = 30� and 40�,
respectively, on the same radius (r = 80km). We note
that the EXZS is located between the two positions. At
t = 0ms (top panels), the angular distributions of neu-
trinos at the two spatial positions are nearly identical to
each other. At cos ✓⌫ ⇠ 1, ELN is negative, that is due to
the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
However, there is a region (band) where ⌫e dominates
over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
due to the smaller size of neutrino sphere in the disk than
that of ⌫e (see Fig. 1). At t = 0.8ms, however, the ELN-
XLN in the band becomes negative at the ✓ = 30� posi-
tion, suggesting that these neutrinos undergo an almost
complete swap from ⌫e to ⌫x. As we mentioned above,
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the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
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over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
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Collisional flavor swap
 (associated with collisional instability)

Kato, Nagakura, and Johns (arXiv:2309.02619)
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FIG. 1. Time evolution of number densities of neutrinos. Red-
and green-solid lines denote νe and νx (nνe

and nνx
), respec-

tively. Solid and dotted lines denote cases with and without
diagonal components of collision term, respectively; see text
for more details.

potential becomes zero, which corresponds to a necessary
condition for occurrences of a resonance-like evolution in
CFI (unless number densities of νx and their antipartner
(ν̄x) are largely different from each other, whose cases
are not considered in this Letter, though). We employ
a nuclear equation-of-state [40] to obtain all necessary
thermodynamical quantities for computing weak reaction
rates.

As an initial condition, we assume that all neutrinos
are in thermal and chemical equilibrium with matter, but
very small perturbations are added in off-diagonal com-
ponents of density matrix (10−6 compared to electron-
type neutrinos) to trigger flavor conversions. The chem-
ical potential for νx and ν̄x is assumed to be −2 MeV. It
should be noted that we consider the region outside the
energy sphere, which leads to the negative chemical po-
tential [41]. We assess the stability of neutrino distribu-
tions by following the prescription in [34], and confirmed
that CFI occurs with the growth rate of 5× 10−3 cm−1.
The associated timescale of CFI (tCFI) is ∼ 10−5 shorter
than the time scale of neutrino-matter interaction (tcol).
This exhibits that the flavor instability corresponds to a
resonance-like CFI, whose time scale can be roughly es-
timated as tCFI ∼

√
GFnνγ, where nν and γ denote the

number density of neutrinos and energy-averaged reac-
tion rates of neutrino matter interactions, respectively.
We solve the QKE by using MC code [42], in which we
employ a uniform energy grid from 0 MeV to 100 MeV
with 100 grid points.

Solid lines in Fig. 1 draw the dynamics of collisional
swap, while we omit to show those in antineutrinos, since
their evolution is almost identical to neutrinos. νe and
νx substantially shuffle at t ∼ 2 × 10−8 s, and then the
flavor swap almost completes by t ∼ 1 × 10−7 s. One
thing we do notice that there is no energy dependence in

the collisional swap.
Before discussing the physical process of collisional

swap in detail, we make an interesting comparison to
the case with no collision term in diagonal elements; the
results are shown as dotted lines in Fig. 1. In the early
phase, the time evolution of flavor conversions is almost
identical to the case with diagonal collision terms, which
is consistent with linear analysis. However, they devi-
ate each other from t ∼ 2 × 10−8 s, corresponding to
the time when the number of neutrinos of two flavors be-
come nearly equal. In the case without diagonal collision
terms, the system converges to a flavor equipartition with
oscillations. This exhibits that the diagonal elements in
collision terms are key elements to understand collisional
swap, which can also be shown analytically (see below).
Analytic arguments.— We discuss the collisional swap

in terms of polarization vectors in flavor spaces, which
are defined by ρ ≡ P0I/2 + P · σ/2 with

P = (2Reρex,−2Imρex, ρee − ρxx), (4)

P̄ = (2Reρ̄ex, 2Imρ̄ex, ρ̄ee − ρ̄xx), (5)

P0 = ρee + ρxx, the unit matrix I and the Pauli-matrix
vector σ. We ignore the energy dependence in flavor
conversions throughout this discussion, which is in line
with the result of our dynamical simulation. For more
convenience, we use S = P + P̄ , and D = P − P̄ instead
of P and P̄ . The QKE can be rewritten in terms of S
and D as

Ṡ = µD × S

+
Γ+ Γ̄

2
(Seq − S + (S0,eq − S0)z)

+
Γ− Γ̄

2
(Deq −D + (D0,eq −D0) z) , (6)

Ḋ =
Γ− Γ̄

2
(Seq − S + (S0,eq − S0)z)

+
Γ+ Γ̄

2
(Deq −D + (D0,eq −D0) z) , (7)

with µ =
√
2GF , Γ = Γe/2 and Γ̄ = Γ̄e/2; Γe (Γ̄e) de-

notes the reaction rate for νe (electron antineutrinos, ν̄e),
while we consider the situation with Γ > Γ̄ due to neu-
tron rich environment; z is the unit vector of z-axis in
flavor space; the index of ”eq” indicates the quantities
in the thermal equilibrium. In the initial condition, S is
headed in the positive direction along z-axis (but slightly
tilted from the z-axis due to perturbations), while D is
embedded in x − y plane (i.e., Dz = 0), and its x− and
y components represent initial perturbations.
Here we consider reasonable approximations in

Eqs. 6 and 7 so as to make the problem analytically
tractable. We assume that neutrino self-interactions are
much stronger than neutrino-matter interactions, which
guarantees tCFI & tcol. Since the collisional swap oc-
curs in nonlinear phases of CFI, its dynamical timescale

νe

νx
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CCSN simulations with full Boltzmann transport CCSN simulations with two-moment method

Multi-dimensional (or alternative) CCSN simulations
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Neutrino kinetics (transport, neutrino-matter collisions, and oscillation) 
plays key roles on CCSN dynamics
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- Weak reactions with light nuclei

black：nucleon
red：deuteron
green：triton, He3
blue：He4
Aqua: heavy nuclei

Nagakura et al. 2019, Furusawa and Nagakura 2022

4 Nagakura et al.

more details. The free energy density of the uniform
nuclear matter is obtained by solving the Schroedinger
equation. The Hamiltonian consists of the kinetic,
the AV18 two-body potential (Wiringa et al. 1995)
and the UIX three-body potential (Carlson et al. 1983;
Pudliner et al. 1995) terms. This formulation is ex-
tended to non-uniform nuclear matter at sub-nuclear
densities to compute the free energy density of unbound
nucleons that drip from heavy nuclei, as well as the bulk
energies of heavy nuclei. We also take into account the
dependence of iso-spin of each nucleus and temperature
on the saturation densities of heavy nuclei. In the mass
model of heavy nuclei, the coulomb- and surface-energy
shifts1 are also taken into account.
The shell energies of heavy nuclei, which represent

microscopical effects such as neutron- and proton-
magic numbers and pairing, are taken from the ex-
perimental and theoretical mass data (Audi et al. 2014;
Koura et al. 2005). The temperature and density depen-
dencies of the shell effects are also phenomenologically
taken into account. For the light nuclei, self- and Pauli
energy shifts in their mass at finite temperature and
density are included by following the method in Röpke
(2009); Typel et al. (2010).

