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Quantum Field Theories are Hard to Simulate

Difficulties: 
• Gauge field: infinite degree of freedom; gauge symmetries
• Fermions: sign problem; antisymmetric wave function

Lagrangian formulation: challenges of sign problem
• Path integral Monte Carlo
• Flow based sampling method 

Hamiltonian formulation:
• Quantum computer: limited power at early stage
• Tensor networks: cannot include infinite degree of 

freedom
• Neural networks quantum state: new exploration
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Abelian & Nonabelian discrete groups



New Exploration: Neural Quantum States

● Gauge Equivariant Neural Network

(Phys. Rev. Lett. 127, 276402, arxiv. 2211.03198)

● Gauge-Fermion FlowNet for 2+1D QED at Finite Density

(Phys. Rev. Lett. 122, 226401, ,Phys. Rev. Research 5, 013216 arxiv.2212.06835)

● Neural Quantum Field State for continuum Quantum Field Theories

(Phys. Rev. Lett. 131, 081601)
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Quantum Many-body Physics Simulation

Challenges:
● Sign problem: non-positive real number / complex number
● high dimensionality: Hilbert space scales exponentially with particles

Spectrum calculation Real time evolution 

Eg. phase diagram, excited states, 
steady states

Eg. quantum chaos, quantum circuit 
simulation, dynamics of gauge theories
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Ongoing Efforts: Quantum Monte Carlo

Quantum monte carlo: sample high dimension objects

Transition probability with signs

● Draw samples according to |𝜓|2, apply transition probability kernel

● Due to sign problem, the relative variance of the sign scales exponentially
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Ongoing Efforts: Tensor Network

Tensor network: tensor decomposition of high dimensional objects

● Efficient for 1 dimensional system due to area law

● Challenges exist for two or three dimensional physics system

High rank tensor
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Ongoing Efforts: Quantum Computation
Quantum computation: naturally represents and operates on quantum objects

● Natural for quantum dynamics, could be used for ground state problems

● Challenges exist under current technology

Analog quantum computation Digital quantum computation
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Neural Quantum States

2n x 2n hermitian matrix

For a n-particle (spin ½)  system:

2n vector 

Superposition of 2n configurations!
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For a n-particle system:

Superposition of 2n configurations! Q: Can machine learning help to find the best 
superposition of configurations?

Neural Quantum States
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Neural network: low dimensional representation of high dimensional objects

Universal Approximation 
Theorem [Cybenko]

Wave function amplitude
[Giuseppe Carleo, Matthias 
Troyer]

Neural Quantum States
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Or Sharir, Amnon Shashua, Giuseppe Carleo
https://arxiv.org/abs/2103.10293

Neural Network Quantum State:

● It is able to represent volume law state

● Exact representation for Jastrow, 
stabilizer states

● Variational simulation for theories with 
sign problems

Neural Quantum States

13



Infinite Neural Network Quantum State: Entanglement and Training Dynamics

Quantum State Neural Tangent Kernel

Theorem. Quantum state supervised learning training 
is guaranteed to converge in infinite width limit.

Neural Quantum States

Volume law entanglement engineering of 
CosNet 
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Di Luo, James Halverson, Mach. Learn.: Sci. Technol. 4 025038



Neural Quantum States
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Gauge Equivariant Neural Network for Quantum Lattice Gauge Theories

  Gauge
Equivariant

Perimeter law Area law

--- Develop gauge equivariant neural network for simulating quantum lattice gauge models 
--- Exact representation for Toric code, Kitaev D(G) model, Fracton ground states and applications to 
transverse field Toric code phase transition

Di Luo, Giuseppe Carleo, Bryan Clark, James Stokes. Phys. Rev. Lett. 127, 276402
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Gauge symmetry = 0

Toric code Hamiltonian 

(AY Kitaev, 2003)

Q: How to construct neural network representation 
for wave functions with gauge symmetry?

