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Deep learning for the quantum many body problem

Neural network states:

Density functional theory
(needs data!)

Supervised learning 
(needs data!)
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Data might come from:

• More ab-initio method (NQS): computational cost

• Smaller systems: scalability

• Quantum device: noise & errors



H.-Y. Huang et al, Power of data in quantum machine learning, Nat. Commun. 12, 2631 (2021).
H.-Y. Huang et al., Provably efficient machine learning for quantum many-body problems, Science (2022)

Classical machine learning algorithm 
trained on (quantum) data can solve 
otherwise classically intractable problems.
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Supervised learning: cold-atoms in optical speckle patterns

Semeghini et al. Nat. Phys. 2015 SP, Fratini  PRA (2015)
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exact g.s. energy

d = discrepancy ≡ ε pred − ε0

Ntrain = 8×104

Neural net. predictions vs. exact g.s. energy
SP, Pieri, Sci. Rep. 9,  5613 (2019)



added noise

The NN is remarkably resilient, it can 
filter signal from noise

Resilinece to noise: cold-atom quantum simulators?

Q: could we use QS to train NN to solve computationally intractable problem?

ANALYSIS OF NOISE SENSITIVITY: Training on synthetic data with added noise

Gaussian noise with stand. dev. proportional to intrinsic data stand. dev. 

SP, Pieri, Sci. Rep. 9,  5613 (2019)
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Scalabale neural networks • Scalable NN  that can address different system sizes
• Heterogeneous training
• Extrapolation: making prediction for larger system sizes
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Fully Connected
(u=10, l =2)

+ Relu

Global
Max

Pooling

Conv1D
(k=5x1, f=50, s=1)

+ Relu

N-Times Preceding Blocks
(Conv1D+MaxPooling1D)

MaxPooling1D
(s=3x1)

A fully-scalable convolutional neural network

Convolutional part: extracts «relavant» features

Global Max pooling

Fully conn.

Provides full scalability
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Extrapolation: making predictions for larger systems

Heterogeneous training:
140K for L=20 and 5K for L=40

5 hidden units

10 hidden units

20 hidden units

Homogeneous training
140K for L=20

Saraceni, Cantori, SP, PRE 102, 033301 (2020)
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Next n. n. trained on Ns = 12

Next n. n. trained on Ns = 15

Long-range trained on Ns = 21

Long-range trained on Ns = 22

Disordered quantum Ising model in 1D

Descriptors: Ji,i+1, Ji,i+d

Ntrain: 3×104

Saraceni, Cantori, SP, PRE 102, 033301 (2020)
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Quantum annealers Classical deep learning
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Low-T equilibrium properties of classical spin glassesEnergy landscape
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Proposal matrix in Metropolis-Hastings algorithm:   𝑤𝐱"𝐱 = 𝑝#$%&'() 𝐱′

Acceptance probability:

We need: 𝑝*'+%, 𝐱 > 0 ⟹ 𝑝#$%&'() 𝐱 > 0

 if: 𝑝#$%&'() 𝐱 ≅ 𝑝*'+%, 𝐱                            𝐴𝐱!𝐱 ≅ 1 → efficient simula?on!

 if: 𝑝8%9:;(< 𝐱 ≅ 0 where 𝑝=;>9? 𝐱 ≈ 1 → ergodicity problem!

 

𝐴𝐱!𝐱 = min 1,
𝑝*'+%, 𝐱′ 𝑤𝐱𝐱"
𝑝*'+%, 𝐱 𝑤𝐱"𝐱

(use ancestral sampling)

Related work: 
• K. A. Nicoli et al., PRE 101, 023304 (2020):  MCMC+autoregressive n. for ferromagnetic models.
• F. Noè et al., Science 365, 1147 (2019):   normalizing flows for complex-molecule simulations.
• X. Ding et al., J. Phys. Chem. B, 124, 10166 (2020):  normalizing flows for free-energy computations.
• M. Gabrié et al., arXiv:2105.12603 (2021):  adaptive MCMC via normalizing flows.
• G. S. Hartnett, M. Mohseni,arXiv:2001.00585v2 (2020): spin-glass simulations via normalizing flows.