3. ELECTRON AND POSITRON CAPTURES

We calculate weak interaction rates of nuclei which
are evaluated under the consistent treatment with the
nuclear abundances provided by the EOS2. The electron
capture rates for heavy nuclei are evaluated in the same
way as in Furusawa et al. (2017a). For some nuclei, we
use the reaction data in Langanke & Mart́ınez-Pinedo
(2000), Langanke et al. (2003), Oda et al. (1994) and
Fuller et al. (1982), which are based on the shell model
or its extension. It should be noted, however, that these
theoretical computations do not cover the full nuclei
which appear in CCSNe. We adopt an analytical for-
mula as a function of the Q-value (Langanke et al. 2003)
for the neutron-rich and/or heavy nuclei with the un-
available data3. In this formula, the finite temperature
and density effects on the nuclear masses for the Q-value
evaluations are included with being consistent with the
nuclear abundances on EOS tables. The detailed bal-

1 The energy shifts are due to uniformly-distributed dense elec-
trons, dripped nucleons and shape changes of heavy nuclei from
normal droplets to bubbles just below nuclear normal density.

2 Note that some minor interactions are ignored, for instance,
positron captures on heavy nuclei are not included in this study,
since they do not affect to CCSNe dynamics in both pre- and
post-bounce phases.

3 We refer the reader to Fig. 5 in Furusawa et al. (2017a) which
displays the corresponding data or formula to each nucleus in
(N,Z) plane.

ance relation gives the rate of neutrino absorption on
heavy nuclei.
As for light nuclei, we include the following weak in-

teractions in our simulation, referring to Fischer et al.
(2016),

(elpp) : νe +
2 H←→ e− + p+ p, (1)

(ponn) : ν̄e +
2 H←→ e+ + n+ n, (2)

(el2h) : νe + n+ n←→ e− +2 H, (3)

(po2h) : ν̄e + p+ p←→ e+ +2 H, (4)

(el3he) : νe +
3 H←→ e− +3 He, (5)

(po3h) : ν̄e +
3 He←→ e+ +3 H. (6)

For neutrino absorptions on deuterons of Eqs. (1) and (2),
we use the data of vacuum cross section (Nakamura et al.
2001). To account for the medium modification on
deuterons such as self- and Pauli-energy shifts, we
introduce the shifted neutrino injection energies as
E∗

ν = Eν + m∗
2H − m2H with masses of deuteron in

medium, m∗
2H, and in vacuum, m2H. The in-medium

mass is evaluated by the same mass model in the EOS.
As an example, the neutrino absorption rate of Eq. (1)
is expressed as

1/λ(Eν) = n2H

∫

dpe

(

dσν2H

dpe
(E∗

ν )

)

(1− fe(Ee)), (7)

where fe denotes the Fermi-Dirac distribution of elec-
trons. The rate of the electron/positron capture on
two nucleons forming a deuteron (leftward reactions of
Eqs. (1) and (2)) can be evaluated through the detailed
balance with the rate of the absorption.
Electron captures on deuterons of Eqs. (3) and (4)

can be estimated with the assumption that the matrix
elements of electron and positron captures are equivalent
to those of neutrino absorptions for Eqs. (1) and (2) as

dσe2H

dpν
∼

1

2

dσν2H

dpe
, (8)

where 1
2
comes from the difference in spin degrees of free-

dom between neutrino and electron. This is reasonable
approximation for CCSNe conditions, in which injection
energies of leptons are not greatly large and, hence, the
energy deposit to the relative motion between two nu-
cleons is negligible. Three bound nucleons, 3H and 3He,
interact with neutrinos via breakup or charge exchange,
the latter of which is dominant neutrino opacity source.
Therefore, we treat only the charge exchange reaction as
described in Eqs. (5) and (6), whose rates are calculated
by Eq. (11) in Fischer et al. (2016). Here, in-medium
effects on nuclear masses are not taken into account.
In this paper, we ignore other minor reactions involv-

ing deuterons such as pair processes and neutral-current

Hempel et al. 2011, Steiner et al. 2013, Furusawa and Nagakura et al. 2017

Multi-nuclear treatments of EOS are mandatory for accurate 
computations of nuclear-weak reaction rates 

25



Various Approximations for Multi-D Neutrino Transfer

Ray-by-Ray Approach (UTK-Oak Ridge, MPA)
The Astrophysical Journal, 747:73 (12pp), 2012 March 1 Lentz et al.

1

1
2

2

Figure 9. Illustration of the “ray-by-ray” transport approximation. The circle
represents the neutrinosphere and the solid lines represent two independent
“rays” in the RbR approximation. The dashed lines are tangents to the
neutrinosphere and indicate the regions that contribute to the neutrino field
at points 1 and 2. The “blob” on the neutrinosphere below point 1 is a “hot spot”
where the temperature is higher than the rest of the neutrinosphere. For point 1,
the RbR method will compute the neutrino field as if the entire neutrinosphere
has the properties of the hot spot, overestimating the neutrino flux and heating.
For point 2, the RbR misses the contribution of the hot spot by assuming that
the neutrinosphere properties are only those of the cooler region directly below
it, underestimating the neutrino flux and heating.

reduce computational costs and simplify code development.
CHIMERA, Vertex, and Zeus+IDSA break the non-radial
(lateral, or angular) spatial coupling through the “ray-by-ray”
(RbR) approximation, and Vulcan/2D breaks the coupling
between energy groups and neutrino species.

In the RbR approximation, the neutrino transport is computed
as a number of independent, spherically symmetric problems,
referred to as “rays,” which allows for the reuse of existing
1D neutrino transport codes. (See Figure 9 for a schematic
illustration of the RbR approximation.) RbR methods exhibit
good parallel scaling for large numbers of independent radial
rays, which can be evolved without communication while
computing the neutrino transport. Typically, in RbR codes,
the neutrinos in opaque regions are advected laterally with the
fluid motions and contribute to the pressure. The independence
of the rays artificially sharpens the lateral variation in the
neutrino luminosity and heating above the proto-NS, which
results in some regions of the hot mantle being overheated
and others underheated. The transport studies of Ott et al.
(2008) using Vulcan/2D in multi-angle mode showed that full
multidimensional FLD underestimates the lateral variation in
the neutrino radiation field, whereas RbR codes are expected to
overestimate the lateral variation. Buras et al. (2006) concluded
from analysis of their RbR models that the transient lateral
variations in neutrino flux and heating were not very likely
to have dynamical consequences for the evolution of their
models. The impact of the RbR approximation on the simulation
outcomes is not precisely known, and proper testing will have to
wait until one of the RbR codes is upgraded to include full lateral
transport, as no extant code is currently capable of computing in
RbR and non-RbR modes and there are significant differences
between extant RbR and non-RbR codes in other respects.

The authors of Vulcan/2D have chosen to break the en-
ergy and species coupling rather than the lateral spatial cou-
pling. Vulcan/2D implements computational parallelism by
solving for 2D-spatially-coupled neutrino transport for each
energy–species group independently, with communication only

after transport to integrate neutrino heating/cooling from all
energy groups. The consequence of this design choice is that
Vulcan/2D cannot easily include either NIS-driven coupling of
energy groups or the coupling of energy groups through ob-
server corrections, nor can it utilize more parallel processing
elements than it has energy–species groups.

5.2. Opacity Approximations

CHIMERA and Vertex include all of the FullOp opacities
plus additional corrections for weak magnetism and ion–ion
correlations. Vertex also includes the neutrino-pair flavor-
conversion process (Buras et al. 2003). V2D uses the Bruenn
(1985) opacities, which are similar to ReducOp, but do include
the energy down-scattering from NES. Vulcan/2D omits all of
the NIS scatterings in favor of their IS counterparts, as does the
Zeus+IDSA code because energy-coupled scattering has not
yet been developed for the IDSA transport method. Vulcan/2D,
V2D, and Zeus+IDSA use an IPA for EC on nuclei, which cuts
off electron capture by nuclei when the mean neutron number
N ! 40, and overestimates it above the cutoff, while CHIMERA
and Vertex use the more accurate LMSH EC table.

