Neutrino kinetics in core-collapse supernova

Hiroki Nagakura
(National Astronomical Observatory of Japan)

A Chronological table: progress of SN (and NS) research

2015-: Multi-dimensional SN models with high-fidelity of input physics
Successful SN explosions on big iron \rightarrow Connecting observations
2001-: Establishing 1D-Boltzmann SN models (Liebendörfer et al., Sumiyoshi et al.....)

1990-: Recognizing importance of fluid instabilities on SN (Mezacappa, Janka, and Burrows......)

1985-: Bruenn documented "Core" of SN theory

1985: Neutrino-heating explosion was proposed by Bethe and Wilson

1966: Colgate and White Neutrino emission from stellar implosion

1938-: Observations of extragalactic supernova and their remnants

 (See e.g., Baade 1938)1933-: Baade and Zwicky
Past Hypothesized Connection between neutron star and "super-nova"

Neutrino-heating mechanism of core-collapse supernova (CCSN)

See also talk by Haakon Andresen
\checkmark Neutrino Heating Rate

$$
Q_{\nu}^{+} \approx 160 \mathrm{Mev} / \mathrm{s} \frac{\rho}{m_{a}} \frac{L_{\nu_{e}, 52}}{r_{7}^{2}\left\langle\mu_{\nu}\right\rangle}\left(\frac{T_{\nu_{e}}}{4 \mathrm{MeV}}\right)^{2}
$$

\checkmark Neutrino Cooling Rate

$$
Q_{\nu}^{-} \approx 145 \mathrm{Mev} / \mathrm{s} \frac{\rho}{m_{a}}\left(\frac{T}{2 \mathrm{MeV}}\right)^{6}
$$

V Correlation: GWs - PNS mass Nagakura et al. 2020, Vartanyan et al. 2023, Nagakura and Vartanyan 2023

Correlation: Neutrinos - PNS mass Nagakura and Vartanvan 2021, 2023

Modeling of neutrino radiation field requires kinetic theory
Figure by Janka 2017
Electron flavor (v_{e} and \bar{v}_{e})
Thermal Equilibrium

$$
\begin{aligned}
& \bar{v}_{e} p \leftrightarrow n e^{+} \\
& v_{e} n \leftrightarrow p e^{-}
\end{aligned}
$$

Free streaming

Other flavors $\left(v_{\mu}, \bar{v}_{\mu}, v_{\tau}, \bar{v}_{\tau}\right)$
Neutrino sphere

$$
\begin{aligned}
& v N \leftrightarrow N v \\
& v e \leftrightarrow v e \\
& N N \leftrightarrow N N v \bar{v} \\
& e^{+} e^{-} \leftrightarrow v \bar{v} \\
& v_{e} \bar{v}_{e} \leftrightarrow v_{\mu} \bar{v}_{\mu}
\end{aligned}
$$

Scattering Atmospher $v N \rightarrow N v$

Free streaming

Energy sphere

Transport sphere

Optically thick
Optically thin

General relativistic

full Boltzmann neutrino transport

See also Lindquist 1966

$$
p^{\mu} \frac{\partial f}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial f}{\partial p^{i}}=\left(\frac{\delta f}{\delta \tau}\right)_{\mathrm{col}}
$$

(Time evolution + Advection Term) 6 dimensional Phase Space

(Collision Term)

$$
d N=f(t, \boldsymbol{p}, \boldsymbol{x}) d^{3} p d^{3} x
$$

Conservative form of GR Boltzmann eq.

$$
\begin{aligned}
& \left.\frac{1}{\sqrt{-g}} \frac{\partial\left(\sqrt{-g} \nu^{-1} p^{\alpha} f\right)}{\partial x^{\alpha}}\right|_{q_{(i)}}+\frac{1}{\nu^{2}} \frac{\partial}{\partial \nu}\left(-\nu f p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(0)}^{\beta}\right) \\
& \quad+\frac{1}{\sin \bar{\theta}} \frac{\partial}{\partial \bar{\theta}}\left(\nu^{-2} \sin \bar{\theta} f \sum_{j=1}^{3} p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(j)}^{\beta} \frac{\partial \ell_{(j)}}{\partial \bar{\theta}}\right) \\
& \quad+\frac{1}{\sin ^{2} \bar{\theta}} \frac{\partial}{\partial \bar{\varphi}}\left(\nu^{-2} f \sum_{j=2}^{3} p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(j)}^{\beta} \frac{\partial \ell_{(j)}}{\partial \bar{\varphi}}\right)=S_{\mathrm{rad}}
\end{aligned}
$$