McNaughton, Milošević, Perali, SP, PRE (2020)NEURAL CLASSICAL MONTE CARLO SIMULATIONS



Neural MC with NN trained on D-WAVE data

Energy histogram of D-Wave data

Access to D-Wave QPU time via CINECA ISCRA Project

2D square lattice  N=484
Nearest and next-nearest neighbor interaction
Uniform random couplings



# of MC sweeps

Hybrid Neural MC

Parallel tempering

Hybrid neural simulation of a spin glass at low T

NN trained on D-WAVE data
Annealing time: 100𝜇s β/J = 4.5

2D square lattice  N=484
Nearest and next-nearest neighbor interaction
Uniform random couplings in (-1,1)

Hybrid MC

NN trained on D-Wave data

D-Wave data

G. Scriva, E. Costa, B. McNaughton, 
SP, SciPost Physics 15, 018 (2023)



DFT for random quantum Ising models via scalable neural networks

Hamiltonian:  𝐻 = −𝐽 ∑" 𝜎"#𝜎"$%# + ∑" 𝜎"#𝜎"$!# + ∑" ℎ"𝜎"&
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Predicting energies for larger systems than those used for training

Testing length

Training length
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E. Costa, R. Fazio, SP, PRB (2023)

Future goal: 
dynamics via time-dependent DFT



Projective QMC for Quantum Ising models

H = − Jijσ i
zσ j

z − Γ σ i
x

i
∑

ij
∑

ψ S,τ( ) = exp −τH( )ψ S,0( ) ≈
τ→∞

ψ 0 S,0( )          Schr!!odinger eq. in imaginary time

ψ S,τ + Δτ( ) = G S ',S,Δτ( )
S '
∑ ψ S ',τ( )            defines a Markov process

G S ',S,Δτ( ) ≥ 0  ⇒   no sign problem (stoquastic Hamiltonian)

G S ',S,Δτ( )
S '
∑ ≠ 1⇒   not a standard Markov process ⇒  kill or clone random walkers

Image from: W. M. C. Foulkes, L. Mitas, R. J. Needs, 
and G. Rajagopal Rev. Mod. Phys. 73, 33 (2001)

Imaginary-time	Green’s function
𝐺 𝐒(, 𝐒, Δ𝜏 = 𝐒( exp −Δ𝜏(𝐻 − 𝐸)*+ 𝐒



Notice: any diagonal Hamiltonian is stoquastic (sign-problem free). 
 Finding its ground state encompasses hard classical optimization problems such as k-SAT or MAX-CUT.
 Bravyi, Quant. Inf. Comp., Vol. 15, No. 13/14, pp. 1122-1140 (2015)

Computational cost of projective QMC simulations

System size

# of walkers required to keep relative err. fixed

Exponentially growing computational cost, even without sign problem

Note: here we use “simple” PQMC algorithm: no guiding wave function.

SEE ALSO:
N. Nemec, Phys. Rev. B 81, 035119 (2010).
M. Boninsegni and S. Moroni, Phys. Rev. E 86, 056712 (2012).
K. Ghanem, N. Liebermann, A. Alavi, Phys. Rev. B 103, 155135 (2021)
J. Brand, M. Yang, E, Pahl, Phys. Rev. B 105, 235144 (2022)

Inack, Giudici, Parolini, Santoro, SP, PRA (2018)



IMPORTANCE SAMPLING WITH VARIATIONAL ANSATZ

Introduce guiding wave function ≡ψ G x( )

Modified master eq.:   Ψ x,τ + Δτ( )ψ G x( ) = !G x,x ',Δτ( )
x '
∑ Ψ x ',τ( )ψ G x '( )

Modified Green's function:  !G x,x ',Δτ( ) = x exp −Δτ Ĥ − EREF( ) x '
ψ G x( )
ψ G x '( )

The guiding wf reduces statistical fluctuations and bias.
Here, we adopt neural network states.
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PQMC with Adaptive RBM ψGs

Jordan−Wigner
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Self-learning projective QMC simulation

Ø RBM learns the random-walker distribution:

Ø Guiding wf for the next stint: ψ G x( ) = P x( )

…                     …                                                 …

imaginary time

Exact Jordan-Wigner theory

Self-learning PQMC

Naïve projective QMC

ψ Gs
Ĥ ψ Gs

Min. variational energy (NetKet)

Ferrom. Quantrum ising chain N=80 OBC
𝚪 / J = 1
# of hidden units Nh = 20

stoquastic model ⇒ψ 0 x( ) ≥ 0

SP, Inack, Pieri, Phys. Rev. E 100, 043301 (2019)



Sparse RBM, connectivity 2

Sparse RBM, connectivity 3

Dense restricted Boltzmann machine
 Carleo, Troyer, Science (2017)

Shadow-wave function
 Reatto, Masserini, PRB (1988)
 Vitiello, Runge, Kalos, PRL (1988)
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SP, Pieri, PRE (2020)



𝐻 = −∑)G0 𝐽),0𝜎)/𝜎0/ − Γ∑) 𝜎)- − ℎ/ ∑) 𝜎)/

• 1D,	n.n.	interactions:	 no	frustration,	no	spin	glass

• Finite	D	(e.g.,	2D or 3D): spin	glass,				RSB vs		droplet?