Some multidimensional supernova codes (Vertex,
Vulcan/2D) use a single species, νx = {νµτ , ν̄µτ }, to represent
all of the heavy-lepton flavor neutrinos, while the Zeus+IDSA
code omits them completely.

5.3. Observer Corrections

CHIMERA, V2D, and Vertex include the observer correc-
tions in the neutrino transport. In the Zeus+IDSA code, adia-
batic compression is properly handled for the trapped neutrinos,
and O(v/c) observer corrections are included for free-streaming
neutrinos. These codes use neutrino transport based on
Equation (3), its equivalent toO(v/c), or its GR equivalent. Only
Vulcan/2D neglects the observer corrections entirely, by solv-
ing the neutrino transport based on Equation (7). (The transport
equation quoted in Livne et al. (2004) also omits the µ0v ∂f/∂t-
term, which is typically considered of O(v2/c2) and dropped
from most O(v/c) transport solutions.)

6. CONCLUSIONS

We have examined the consequences of removing (1) GR
effects, (2) non-isoenergetic scattering and detailed nuclear
EC opacities, and (3) observer corrections from spherically
symmetric models of core-collapse supernovae. We have found
that all of these changes, individually and especially when
taken together, affect the progress of stellar collapse and the
post-bounce evolution of the shock and core thermodynamic
properties in significant ways, in contrast to the assessments
made by Burrows et al. (2006, 2007) and Nordhaus et al. (2010).
We have computed variations in the shock radius, neutrino
luminosities, and neutrino rms energies as large as 60 km,
35 Bethe s−1, and 10 MeV, respectively, across the four models
considered here.

Omission of GR results in a less compact core and an unreal-
istically more favorable shock progression after bounce. Elim-
inating non-isoenergetic scatterings and simplifying electron
capture on nuclei drastically reduces the core deleptonization
and expands the homologous core at bounce. Omission of the
observer corrections dramatically alters core deleptonization,
the shock position, and neutrino luminosities after bounce, in
part resulting from a complete breakdown of lepton number
conservation.
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Isotropic Diffusion Source Approximation (IDSA) 
(Basel, Japan)

Neutrino-transport is essentially same as spherical symmetry.

Schematic picture of
 ray-by-ray approach

(Lentz et al. 2012)

Neutrinos are decomposed into trapped and streaming parts. 

Two reduced equations are coupled by each source term, which is 
approximately described under diffusion treatment. 
(See e.g., Berninger et al. 2013)

Moment method
(Many groups….)

3

constant. kb denotes the Boltzmann constant.

§2. Moment formalism of Thorne

First, we review the Thorne’s moment formalism.2) In the first step, he defines
an unprojected moment of massless particles associated with a moving medium as

M α1α2···αk
(ν) (xβ) =

∫

f(p′α, xβ)δ(ν − ν ′)

ν ′k−2
p′α1p′α2 · · · p′αkdV ′

p , (2.1)

where f is the distribution function of the relevant radiation, ν ′ = −uµp′µ the fre-
quency of the radiation in the rest-frame of the medium (i.e, in the rest-frame of
the fiducial observer) with uµ being medium’s four velocity, pµ the four-momentum
of the radiation, and dVp the invariant integration element on the light cone. k,
here, is positive integer, 1, 2, · · · . As pointed out by Thorne,2) the choice of the
fiducial observer is crucial when deriving a good truncated formalism from his mo-
ment formalism. In the following, the fluid, coupled with the radiation, is chosen
as the medium.2), 9), 10) Namely, the frequency, ν, in M α1α2···αk

(ν) always denote the

frequency measured in the rest-frame of the fluid throughout this paper. This choice
is crucially helpful when computing the source terms of the radiation equations.

We note that it is possible to choose any fiducial frame in the moment formalism.
However, we have to keep in mind that for a truncated moment formalism in a closed
form, it is necessary to assume a closure relation which is determined by a physically
reasonable assumption. In the dense medium, radiation is strongly coupled to the
matter field. This implies that at the zeroth order, the radiation is in equilibrium
with the medium, and radiation flow (measured by an observer comoving with the
matter) is a small correction. To reproduce this feature in the closure relation, the
best method seems to choose the fluid rest frame as the fiducial frame.

We also note the following: As a result of our choice of the fiducial frame, the
argument frequency in the distribution function is always the frequency measured in
the fluid rest frame. By contrast, the argument variable should be in general the
frequency in the laboratory frame (although any frame can be taken), if one fully
solves the Boltzmann equation that the distribution function obeys.

The Boltzmann equation is written in the form2)

dxα

dτ

∂f

∂xα
+

dpi

dτ

∂f

∂pi
= (−pαuα)S(p

µ, xµ, f), (2.2)

where S denotes a source term and τ the affine parameter of a trajectory of radiation
particles. In any orthonormal frame, the invariant integration element is given by9)

dVp =
dp̂1dp̂2dp̂3

p̂0
, (2.3)

where p̂α is the four-momentum of the radiation in the local orthonormal frame. In
the local rest frame of an observer comoving with the fluid,

dVp = νdνdΩ, (2.4)

Neutrino angular direction is integrated. The so-called “closure relation” is imposed 
in the higher moment.

Shibata et al. 2011

Multi-Group Flux-Limited-Diffusion (MGFLD)
(UTK-Oak Ridge)
Neutrino Transports are treated as the Energy-Dependent Diffusion Equation.

See a review by Mezzacappa et al. 2020
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Fig. 21. Left: The pattern of the sparse matrix appearing in the linear system obtained for the implicit dis-
cretization of the Boltzmann equations. N and M denote the numbers of spatial grids (Nr , Nθ , Nφ) and neutrino
grids (Nθν

, Nφν
, Nε), respectively. For the studies on current supercomputers without energy couplings, the

size of the diagonal black matrices (gray) is Nθν
Nφν

. Right: The number of iterations as a function of the time
step for different pre-conditioners, i.e., the point Jacobi method (blue crosses) and newly developed method
(red crosses). The number of grid points for the numerical experiment is Nr × Nθ × Nφ = 200 × 9 × 9, with
Nθν

× Nφν
× Nε = 6 × 12 × 14.

to propose a parameter-optimized damped Jacobi-type pre-conditioner, details of which will be pub-
lished elsewhere [206]. The convergence efficiency is compared between the two pre-conditioners
for the same matrices extracted from the 3D Boltzmann simulations. In the right panel of Fig. 21, we
show the numbers of iterations as a function of the time step, %t , for a representative case. As men-
tioned already, the convergence becomes very slow for %t ! 10−7 s, and no convergence is obtained
for %t > 3 × 10−7 s, even after 200 iterations, when the point-Jacobi method is employed. On the
contrary, with the new pre-conditioning method, convergence is improved drastically. The time steps
can be increased by a factor of 100 up to ! 10−5 s. This is favorable particularly for long-term com-
putations. It is true that the computational cost of the new method is higher, but it is just by a factor
of ∼ 10 compared with the standard method. Our efforts have hence paid off and we have achieved
a speed-up by a factor of ∼ 10. We are currently applying the new method to various cases to see if
such good performance is retained or not. We will also continue to seek even better methods, since
we expect that the matrix will be larger in the productive runs of neutrino-radiation hydrodynamical
simulations in 3D.