- 3D CCSN simulations with full Boltzmann neutrino transport

Iwakami, Nagakura et al. 2020, 2021

\checkmark GR simulations with full Boltzmann neutrino transport

PNS convection
0.0044 s

Akaho, Nagakura et al. 2023

Gravitational redshift in Black hole spacetime

General relativistic

full Boltzmann neutrino transport

$$
p^{\mu} \frac{\partial f}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial f}{\partial p^{i}}=\left(\frac{\delta f}{\delta \tau}\right)_{\mathrm{col}}
$$

See also Lindquist 1966 Ehlers 1971
(Time evolution + Advection Term) 6 dimensional Phase Space

(Collision Term)

$$
d N=f(t, \boldsymbol{p}, \boldsymbol{x}) d^{3} p d^{3} x
$$

Conservative form of GR Boltzmann eq.

$$
\begin{aligned}
& \left.\frac{1}{\sqrt{-g}} \frac{\partial\left(\sqrt{-g} \nu^{-1} p^{\alpha} f\right)}{\partial x^{\alpha}}\right|_{q_{(i)}}+\frac{1}{\nu^{2}} \frac{\partial}{\partial \nu}\left(-\nu f p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(0)}^{\beta}\right) \\
& \quad+\frac{1}{\sin \bar{\theta}} \frac{\partial}{\partial \bar{\theta}}\left(\nu^{-2} \sin \bar{\theta} f \sum_{j=1}^{3} p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(j)}^{\beta} \frac{\partial \ell_{(j)}}{\partial \bar{\theta}}\right) \\
& \quad+\frac{1}{\sin ^{2} \bar{\theta}} \frac{\partial}{\partial \bar{\varphi}}\left(\nu^{-2} f \sum_{j=2}^{3} p^{\alpha} p_{\beta} \nabla_{\alpha} e_{(j)}^{\beta} \frac{\partial \ell_{(j)}}{\partial \bar{\varphi}}\right)=S_{\mathrm{rad}}
\end{aligned}
$$

Shibata and Nagakura et al. 2014, Cardall et al. 2013

Weak Interactions

See talks on Tuesday

Basic Sets:

$$
\begin{array}{lc}
\hline \nu_{e} n \rightleftharpoons e^{-} p & \text { Bruenn (1985) } \\
\bar{\nu}_{e} p \rightleftharpoons e^{+} n & \text { Bruenn (1985) } \\
\nu_{e} A^{\prime} \rightleftharpoons e^{-} A & \text { Bruenn (1985) } \\
\nu N \rightleftharpoons \nu N & \text { Bruenn (1985) } \\
\nu A \rightleftharpoons \nu A & \text { Bruenn (1985) } \\
& \text { Horowitz (1997) } \\
\nu e^{ \pm} \rightleftharpoons \nu e^{ \pm} & \text {Bruenn (1985) } \\
e^{-} e^{+} \rightleftharpoons \nu \bar{\nu} & \text { Bruenn (1985) } \\
N N \rightleftharpoons \nu \bar{\nu} N N & \text { Hannestad \& } \\
& \text { Raffelt (1998) } \\
&
\end{array}
$$