Gauge Equivariant Neural Quantum States
Phys. Rev. Lett. 127, 276402
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● Invariant function 

● Equivariant function 

Phys. Rev. Lett. 127, 276402

Gauge Equivariant Neural Quantum States
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Configuration
as 2 channel image

Z2 equivariant layer Z2 invariant layer

curve loop

Phys. Rev. Lett. 127, 276402

Gauge Equivariant Neural Quantum States
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Study Area-law to Perimeter-law transition on Toric code with transverse field  

Order parameter:

Perimeter law Area law

(J Vidal, et al. 2009)

Phys. Rev. Lett. 127, 276402

Gauge Equivariant Neural Quantum States
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Phys. Rev. Lett. 127, 276402

Theorem. There exists exact representation of the gauge equivariant neural network 
for grounds states of the following models:

● 2D Toric code  

● 3D Toric code 

● Kitave D(G) model with any discrete group G

● X-cube Fracton 

Gauge Equivariant Neural Quantum States
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Gauge Equivariant Neural Network for 2+1D U(1) Gauge Theory 
                Simulations in Hamiltonian Formulation
--- Develop gauge equivariant neural network for simulating continuous-variable quantum lattice gauge models
--- Comparable results in weak coupling regimes and improved performance in strong coupling regimes

Di Luo†, Shunyue Yuan†, James Stokes, Bryan Clark. arxiv. 2211.03198
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Gauge Equivariant Neural Quantum States: 2+1D U(1) Theory
arxiv.2211.03198
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Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density
                             with Neural Flow Wavefunctions

--- Develop Gauge-Fermion FlowNet, which represents U(1) gauge field without cutoff, obey Gauss’s law, samples 
without auto-correlation time and variationally simulates model with sign problems. 

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

--- Simulate 2+1D QED at finite density to study string breaking and confinement, charge crystal phase transition and 
magnetic phase transition.

27Gauge-Fermion FlowNet



Simulate 2+1D QED at Finite Density

● Tensor network study on 
2+1D quantum link model 
with spin 1 representation 
of gauge field
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Simulate 2+1D QED at Finite Density

● Monte Carlo study with 
even species of fermions 
without sign problem
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Simulate 2+1D QED at Finite Density

● Proposal on simulating 
2+1D QED on quantum 
computer with gauge field 
cutoff

● Interesting phenomena on 
1 plaquette
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Fermion
Gauge field 
(continuous)

Magnetic flux

Kinetic energy

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

2+1D QED with Finite Density Dynamical Fermions 
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Fermion
Gauge field 
(continuous)

Fermion 
hopping

Fermion mass

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

2+1D QED with Finite Density Dynamical Fermions 
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Fermion
Gauge field 
(continuous)

Gauss’ law

Sign problem exist even for zero density

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

2+1D QED with Finite Density Dynamical Fermions 
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Fermion
Gauge field 
(continuous)

Gauge invariant network and 
Flow-based model

Neural network
backflow

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

2+1D QED with Finite Density Dynamical Fermions 
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2+1D QED with Finite Density Dynamical Fermions 

Fermion
Gauge field 
(continuous)

2. Gauge invariant autoregerssive network: 
● Sample without auto-correlation time
● Enforce gauge symmetry with fermions 

1. Neural network backflow: 
● fermionic anti-symmetry and sign problems

3. Discrete Flow-based model: 
● U(1) degree without cut-off

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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Backflow Transformations via Neural Networks for    
          Quantum Many-Body Wave-Functions

Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401

--- Develop anti-symmetry neural network for fermionic simulations
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Neural Network Backflow

Backflow 
Slater Determinant

 Pro:  include correlation effect

 Con: hard to figure out good
configuration dependent orbitals

Configuration dependent orbitals

r Determinant

Jastrow

+

[Feynman], 
[Sorella]

General form 
of backflow?

Backflow
transformation

Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401

Mean field solution

?
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Input configuration r

Determinant

● Configuration dependent many-particle orbital

● Allow neural network to work with fermion and 
change sign structure directly in arbitrary system

● Allow transformation to slater determinant and 
pairing functions

Neural network  
interacting orbitals

Neural Network Backflow
Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401

Mean field orbital Neural network 
backflow output
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Generalization of backflow to arbitrary lattice systems with complicated sign structure.