4. Beyond the “K computer”

Rapid growth of the supercomputing capability in Japan in recent years enables us to perform large-
scale simulations such as those presented above. 3D supernova simulations with sufficient resolutions
definitely require the K computer and more even beyond exa-flops scale platforms. We remark also
that allocations of sufficiently long CPU time on such facilities are also indispensable for long-term
computations such as those of delayed neutrino-driven explosions.

As reported in Sect. 2 and Sect. 3.3.2, the first 3D simulations of core-collapse supernovae with
spectral neutrino transport by the ray-by-ray IDSA were performed on the currently available super-
computers. It was demonstrated that the numerical grid deployed in the computations was not fine
enough to draw a solid conclusion on the 3D explosion mechanism. Scaled-up simulations are sched-
uled on the K computer in Kobe, Japan. The 3D neutrino transfer with the Boltzmann solver requires
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Numerical methods of Boltzmann solver (Sn method)

Large-matrix Inversion is required.

where ðt; r; θ;φÞ are usual Schwarzschild coordinates. In
this case, one of the natural choices of the tetrad compo-
nents is

eað0Þ ¼
!
1 −

2M
r

"−1=2! ∂
∂t
"

a
;

eað1Þ ¼
!
1 −

2M
r

"
1=2

! ∂
∂r

"
a
;

eað2Þ ¼
1

r

! ∂
∂θ

"
a
;

eað3Þ ¼
1

r sin θ

! ∂
∂φ

"
a
; (27)

and thus, dVx ¼ ð1 − 2M=rÞ−1=2r2 sin θdrdθdφ. This
choice is valid only for r > 2M because for r ≤ 2M,
eað0Þ is not timelike and eað1Þ is not spacelike, respectively.
The nonzero components of γαβγ for this tetrad are

γ122 ¼ −γ212 ¼ γ133 ¼ −γ313 ¼ −
1

r

!
1 −

2M
r

"
1=2

;

γ233 ¼ −γ323 ¼ −
cot θ
r

;

γ100 ¼ −γ010 ¼
M
r2

!
1 −

2M
r

"−1=2
: (28)

Hence,

ωð0Þ ¼
M
r2

!
1 −

2M
r

"−1=2
cos θ̄; (29)

ωð1Þ ¼ −M
r2

!
1 − 2M

r

"−1=2
þ 1

r

!
1 − 2M

r

"
1=2

sin2θ̄; (30)

ωð2Þ ¼ −
1

r

!
1 −

2M
r

"
1=2

sin θ̄ cos θ̄ cos φ̄

þ cot θ
r

sin2θ̄sin2φ̄; (31)

ωð3Þ ¼ −
1

r

!
1 −

2M
r

"
1=2

sin θ̄ cos θ̄ sin φ̄

−
cot θ
r

sin2θ̄ sin φ̄ cos φ̄; (32)

and

ωðθ̄Þ ¼
3M − r

r2

!
1 −

2M
r

"−1=2
sin θ̄; (33)

ωðφ̄Þ ¼ −
cot θ
r

sin3θ̄ sin φ̄: (34)

We note that ωð0Þ, ωðθ̄Þ, and ωðφ̄Þ are composed only of
one basis function of ðθ̄; φ̄Þ, respectively, although they
may have more functions in general. Hence, the equation
for f in the Schwarzschild background is written in a quite
simple form:

!
1 −

2M
r

"−1=2 ∂f
∂t þ

1

r2
∂
∂r

#
f cos θ̄r2

!
1 −

2M
r

"
1=2

$
þ 1

r sin θ
∂
∂θ ðf sin θ sin θ̄ cos φ̄Þ

þ 1

r sin θ
∂
∂φ ðf sin θ̄ sin φ̄Þ − 1

ν2
∂
∂ν

#
fν3 cos θ̄

M
r2

!
1 −

2M
r

"−1=2$

−
1

sin θ̄
∂
∂θ̄

#
fsin2θ̄

r − 3M
r2

!
1 −

2M
r

"−1=2$

− ∂
∂φ̄

!
f
cot θ
r

sin θ̄ sin φ̄
"

¼ Srad: (35)

It is found that the transport term associated with ν in
Eq. (35) is present only for the curved spacetime; hence,
this term is related to the gravitational redshift (for
cos θ̄ > 0) and blueshift (for cos θ̄ < 0). It is also interest-
ing to point out that the transport term associated with θ̄
changes the sign at the so-called photon sphere r ¼ 3M: for
r > 3M, the direction of outgoing rays tends to converge
toward θ̄ → 0 as usual in the flat spacetime, while for
r < 3M, rays are dragged by the gravity of the black hole.
By setting M ¼ 0, we can also obtain Boltzmann’s

equation in the flat spacetime (e.g. [8]):

∂f
∂t þ

1

r2
∂
∂r ðf cos θ̄r

2Þ þ 1

r sin θ
∂
∂θ ðf sin θ sin θ̄ cos φ̄Þ

þ 1

r sin θ
∂
∂φ ðf sin θ̄ sin φ̄Þ − 1

r
1

sin θ̄
∂
∂θ̄ ðfsin

2θ̄Þ

−
∂
∂φ̄

!
f
cot θ
r

sin θ̄ sin φ̄
"

¼ Srad: (36)

This equation together with Eq. (35) shows that for ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ, cos θ̄, sin θ̄, and sin3θ̄ sin φ̄ are the primary
basis functions, respectively.

CONSERVATIVE FORM OF BOLTZMANN’S EQUATION IN … PHYSICAL REVIEW D 89, 084073 (2014)

084073-5

Block-diagonal sparse matrix

A = 

Ax = b (Matrix Equation)

Implicit time evolution

aj
i fi

(n+1) = bj ( f
(n) )

Solved by BiCGSTAB with Damped Jacobi-type Preconditioner
(Imakura et al. 2012)

Scale of axisymmetric simulations 
Memory: 〜2 TB, 
Operation: 20TFlops × 2000 hours

We achieve 〜10% performance 
on “K” and “Fugaku” supercomputers

Full 7D simulation needs 100 times computational resources are necessary.
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Rich flavor-conversion phenomena 
driven by neutrino-neutrino self-interactions

- Slow-mode

- Fast-mode (FFC)

- Collisional instability

- Matter-neutrino resonance

・Energy-dependent flavor conversion occurs. 
・The frequency of the flavor conversion is proportional to  

(Duan et al. 2010)
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Fast Neutrino Flavor Conversion at Late Time

Soumya Bhattacharyyaú and Basudeb Dasgupta†
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(Dated: May 25, 2020)

We study the fully nonlinear fast flavor evolution of neutrinos in 1+1 dimensions. Our numerical
analysis shows that at late time the system reaches an approximately steady state. Using the steady
state approximation we analytically show that the spatial variation of the polarization vectors is
given by their precession around a common axis, which itself has a motion reminiscent of a gyroscopic
pendulum. We then show that the steady state solution to the equations of motion cannot be
separated in position and velocity, that is the motion is not collective in the usual sense. However,
the fast evolution allows spectral-swap-like dynamics leading to partial decoherence over a range
of velocities, constrained by conservation of lepton number(s). Finally, we numerically show that
at late time the transverse components of the polarization vectors become randomly oriented at
di�erent spatial locations for any velocity mode and lepton asymmetry.