Lentz et al. 2011, Kotake et al. 2018

See also Grang et al. 2020, Fisher et al. 2020, Sugiura et al. 2022

Lepton Sectors (including muons):

$$
\begin{array}{lc}
\nu_{e}+\bar{\nu}_{e} \rightleftharpoons \nu_{x}+\bar{\nu}_{x} & \text { Buras et al. (2003) } \\
\nu_{x}+\nu_{e}\left(\bar{\nu}_{e}\right) \rightleftharpoons \nu_{x}^{\prime}+\nu_{e}^{\prime}\left(\bar{\nu}_{e}^{\prime}\right) & \text { Fischer et al. (2009) }
\end{array}
$$

$$
\begin{aligned}
& \nu+\mu^{-} \rightleftarrows \nu^{\prime}+\mu^{-\prime} \\
& \nu_{\mu}+e^{-} \rightleftarrows \mu^{+} \rightleftarrows \nu_{e}+\mu^{-} \\
& \nu_{\mu}+\bar{\nu}_{\mu}+\bar{\nu}_{e}+e^{+} \rightleftarrows e^{-} \rightleftarrows \bar{\nu}_{e}+\mu^{+} \\
& \bar{\nu}_{e}+e^{-} \rightleftarrows \bar{\nu}_{\mu}+\nu_{e}+e^{+} \rightleftarrows \mu^{+} \\
& \hline
\end{aligned} \mu^{-} \quad \nu_{e}+e^{+} \rightleftarrows \nu_{\mu}+\mu^{+}+
$$

Weak Interactions

Hadron Sectors (Nucleon scattering):

See talks on Tuesday

Nucleon Neutral Weak Current

$$
J_{\mu}=\left\langle N\left(p^{\prime}\right)\right| F_{1}\left(Q^{2}\right) \gamma_{\mu}+\underline{F_{2}\left(Q^{2}\right) \sigma_{\mu \nu} q^{\nu}}+G_{A}\left(Q^{2}\right) \gamma_{\mu} \gamma_{5}|N(p)\rangle
$$

Weak magnetism

Basic Sets:

$\nu_{e} n \rightleftharpoons e^{-} p$	Bruenn (1985)
$\bar{\nu}_{e} p \rightleftharpoons e^{+} n$	Bruenn (1985)
$\nu_{e} A^{\prime} \rightleftharpoons e^{-} A$	Bruenn (1985)
$\nu N \rightleftharpoons \nu N$	Bruenn (1985)
$\nu A \rightleftharpoons \nu A$	Bruenn (1985),
	Horowitz (1997)
$\nu e^{ \pm} \rightleftharpoons \nu e^{ \pm}$	Bruenn (1985)
$e^{-} e^{+} \rightleftharpoons \nu \bar{\nu}$	Bruenn (1985)
$N N \rightleftharpoons \nu \bar{\nu} N N$	
	Raffelt (1998)

Lentz et al. 2011, Kotake et al. 2018

Melson et al. 2015

Burrows et al. 2020

- Nucleon bremsstrahlung of neutrino pairs

See talk by Aurore Betranhandy on Thursday
\checkmark Major production channel of muon- and tau- neutrinos
\checkmark Major role in proto-neutron star cooling phase

- Towards first-principles CCSN simulations

Dimensionality
(for Hydro)

Neutrino
Transport

Full GR

- Towards first-principles CCSN simulations

Dimensionality Beyond Boltzmann (QKE) Neutrino (for Hydro) Full Boltzmann Iransport

Full GR

Gravity
EOS
Weak Interactions

Neutrino self-interactions can induce flavor-conversion instabilities See also talk by Gail McLaughlin on Thursday

Quantum Kinetics neutrino transport

Vlasenko et al. 2014, Volpe 2015, Blaschke et al. 2016, Richers et al. 2019

Density matrix

$$
p^{\mu} \frac{\partial^{(-)}}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial^{(-)}}{\partial p^{i}}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\text {col }}^{+i p^{\mu} n_{\mu}[\stackrel{(-)}{H}, \stackrel{(-)}{f}]} \text { Oscillation term }^{(2)}
$$

Hamiltonian

$\stackrel{(-)}{H}=\stackrel{(-)}{H}_{\text {vac }}+\stackrel{(-)}{H}_{\text {mat }}+\stackrel{(-)}{H}_{\nu \nu}$,

$$
H_{\nu \nu}=\sqrt{2} G_{F} \int \frac{d^{3} q^{\prime}}{(2 \pi)^{3}}\left(1-\sum_{i=1}^{3} \ell_{(i)}^{\prime} \ell_{(i)}\right)\left(f\left(q^{\prime}\right)-\bar{f}^{*}\left(q^{\prime}\right)\right)
$$