4x4 Hubbard, U/t=8, n=0.875
Slater Det+NNB
BDG Pairing+NNB

4x4x3 Kagome
Variance extrapolation 
error=0.286%

Hubbard model, 
U/t=8, n=0.875,  
finite size study

4x4

8x4 16x4
12x4

Inf x 4 DMRG

Neural Network Backflow
Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401
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● Anti-symmetric neural network

● Change sign structure directly and 
generalization to arbitrary lattices 

● Theoretically exact and lower bound for 
existing backflow methods, 
generalization of 
Slater-Jastrow-Backflow hierarchy

● Further advancement in quantum 
chemistry (FermiNet, PauliNet) and 
nuclear physics

Neural Network Backflow
Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401
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Advancement in Fermionic Simulation: 

Neural Network Backflow
Di Luo, Bryan Clark, Phys. Rev. Lett. 122, 226401
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This workshop: 

Markus Holzmann, David Linteau, Carlo Barbieri, 
James Keeble, Javier Rozalén, Jane Kim, 
Amir Azzam, David Pfau, Bryce Fore, Elad Parnes,
Mehdi Drissi, Andrea Di Donna, Alessandro Lovato, 
Arnau Rios Huguet, ….



Neural Network Backflow
Di Luo, Aidan P. Reddy, Trithep Devakul, Liang Fu, arxiv.2303.08162

Artificial intelligence for artificial materials: moiré atom

From Schrödinger atom to Wigner molecule Effect of crystal field on charge distribution
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2+1D QED with Finite Density Dynamical Fermions 

Fermion
Gauge field 
(continuous)

2. Gauge invariant autoregerssive network: 
● Sample without auto-correlation time
● Enforce gauge symmetry with fermions 

1. Neural network backflow: 
● fermionic anti-symmetry and sign problems

3. Discrete Flow-based model: 
● U(1) degree without cut-off

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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Gauge Invariant and Anyonic Symmetric Autoregressive 
Neural Network for Quantum Lattice Models

Di Luo†, Zhuo Chen†, Kaiwen Hu, Zhizhen Zhao, Vera Hu, Bryan Clark. Phys. Rev. Research 5, 013216

--- Develop autoregressive neural network that satisfies gauge constraints and algebraic constraints 
with applications to quantum link models, toric codes, Fracton, anyonic models
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Transformer Autoregressive Wave function Symmetry via Composite Particles 



Gauge Invariant and Anyonic Symmetric Autoregressive Neural Network

Autoregressive neural network with gauge symmetry or Anyonic symmetry

● Exact sampling, which is more efficient than Markov Chain Monte Carlo

● It could be constructed to obey gauge symmetries or other algebraic constraint

45

Di Luo†, Zhuo Chen†, Kaiwen Hu, Zhizhen Zhao, Vera Hu, Bryan Clark. Phys. Rev. Research 5, 013216



Applications to 2D, 3D Toric code and X-cube Fracton model

2D toric code

Gauge Invariant and Anyonic Symmetric Autoregressive Neural Network

Exact representation of grounds states and 
excited states for:

● 2D Toric code 

● 3D Toric code 

● X-cube Fracton 
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Di Luo†, Zhuo Chen†, Kaiwen Hu, Zhizhen Zhao, Vera Hu, Bryan Clark. Phys. Rev. Research 5, 013216



String inversion of real-time dynamics in
1+1D Quantum Link Model

Gauge Invariant and Anyonic Symmetric Autoregressive Neural Network
SU(2)3 Fibonacci anyons

Phase 
diagram

Central
charge
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Di Luo†, Zhuo Chen†, Kaiwen Hu, Zhizhen Zhao, Vera Hu, Bryan Clark. Phys. Rev. Research 5, 013216



2+1D QED with Finite Density Dynamical Fermions 

Fermion
Gauge field 
(continuous)

2. Gauge invariant autoregerssive network: 
● Sample without auto-correlation time
● Enforce gauge symmetry with fermions 

1. Neural network backflow: 
● fermionic anti-symmetry and sign problems

3. Discrete Flow-based model: 
● U(1) degree without cut-off

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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Flow-based Model