I. INTRODUCTION

Neutrinos emitted by stars present valuable opportuni-
ties to study neutrino properties [1]. While solar neutri-
nos have famously helped zero in on the large mixing an-
gle scenario, neutrinos from supernovae may yet provide
a unique opportunity to study neutrino-neutrino interac-
tions – a crucial piece of the standard model of particle
physics that has not been tested directly.

The rate of neutrino oscillations is typically dictated
by the vacuum oscillation frequency, Ê, and the matter
potential, ⁄ [2–4]. Until the early 2000s, it was believed
that this paradigm was su�cient to describe neutrino
oscillations inside supernovae as well [5]. At that time,
the outstanding problem of the field appeared to be to
understand the e�ect of fluctuations in the background
matter density [6–8].

Following the pioneering papers by Pantaleone [9, 10],
however, it became clear that the issue is more sub-
tle [11, 12]. Owing to the large neutrino density, even
free-streaming neutrinos experience significant forward-
scattering o� other neutrinos. Such scattering leads to
a self-interaction potential, µ ∫ Ê, that is proportional
to the neutrino density and can dominate over the vac-
uum term. As a result, a gamut of new collective flavor
transformations can occur inside supernovae.

The so-called “slow” collective e�ects, with an intrinsic
rate ≥

Ô
Êµ, are already faster than usual neutrino oscil-

lations. These lead to a variety of new phenomena, e.g.,
synchronization [11], bipolar oscillations [12–16], spectral
swaps [17–20], three-flavor e�ects [21–24], multi-angle ef-
fects [25–28], decoherence [29–32], and linear instabili-
ties [33], including those that break symmetries of direc-
tion [34, 35], space [36, 37], and time [38, 39]. Related de-
velopments, that followed the influential papers by Duan,
Fuller, Carslon and Qian, and their phenomenological
consequences have been reviewed in Refs. [40–43]; see also
references therein.

ú soumya.bhattacharyya@theory.tifr.res.in
† bdasgupta@theory.tifr.res.in; orcid.org/0000-0001-6714-0014

Ray Sawyer pointed out that much more rapid “fast”
flavor conversions can take place [44–47]. These have
a frequency ≥ µ, and might have a much more drastic
e�ect for neutrino physics [48–68] as well as supernova
astrophysics [69–75]. The criterion for fast conversions
to occur appears to be related to that for slow conver-
sions, i.e., the di�erence of neutrino and antineutrino flux
distributions in the momentum space must have a zero
crossing [20], though a more detailed understanding still
remains wanting.

The flavor evolution of a dense neutrino gas is governed
by a large number of coupled nonlinear partial di�eren-
tial equations. These are almost always very di�cult to
solve. Although linearized stability analysis is useful to
ascertain if and when fast conversion takes place, it can-
not directly answer the question – what is the impact
of fast flavor conversion on observable neutrino fluxes or
the explosion mechanism? This is a significantly harder
problem that requires understanding the nature of the
solution in the nonlinear regime. A step in this direction
was taken by Sen and one of the present authors [51],
where the flavor evolution of a 4-beam model in 0+1 di-
mension was understood in the fully nonlinear regime.

In this work, we take another step in the same di-
rection. We consider a dense neutrino gas in 1+1 di-
mensions, with a spectrum of velocity modes, and ana-
lyze the coupled flavor evolution of the neutrino system
into the nonlinear regime. Our numerical analysis sug-
gests that the system reaches an approximately steady
state at late time. In the steady state approximation,
we analytically show that the spatial variation of the po-
larization vectors is given by their precession around a
gyrating flavor pendulum with a fixed length, spin, and
energy, and the solution is not collective. The polariza-
tion vectors, when averaged over space, however, exhibit
complete (partial) decoherence for zero (nonzero) lepton
asymmetry. For partial decoherence, the non-vanishing
range of velocity modes is dictated by conservation of
lepton numbers. This kinematic decoherence stems from
randomization of the transverse components. Numerical
examples confirm these analytical insights.
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Time-dependent global simulations of fast neutrino-flavor conversion

Hiroki Nagakura⇤
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I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.

! =
�m2

2E⌫
,

� =
p
2GFne,

µ =
p
2GFn⌫ ,

(1)

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that

fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.
not important in CCSN [19, 20] and BNSM [21] dy-

namics
The non-linear properties of neutrino quantum kinetics

have been investigated in various approaches. One of the
common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]

II. METHODS AND MODELS
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Vacuum:
Matter:
Self-int:

・Collective neutrino oscillation in the limit of ω → 0.
・The frequency of the flavor conversion is proportional to
・Anisotropy of neutrino angular distributions drives FFCs. 

(Sawyer 2005)
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I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.
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2GFne,

µ =
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2GFn⌫ ,

(1)

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that

fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.
not important in CCSN [19, 20] and BNSM [21] dy-

namics
The non-linear properties of neutrino quantum kinetics

have been investigated in various approaches. One of the
common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]
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(Johns 2021)

・Asymmetries of matter interactions between neutrinos and anti-neutrinos
drive flavor conversion.  
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FIG. 2. The critical electron fraction Y crit
e below which the

system is predicted to be collisionally unstable, shown as a
function of n⌫x/n⌫̄e and n⌫̄e/n⌫e and assuming n⌫x = n⌫̄x .
Since Ye . 0.2 is typical in the neutrino decoupling region,
the majority of this parameter space is unstable.

support the same solutions, assuming the initial state is
seeded with flavor coherence. As a matter of fact, such
a system does enter into the decay mode, but never into
the growing one. From the vantage point of Eq. (5), the
significance of the oscillation terms is that they cause the
polarization vectors to wander through di↵erent config-
urations in flavor space until chancing upon the growing
solution. Fast instabilities, by way of contrast, really can
arise with ! = 0 as long as coherence is seeded. The µ

terms serve double duty in those cases, prompting the
exploration of flavor space and driving the instabilities
themselves.

Linear stability analysis provides a complementary
perspective. For this we return to the density matri-
ces. Linearizing in o↵-diagonal elements and adopting a
matter-suppressed mixing angle ✓m

⇠= 0,

i@t⇢ex =
⇣
�! �

p
2GF (n⌫̄e � n⌫̄x)� i�

⌘
⇢ex

+
p
2GF (n⌫e � n⌫x)⇢̄ex

i@t⇢̄ex =
⇣
+! +

p
2GF (n⌫e � n⌫x)� i�̄

⌘
⇢̄ex

�
p
2GF (n⌫̄e � n⌫̄x)⇢ex. (13)

Seeking collective modes, we now take ⇢ex = Qe
�i⌦t and

⇢̄ex = Q̄e
�i⌦t. The dispersion relation results from plug-

ging these expressions into Eqs. (13) and dispensing with
Q and Q̄. It can be solved analytically:

Im ⌦ ⇠= ±
�� �̄

2

µSp
(µD)2 + 4!µS

�
�+ �̄

2
, (14)

where S = |S(0)| = n⌫e � n⌫x + n⌫̄e � n⌫̄x and D =
|D(0)| = n⌫e � n⌫x � n⌫̄e + n⌫̄x . (S and D are assumed

FIG. 3. Collisionally and fast-unstable evolution in
an anisotropic calculation: n⌫e (thick black curve), n⌫̄e

(medium), n⌫x (thin), and neutrino coherence density |PT |/2
(teal). The very thin curves show the results when � and �̄
are artificially set to the average of their actual values (hence
� = �̄). The rapid oscillatory motion is the swinging of the
fast pendulum [21]. No conversion would be visible if the
system were stable to fast flavor conversion (FFC).