- Fast neutrino-flavor conversion (FFC)

Nagakura et al. 2021

Binary neutron star merger (BNSM)

Wu and Tamborra 2017

- Collisional instability

Xiong et al. 2023
Xiong et al. 202216

- Global Simulations: code development

General-relativistic quantum-kinetic neutrino transport (GRQKNT)

$$
p^{\mu} \frac{\partial \stackrel{(-)}{f}}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial^{(-)}}{\partial p^{i}}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\mathrm{col}}+i p^{\mu} n_{\mu}[\stackrel{(-)}{H}, \stackrel{(-)}{f}]
$$

\checkmark Fully general relativistic ($3+1$ formalism) neutrino transport
\checkmark Multi-Dimension (6-dimensional phase space)
\checkmark Neutrino matter interactions (emission, absorption, and scatterings)
\checkmark Neutrino Hamiltonian potential of vacuum, matter, and self-interaction
$\checkmark 3$ flavors + their anti-neutrinos
\checkmark Solving the equation with Sn method (explicit evolution: WENO-5th order)
\checkmark Hybrid OpenMP/MPI parallelization

Global simulations of FFC in a CCSN environment

Neutrino heating/cooling

Numerical setup:

Collision terms are switched on.
Fluid-profiles are taken from a CCSN simulation.

General relativistic effects are taken into account.

A wide spatial region is covered.
Three-flavor framework

Neutrino-cooling is enhanced by FFCs Neutrino-heating is suppressed by FFCs

Impacts on CCSN explosion !!

Global simulations of FFC in a CCSN environment

Nagakura and Zaizen (arXiv:2308.14800) K^{rr} (r-r component of Eddington tensor) becomes less than 1/3.

Angular distribution

Global Simulations of FFC in binary neutron star merger remnant

\checkmark EXZS (ELN-XLN Zero Surface):

ELN - XLN

Flavor coherency

Collisional flavor swap

(associated with collisional instability)

Kato, Nagakura, and Johns (arXiv:2309.02619)

- Summary

Dimensionality
(for Hydro)

Full GR

Weak Interactions

Backup

Multi-dimensional (or alternative) CCSN simulations

See also other talks:
H. Andresen, Boccioli, M. Mori, Gogilashvili, Dunham, Pajkos, O. Andersen,

Endeve, Akaho, Betranhandy, Yeow, K. Mori
CCSN simulations with full Boltzmann transport CCSN simulations with two-moment method

Nagakura et al. 2019

Neutrino kinetics (transport, neutrino-matter collisions, and oscillation) plays key roles on CCSN dynamics

- Weak reactions with light nuclei

Nagakura et al. 2019, Furusawa and Nagakura 2022

$$
\begin{aligned}
& \text { (elpp) : } \nu_{e}+{ }^{2} \mathrm{H} \longleftrightarrow e^{-}+p+p, \\
& \text { (ponn) }: \overline{\nu_{e}}+{ }^{2} \mathrm{H} \longleftrightarrow e^{+}+n+n, \\
& \text { (el2h) : } \nu_{e}+n+n \longleftrightarrow e^{-}+{ }^{2} \mathrm{H} \\
& \text { (po2h) }: \overline{\nu_{e}}+p+p \longleftrightarrow e^{+}+{ }^{2} \mathrm{H}, \\
& \text { (el3he) }: \nu_{e}+{ }^{3} \mathrm{H} \longleftrightarrow e^{-}+{ }^{3} \mathrm{He}, \\
& \text { (po3h) }: \overline{\nu_{e}}+{ }^{3} \mathrm{He} \longleftrightarrow e^{+}+{ }^{3} \mathrm{H} .
\end{aligned}
$$

Multi-nuclear treatments of EOS are mandatory for accurate computations of nuclear-weak reaction rates

Hempel et al. 2011, Steiner et al. 2013, Furusawa and Nagakura et al. 2017

Various Approximations for Multi-D Neutrino Transfer

See a review by Mezzacappa et al. 2020
\checkmark Ray-by-Ray Approach (UTK-Oak Ridge, MPA)
Neutrino-transport is essentially same as spherical symmetry.
\checkmark Isotropic Diffusion Source Approximation (IDSA) (Basel, Japan)

Neutrinos are decomposed into trapped and streaming parts.