● M. S. Albergo, G. Kanwar, P. E. Shanahan, PRD 100 (3), 
034515

● G Kanwar, etc, P.E. Shanahan, PRL 125 (12), 121601

Continuous Flow
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QFlow:  Generative Modeling for Differential Equations of Open 
Quantum Dynamics with Normalizing Flows

Owen Dugan, Peter Y. Lu, Rumen Dangovski, Di Luo, Marin Soljačić, ICML 2023

--- Develop flow-based models with Q function for continuous variable open quantum dynamics 
simulations using stochastic Euler methods and time dependent variational principle 
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Discretized Flow-based Model

Discretized Flow: represent U(1) degree freedom in E basis without cutoff

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

Rational quadratic spline flowPrior Discrete target distribution
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Simulate 2+1D QED at Finite Density: Gauge-Fermion FlowNet

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

Impose Gauss’law, 
U(1) freedom without cutoff,
Exact sampling Fermionic anti-symmetry
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Gauge-Fermion FlowNet



2+1D QED at Finite Density: String Breaking

Zero density regime: string breaking

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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2+1D QED at Finite Density: String Breaking

Zero density: hopping effect on string breaking Finite density fixed doping: string breaking

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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2+1D QED at Finite Density: Charge Crystal to Vacuum Transition 

Classical picture: 1st order transition between charge crystal phase to vacuum phase

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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2+1D QED at Finite Density: Charge Crystal to Vacuum Transition 

Zero density: charge crystal to vacuum transition

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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2+1D QED at Finite Density: Charge Crystal to Vacuum Transition 

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

Bulk approaches zero density phase

Finite density fixed doping: phase separation and charge penetration blocking caused by magnetic interaction

57



2+1D QED at Finite Density: Charge Crystal to Vacuum Transition 

Finite density fixed doping: phase separation and charge penetration blocking caused by magnetic interaction

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

Existence of magnetic interaction
Absence of magnetic interaction
(also in tensor network simulation  
PhysRevX.10.041040) 58



2+1D QED at Finite Density: Magnetic Phase Transition 

Competition between kinetic energy and magnetic energy

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835

One plaquette study 
PRXQuantum.2.030334

Questions:

1. What is the large system 
size phenomena?

2. What are the nature of the 
phase transitions?
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2+1D QED at Finite Density: Magnetic Phase Transition 

Competition between kinetic energy and magnetic energy

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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2+1D QED at Finite Density: Magnetic Phase Transition 

Competition between kinetic energy and magnetic energy: spontaneous symmetry breaking of 
time-reversal symmetry 

Zhuo Chen†, Di Luo†, Kaiwen Hu, Bryan Clark. arxiv. 2212.06835
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Towards General Quantum Field Theories
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Neural Quantum Field States for Continuum QFT

Q: How to simulate continuum quantum field theories?

A: Neural quantum field states

 John M. Martyn, Khadijeh Najafi, Di Luo. Phys. Rev. Lett. 131, 081601
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Variational Neural-Network Ansatz for Continuum Quantum Field Theory

--- Develop neural quantum field state for continuum quantum field theory with applications to 
Lieb-Liniger Model, Calogero-Sutherland Model, Regularized Klein-Gordon Model.
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 John M. Martyn, Khadijeh Najafi, Di Luo. Phys. Rev. Lett. 131, 081601



Neural Quantum Field States for Continuum QFT

Applications: 

● Lieb-Liniger Model
● Calogero-Sutherland Model
● Regularized Klein-Gordon Model

Q: How to simulate continuum quantum field theories?

 A: Neural quantum field states
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 John M. Martyn, Khadijeh Najafi, Di Luo. Phys. Rev. Lett. 131, 081601

DeepSet



Neural Quantum Field States for Continuum QFT

Regularized Klein-Gordon Model
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 John M. Martyn, Khadijeh Najafi, Di Luo. Phys. Rev. Lett. 131, 081601



Conclusions and Outlook

● New opportunities from neural quantum states for simulating quantum field 
theories

● New attempts to handle gauge symmetries, sign problems, continuous 
fields

● Study ground state phase diagram, finite temperature physics, and real-time 
dynamics of quantum field theories
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