to point along z initially, but the formulas are easily
adapted.) If µD � 2

p
!µS, which is usually expected

of the setting we have in mind, then the instability crite-
rion coincides with Eq. (6). If µD < 2

p
!µS and ! < 0

(indicating the inverted hierarchy), then Eq. (14) is in-
validated by intervention of the bipolar instability.
Up to this point the analysis has assumed monochro-

maticity, isotropy, and homogeneity. The first of these
is justified by the high neutrino density. Though not
presented here, numerical calculations with multiple en-
ergies confirm that collisional instability a↵ects them col-
lectively.
Calculations also confirm the presence of collisionally

unstable evolution in anisotropic set-ups. An interest-
ing case is one where collisional and fast instabilities are
present together. Fig. 3 shows the results of such a cal-
culation. The parameters are the same as those used
in making Fig. 1 except that n⌫e has been decreased to
2.6⇥ 1033 cm�3 and the angular distributions have been
made anisotropic, so as to make the system unstable to
fast oscillations. As with the other parameters, the an-
gular distributions are chosen to be representative of real
conditions in a supernova. They are specified by the flux
factors (i.e., the ratios of energy flux to energy density)
f⌫e = 0.05, f⌫̄e = 0.10, and f⌫x = f⌫̄x = 0.15. Radiative
pressures are prescribed using M1 closure [22].
The onset of fast flavor conversion prompts the growth

of the collisional instability on a much shorter timescale
than was seen in Fig. 1. Furthermore, significantly
greater flavor transformation occurs when � 6= �̄ than
when � = �̄, testifying to the fact that the results
observed in Fig. 3 are not simply caused by decoher-
ence. In a more realistic setting, collisional relaxation

Γ: Matter-interaction rate

・The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).
・Essentially the same mechanism as MSW resonance.

Time-dependent global simulations of fast neutrino-flavor conversion
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I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.

! =
�m2

2E⌫
,

� =
p
2GFne,

µ =
p
2GFn⌫ ,

|�+ µ| ⇠ |!|

(1)

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that

fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.
not important in CCSN [19, 20] and BNSM [21] dy-

namics
The non-linear properties of neutrino quantum kinetics

have been investigated in various approaches. One of the
common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]
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(Malkus et al. 2012)



•Nucleons are interacting with each other and their spatial and  
temporal correlations cannot be ignored: RPA and Virial corrections 

•These many-body corrections, which reduce the opacities, have  
visibly positive influences on shock revival.

Burrows et al. ‘20

✓ The actual magnitude and functional form of the many-body 
corrections to the neutrino-matter rates (both neutral and 
charged-current) still need to be explored and verified.

The spin (axial) S  responseA

Horowitz et al. 2017
29
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Setup:

2

νe

νx
νe

(r   , θ  )in in

HMNS
Optically thick disk

(r     , θ    )out out
νe νe

(r     , θ    )out out
νx νx

(r     , θ    )out out
νe νe

FIG. 1. Schematic illustration of neutrino spheres in our
model. Neutrinos are radiated at each species-dependent neu-
trino sphere, which are distinguished by color: red, blue, and
green for ⌫e, ⌫̄e, and ⌫x, respectively. At the surface of hy-
permassive neutron star (HMNS) denoted by purple line, we
assume all flavors of neutrinos are emitted.

is assumed, and we adopt squared mass di↵erences of
�m

2 = 2.5⇥ 10�6eV2 for two flavor approximation, and
�m

2
21 = 7.42⇥10�5eV2 and �m

2
31 = 2.51⇥10�3eV2 for

three flavor framework. We set 10�6 for all mixing angles.
Given the set of parameters, we evaluate the vacuum po-
tential with 12 MeV neutrino energy. ⇠( 1) denotes an
attenuation parameter of oscillation Hamiltonian, which
is a parameter to make the simulations tractable. We
employ our GRQKNT code [29] in all simulations.

We assume that each flavor of neutrinos is emitted only
at neutrino sphere. The schematic picture of our model
is provided in Fig. 1. Red, blue, and green solid lines
represent neutrino spheres in the disk for electron-type
neutrinos (⌫e), their antipartners (⌫̄e), and other heavy
leptonic neutrinos (⌫x). Purple solid line represents the
surface of hypermassive neutron star (HMNS) on which
all flavor of neutrinos are radiated. Two remarks should
be mentioned here. Although the HMNS is oblately de-
formed due to rotation in reality, it is assumed to be
spherical just for simplicity; hence the geometry of the
neutrino sphere can be determined by two parameters:
rin and ✓in. The former and the latter denote the radius
of HMNS and the zenith angle where the disk is con-
nected; we set rin = 15km and ✓in = 60� in this study.
Second, the radius of neutrino sphere at the surface of
HMNS is, in general, flavor dependent. However, the
matter-density gradient at the surface of HMNS is very
steep; consequently the di↵erence of neutrino spheres is
minor (see, e.g., [30]). On the other hand, we set flavor
dependent neutrino distributions in momentum space,
in which we assume Fermi-Dirac distributions with zero
chemical potentials, but temperature of neutrinos are dif-
ferent among flavors. In this study, we set 4, 4.5, and
5 MeV for ⌫e, ⌫̄e, and ⌫x, respectively. We note that
our model may overestimate ⌫x luminosities compared to
realistic cases (due to neglecting momentum-exchanged
scatterings with nucleons). Its possible impacts on our
results will be discussed later.

Neutrino spheres in the disk are set to be flavor depen-
dent. The geometry of each neutrino sphere is character-
ized by r

⌫↵
out and ✓

⌫↵
out, where ↵ represents neutrino species

(see Fig. 1). As a representative case, we set (70km, 60�),
(60km, 65�), and (55km, 67�), for ⌫e, ⌫̄e, and ⌫x, respec-
tively. In the angular region from ✓

⌫↵
out to 90�, the sphere

is set on the radius of r = r
⌫↵
out. The equatorial symmetry

is also assumed. In all simulations, we cover from 15km
to 100km. The energy spectra of neutrinos are the same
as those set on the surface of HMNS.
Before carrying out QKE simulations, we run a sim-

ulation without FFC, i.e., H = 0 in Eq. 1 (hereafter
referred to as Mno model). This simulation is stopped at
1ms. We confirm that the system has already reached a
steady state by the time. We use the steady state pro-
file as an initial condition for QKE simulations. We also
note that electron-neutrinos lepton number (ELN) cross-
ings are ubiquitously occur above the disk, which is in
line with the argument in [8] (see Fig 1 in the paper).
This suggests that FFC should occur if we turn on oscil-
lation Hamiltonian.
In QKE simulations, we only focus on the spatial re-

gion above the disk; the simulations are conducted in the
region of 0�  ✓  55�. We use Dirichlet boundary condi-
tions (frozen in time) for neutrinos which come into com-
putational domain, while we adopt a zero-gradient free
boundary condition for outgoing neutrinos from the sim-
ulation box. A reflective boundary condition is adopted
along the z-axis (✓ = 0�). We consider two models in this
study: M3h and M2h. They have the same numerical
setup except that the former and the latter corresponds
to three- and two-flavor frameworks, respectively.
We adopt a non-uniform radial grid (see [23–25]) with