Schematic picture of ray-by-ray approach (Lentz et al. 2012)

\checkmark Moment method

(Many groups....)

Neutrino angular direction is integrated. The so-called "closure relation" is imposed in the higher moment.
\checkmark Multi-Group Flux-Limited-Diffusion (MGFLD)
(UTK-Oak Ridge)
Neutrino Transports are treated as the Energy-Dependent Diffusion Equation.

Numerical methods of Boltzmann solver (Sn method)

Large-matrix Inversion is required.

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(f \cos \bar{\theta} r^{2}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(f \sin \theta \sin \bar{\theta} \cos \bar{\varphi}) \\
& \quad+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}(f \sin \bar{\theta} \sin \bar{\varphi})-\frac{1}{r} \frac{1}{\sin \bar{\theta}} \frac{\partial}{\partial \bar{\theta}}\left(f \sin ^{2} \bar{\theta}\right) \\
& -\frac{\partial}{\partial \bar{\varphi}}\left(f \frac{\cot \theta}{r} \sin \bar{\theta} \sin \bar{\varphi}\right)=S_{\mathrm{rad}} .
\end{aligned}
$$

Block-diagonal sparse matrix
\checkmark Solved by BiCGSTAB with Damped Jacobi-type Preconditioner
(Imakura et al. 2012)
\checkmark Scale of axisymmetric simulations

Memory: ~2 TB, Operation: 20TFlops $\times 2000$ hours

We achieve $\sim 10 \%$ performance on " K " and "Fugaku" supercomputers

Full 7D simulation needs 100 times computational resources are necessary.

Rich flavor-conversion phenomena driven by neutrino-neutrino self-interactions

- Slow-mode (Duan et al. 2010)
- Energy-dependent flavor conversion occurs.

Vacuum:	$\omega=\frac{\Delta m^{2}}{2 E_{\nu}}$,
Matter:	$\lambda=\sqrt{2} G_{F} n_{e}$,
Self-int:	$\mu=\sqrt{2} G_{F} n_{\nu}$,

- The frequency of the flavor conversion is proportional to
- Fast-mode (FFC) (Sawyer 2005)
- Collective neutrino oscillation in the limit of $\omega \rightarrow 0$.
- The frequency of the flavor conversion is proportional to
- Anisotropy of neutrino angular distributions drives FFCs.
- Collisional instability (Johns 2021)
- Asymmetries of matter interactions between neutrinos and anti-neutrinos drive flavor conversion.

Г: Matter-interaction rate

- Matter-neutrino resonance (Malkus et al. 2012)
- The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).
- Essentially the same mechanism as MSW resonance.

The spin (axial) S_{A} response

Horowitz et al. 2017

Global Simulations of FFC in binary neutron star merger

\checkmark Setup:

- Hypermassive neutron star (HMNS) + disk geometry
- Thermal emission on the neutrino sphere
- QKE (FFC) simulations in axisymmetry
- Resolutions: $1152(r) \times 384(\theta) \times 98\left(\theta_{v}\right) \times 48\left(\phi_{v}\right)$

Global Simulations of FFC in a BNSM environment

Nagakura (arXiv:2306.10108)
\checkmark Temporal evolution of FFCs in global scale:

$$
\operatorname{ELN}(\mathrm{t})-\operatorname{ELN}(0)
$$

Time

Take-home message 1
Non-conservations of ELN (and XLN) number density represent the importance of global advection of neutrinos in space!

Global Simulations of FFC in binary neutron star merger

\checkmark Substantial change of neutrino radiation field:

Note: Increase or decrease of electron-type neutrinos hinge on heavy-leptonic neutrinos

More detailed study is required!!

Global Simulations of FFC in a BNSM environment

\checkmark Flavor swap between electron- and heavy-leptonic neutrinos:

Global simulations of FFC in a CCSN environment

Nagakura and Zaizen (arXiv:2308.14800)

- Eddington tensor (and comparing to analytic closure relations)