�rmin = 3m, where �rmin denotes the radial width of
the innermost mesh. The number of radial cells is 1152.
In the meridian direction, we set a uniform grid for the
cosine of the zenith-angle. The number of grid points
is 384. Neutrino angles in momentum space are covered
by a uniform grid with respect to cos ✓⌫ and �⌫ with
96 ⇥ 48 grid points. We run the simulations up to t =
0.8ms. ⇠ is set to be 3 ⇥ 10�4. Although we confirm
that the qualitative trend is captured in these simulations
by carrying out the resolution study, the reduction of ⇠
causes some artificial results; its possible impacts will be
discussed later.
Result.—Soon after QKE simulations begin, FFC oc-

curs vigorously in the vicinity of HMNS and the disk.
During the very early phase, FFC dynamics is character-
ized only by local properties of neutrino radiation field.
As discussed in [24, 31], however, non-linear states of
FFC can be substantially changed in the time scale of
advection. Impacts of global advection are vividly illus-
trated in the top panels of Fig. 2, in which we show the
spatial distribution of nELN (ELN number density) sub-
tracted by that of the initial one for M2h model. One no-
ticeable feature is that the positive and negative region of
nELN(t)�nELN(0) is clearly separated from each other by
a very narrow region at t >⇠ 0.1ms. We also find that that
the transition region includes a line (or surface if we take
into account the azimuthal direction) where the sign of
the number density of ELN-XLN (nELN(t) � nXLN(t)),

- Hypermassive neutron star (HMNS) + disk geometry
- Thermal emission on the neutrino sphere
- QKE (FFC) simulations in axisymmetry
- Resolutions: 1152 (r) × 384 (θ) × 98 (θ ) × 48 (φ )ν ν

ELN crossings are ubiquitous in this region 
(Wu & Tamborra 2017)
→ How FFC changes the radiation field? 
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Temporal evolution of FFCs in global scale:

ELN(t) – ELN(0) 

Take-home message 1
Non-conservations of ELN (and XLN) number density

represent the importance of global advection of neutrinos in space! 

3

FIG. 2. Top: di↵erence of ELN number density from the initial distribution, nELN(t)� nELN(0). Bottom: ELN-XLN number
density, nELN�XLN(t), in which we highlight its sign by red- (for positive) and black (for negative) colors. The boundary
between the two regions is a ELN-XLN Zero Surface (EXZS); see the text for more details. We displayed them at five di↵erent
time snapshots for M2h: t = 0.05, 0.1, 0.2, 0.4, and 0.8 ms from left to right.

FIG. 3. Color map for the ratio of the real part of the o↵-
diagonal component of f to the sum of the diagonal elements
at t = 0.8ms for M2h model.

where XLN denotes a heavy-leptonic-neutrinos lepton
number, is flipped (see bottom panels of Fig. 2). We
call the surface as ELN-XLN Zero Surface (EXZS).

As shown in Fig. 2, the EXZS at the ✓-boundary (✓max)
does not evolve with time. This is attributed to the ge-
ometry of neutrino spheres. In our models, ⌫̄e is more
populated than ⌫e in the inner region (r <⇠ r

⌫̄e
out). On

the other hand, the number density of ⌫e can dominate
over ⌫̄e at r ⇠ r

⌫e
out and ✓ ⇠ ✓

⌫e
out. This indicates that

EXZS appears at t = 0ms (since XLN is zero). We note
that the neutrinos injected into computational domain
from ✓ = ✓max are assumed to be fixed in time, and these
neutrinos have the primary contribution in the neutrino

number density; hence, the EXZS is nearly fixed.

However, the EXZS in the region of ✓ < ✓max is not
stationary, but dynamically evolving in the time scale
of global advection (an order of ⇠ 0.1ms). As shown
in the bottom panels of Fig. 2, the negative region of
nELN�XLN expands with time, in particular around the
z-axis. We find that ⌫e in the angular region where ⌫̄e

is absent (see also Fig. 1 in [8]) converts into ⌫x, that is
mainly responsible for the negative nELN�XLN there. One
thing we do notice here is that the flavor conversion is
less vigorous around the z-axis, despite the fact that the
neutrino radiation field is substantially changed. Indeed,
the amplitude of o↵-diagonal components of f is less than
a percent of the diagonal ones around the pole. On the
other hand, it is > 10% around the EXZS at t = 0.8ms
(see Fig. 3), suggesting that flavor conversions occur only
in the vicinity of EXZS, and then the FFC-experienced
neutrinos advect to other regions.

We compare ELN-XLN angular distributions between
two di↵erent spatial positions in Fig. 4. The left and
right panels portray the distribution at ✓ = 30� and 40�,
respectively, on the same radius (r = 80km). We note
that the EXZS is located between the two positions. At
t = 0ms (top panels), the angular distributions of neu-
trinos at the two spatial positions are nearly identical to
each other. At cos ✓⌫ ⇠ 1, ELN is negative, that is due to
the higher emission of ⌫̄e than ⌫e at the neutrino sphere.
However, there is a region (band) where ⌫e dominates
over ⌫̄e around cos ✓⌫ ⇠ 0.6. In this region, ⌫̄e is absent
due to the smaller size of neutrino sphere in the disk than
that of ⌫e (see Fig. 1). At t = 0.8ms, however, the ELN-
XLN in the band becomes negative at the ✓ = 30� posi-
tion, suggesting that these neutrinos undergo an almost
complete swap from ⌫e to ⌫x. As we mentioned above,

Time
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Substantial change of neutrino radiation field:

4

FIG. 4. ELN-XLN angular distributions for M2h. We focus
on the region of cos ✓⌫ > 0 (outgoing neutrinos in the radial
direction). In top and bottom panels, we show the result
at t = 0 and 0.8ms, respectively. The left and right panels
distinguish the spatial position: ✓ = 30� and 40� at r = 80km.

the flavor swap occurs around EXZS and then advect to
the spatial position. On the other hand, the neutrinos in
cos ✓⌫ ⇠ 1 is almost the same at t = 0ms, suggesting that
FFC is ine�cient for these neutrinos.

The trend of ELN-XLN angular distributions at ✓ =
40� displayed in the right bottom panel of Fig. 4 is al-
most opposite to the case with ✓ = 30�. Neutrinos in
cos ✓⌫ ⇠ 1, that experiences to pass through the EXZS,
has a strong flavor conversion, whereas those in the angu-
lar band at cos ✓⌫ ⇠ 0.6 remain ⌫e-dominant. This indi-
cates that the change of neutrino radiation field would be
assessed by how many neutrinos pass through the EXZS
during the travel to the position.

We should remark a caveat here. As shown in the bot-
tom panels of Fig. 4, there are ELN-XLN angular cross-
ings, albeit shallow, indicating that the distribution is
still in unstable state (see also [31, 32]). The suppression
of FFC may be an artifact due to the reduction of self-
interaction potential by ⇠. This issue can be addressed by
increasing ⇠, albeit requiring higher spatial resolutions.
This issue should be deferred to future work.

Finally, we quantify how large ⌫e and ⌫̄e radiation field
is changed due to FFC. One thing we need to mention
is that the degree of species-dependent flavor conversion
depends on the number of neutrino species (two or three);
hence, we show the result in M3h. As displayed in Fig. 5,
both ⌫e and ⌫̄e become lower than Mno in the polar re-
gion. The change of ⌫e number density reaches ⇠ 50% at
r ⇠ 100km, whereas that for ⌫̄e is moderate. The is be-
cause the di↵erence of ⌫̄e- and ⌫̄x spheres and their energy
spectra are smaller than those for ⌫e and ⌫x. Following

similar arguments above,
(�)

⌫ e conversion into
(�)

⌫ x that oc-

curs at EXZS results in the reduction of
(�)

⌫ e around the
polar region. On the other hand, both ⌫e and ⌫̄e become
higher than those at t = 0ms in the region of r >⇠ 50km
and close to the disk. As we have already mentioned, the
neutrinos in cos ✓⌫ ⇠ 1 has an experience of FFC when

they pass through the EXZS. Since
(�)

⌫ x dominates over
(�)

⌫ e in the angular region at t = 0ms, FFC facilitates the

FIG. 5. The di↵erence of neutrino number density between
t = 0.8 and 0ms, which is normalized by the density at t =
0ms. Left: ⌫e. Right: ⌫̄e. The model is M3h.

increase of
(�)

⌫ e. An important remark should be made
here. The above conclusion strongly depends on ⌫x ra-

diation field.
(�)

⌫ e would be decreased everywhere if
(�)

⌫ x

flux is substantially suppressed by nucleon scatterings.
We also note that the disappearance of ⌫x sphere, which
occurs when the matter density in the disk becomes low

(<⇠ 1013g/cm3), results in a substantial reduction of
(�)

⌫ e.

Conclusions.—In this Letter, we discuss global features
of FFC in a geometry of BNSM remnant with HMNS,
based on QKE simulations with attenuating the oscil-
lation Hamiltonian. Our result suggests that e↵ects of
global advection lead to a substantial change of FFC dy-
namics. The most striking result in this study is that
FFC properties are qualitatively di↵erent between the
regions divided by a ELN-XLN Zero Surface (EXZS).
The surface evolves with time, indicating that neutrino
advection dictates its dynamics. When neutrinos pass
through the EXZS, the flavor swap can occur in the very
narrow region. This leads to a substantial change of ⌫e
and ⌫̄e number density.

Although we reveal that the EXZS is a key ingredient
to characterize FFC in BNSM system, there is very little
known about its property. It is worthy of note that such
a rapid transition of flavor conversion may be generic in
the case with Dirichlet boundary condition; the detail
will be reported in our forthcoming paper(s). We also
note that FFC dynamics hinges on species-dependent
neutrino energy spectrum and the geometry of neutrino
spheres. Since both HMNS and the disk evolve with time,
a systematic study with varying these setups needs to
be made to make more definitive claims about roles of
FFC on BNSM dynamics. Neglecting neutrino-matter
interactions is also another concern in the present study,
which potentially leads to more complex dynamics of fla-
vor conversion. In fact, multiple EXZSs may emerge in
the complex fluid distributions. Addressing these issues
is the next goal of our future research.

Note: Increase or decrease of 
electron-type neutrinos hinge on 
heavy-leptonic neutrinos

More detailed study is required!!

Global Simulations of FFC in binary neutron star merger
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Flavor swap between electron- and heavy-leptonic neutrinos: 4

FIG. 4. ELN-XLN angular distributions for M2h. We focus
on the region of cos ✓⌫ > 0 (outgoing neutrinos in the radial
direction). In top and bottom panels, we show the result
at t = 0 and 0.8ms, respectively. The left and right panels
distinguish the spatial position: ✓ = 30� and 40� at r = 80km.

the flavor swap occurs around EXZS and then advect to
the spatial position. On the other hand, the neutrinos in
cos ✓⌫ ⇠ 1 is almost the same at t = 0ms, suggesting that
FFC is ine�cient for these neutrinos.

The trend of ELN-XLN angular distributions at ✓ =
40� displayed in the right bottom panel of Fig. 4 is al-
most opposite to the case with ✓ = 30�. Neutrinos in
cos ✓⌫ ⇠ 1, that experiences to pass through the EXZS,
has a strong flavor conversion, whereas those in the angu-
lar band at cos ✓⌫ ⇠ 0.6 remain ⌫e-dominant. This indi-
cates that the change of neutrino radiation field would be
assessed by how many neutrinos pass through the EXZS
during the travel to the position.

We should remark a caveat here. As shown in the bot-
tom panels of Fig. 4, there are ELN-XLN angular cross-
ings, albeit shallow, indicating that the distribution is
still in unstable state (see also [31, 32]). The suppression
of FFC may be an artifact due to the reduction of self-
interaction potential by ⇠. This issue can be addressed by
increasing ⇠, albeit requiring higher spatial resolutions.
This issue should be deferred to future work.

Finally, we quantify how large ⌫e and ⌫̄e radiation field
is changed due to FFC. One thing we need to mention
is that the degree of species-dependent flavor conversion
depends on the number of neutrino species (two or three);
hence, we show the result in M3h. As displayed in Fig. 5,
both ⌫e and ⌫̄e become lower than Mno in the polar re-
gion. The change of ⌫e number density reaches ⇠ 50% at
r ⇠ 100km, whereas that for ⌫̄e is moderate. The is be-
cause the di↵erence of ⌫̄e- and ⌫̄x spheres and their energy
spectra are smaller than those for ⌫e and ⌫x. Following

similar arguments above,
(�)

⌫ e conversion into
(�)

⌫ x that oc-

curs at EXZS results in the reduction of
(�)

⌫ e around the
polar region. On the other hand, both ⌫e and ⌫̄e become
higher than those at t = 0ms in the region of r >⇠ 50km
and close to the disk. As we have already mentioned, the
neutrinos in cos ✓⌫ ⇠ 1 has an experience of FFC when

they pass through the EXZS. Since
(�)

⌫ x dominates over
(�)

⌫ e in the angular region at t = 0ms, FFC facilitates the

FIG. 5. The di↵erence of neutrino number density between
t = 0.8 and 0ms, which is normalized by the density at t =
0ms. Left: ⌫e. Right: ⌫̄e. The model is M3h.

increase of
(�)

⌫ e. An important remark should be made
here. The above conclusion strongly depends on ⌫x ra-

diation field.
(�)

⌫ e would be decreased everywhere if
(�)

⌫ x

flux is substantially suppressed by nucleon scatterings.
We also note that the disappearance of ⌫x sphere, which
occurs when the matter density in the disk becomes low

(<⇠ 1013g/cm3), results in a substantial reduction of
(�)

⌫ e.

Conclusions.—In this Letter, we discuss global features
of FFC in a geometry of BNSM remnant with HMNS,
based on QKE simulations with attenuating the oscil-
lation Hamiltonian. Our result suggests that e↵ects of
global advection lead to a substantial change of FFC dy-
namics. The most striking result in this study is that
FFC properties are qualitatively di↵erent between the
regions divided by a ELN-XLN Zero Surface (EXZS).
The surface evolves with time, indicating that neutrino
advection dictates its dynamics. When neutrinos pass
through the EXZS, the flavor swap can occur in the very
narrow region. This leads to a substantial change of ⌫e
and ⌫̄e number density.

Although we reveal that the EXZS is a key ingredient
to characterize FFC in BNSM system, there is very little
known about its property. It is worthy of note that such
a rapid transition of flavor conversion may be generic in
the case with Dirichlet boundary condition; the detail
will be reported in our forthcoming paper(s). We also
note that FFC dynamics hinges on species-dependent
neutrino energy spectrum and the geometry of neutrino
spheres. Since both HMNS and the disk evolve with time,
a systematic study with varying these setups needs to
be made to make more definitive claims about roles of
FFC on BNSM dynamics. Neglecting neutrino-matter
interactions is also another concern in the present study,
which potentially leads to more complex dynamics of fla-
vor conversion. In fact, multiple EXZSs may emerge in
the complex fluid distributions. Addressing these issues
is the next goal of our future research.

Flavor-swap Flavor-swap
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