• Sherrington-Kirkpatrick: 𝐽",# ∼ Norm 𝜇 = 0, 𝜎 = ⁄𝐽 𝑁

	 	 	 	 Exact	MF	solution	(classical),	replica-symmetry	breaking!

Quantum	spin	glasses
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FIG. 4. Two-dimensional cuts of the phase diagram. (a) Cuts in hT/J-T/J plane shown for various values of hz/J . Glass can
be melted by thermal or quantum fluctuations, and the glassy region shrinks with increasing hz. (b) Cuts in hT/J-hz/J plane
for different temperatures T/J . (c) Phase diagram in T/J-hz/J plane for different transeverse fields hT/J .

the points in parameter space where the replica symmet-
ric solution becomes marginally stable, i.e., Eq. (26) is
satisfied with as an equality.
The summary of our results are shown in Fig. 1,

displaying a spin glass phase with full replica symme-
try breaking at low enough temperatures and transverse
fields. This glassy phase is eventually melted by ther-
mal and quantum fluctuations upon increasing T and hT .
Importantly, besides these effects, a strong enough onsite
disorder hz also melts the glass, through inducing a triv-
ial state where each spin aligns independently with the
strong local field hi. These effects are further illustrated
in Fig. 4, showing two-dimensional cuts of the full phase
diagram in the planes hT −T (a), hT −hz (b) and T −hz

(c).
Taking directly hz = 0 in our calculations is computa-

tionally hard around the phase transition since the distri-
bution PRS(y) in Eq. (26) becomes a Dirac delta at the
transition where QRS = 0 for hz = 0. Using the scaling
property of the order parameter QRS that it vanishes lin-
early in the vicinity of the critical value of hT [23], we ex-
trapolate our QRS data to hz = 0 and obtain hT /J = 1.5
for the critical transverse field close to the zero temper-
ature limit, at T/J = 0.04, in good agreement with pre-
vious estimates in the literature [23, 24, 31]. In the clas-
sical limit, hT = 0, with similar procedure we obtain the
known result T/J = 1 for the critical temperature. These
results are included in the right panel of Fig. 4

B. Distribution of the effective magnetic fields

Having obtained the complete phase diagram, we now
turn to the properties of the spin glass phase, by apply-
ing the iterative procedure described in Sec. II B 2. As
already discussed there, all correlations within a single
replica are still governed by the replica diagonal action
(12), but the distribution of the random magnetic field
y appearing in this action is renormalized by the inter-
actions compared to the Gaussian bare disorder. This
renormalization keeps the Gaussian shape intact in the
paramagnetic phase, only changing the variance accord-

ing to Eq. (13). The renormalization is more complex in
the glassy phase, manifesting in the changing shape of
P (1, y) as we go deeper into the glassy phase.
The evolution of P (1, y) across the phase boundary

and within the glassy phase is shown in Fig. (5), dis-
playing the deformation of this distribution with decreas-
ing thermal (a) or quantum (b) fluctuations. A dashed
line denotes the Gaussian shape at the phase boundary.
Upon entering the glassy phase, the distribution devel-
ops a pseudo-gap structure, i.e., the probability of a small
fields y is strongly suppressed.
Such a pseudo-gap formation is a characteristic feature

of glassiness, and gives rise to a universal scaling deep
within the spin glass phase, P (1, y) ∼ |y|/J2 for fields
y small enough. Importantly, this universal result only
depends on the interaction strength J , showing that the
glass transition is a structural phase transition, governed
by the complicated interplay of frustrated interactions.
We note that the universal form of the pseudogap can
be understood based on simple, classical stability argu-
ments, by inspecting the stability of the state against
flipping pairs of spins.

C. Order parameter and the overlap distribution

In the replica formalism, full replica symmetry break-
ing is encoded in the overlap function Q(x). In the para-
magnetic phase, Q(x) ≡ QRS , whereas the spin glass
phase is characterized by a monotonous function with
Q(1)−Q(0) > 0. Therefore, the difference between max-
imal and minimal overlaps, Q(1) − Q(0), serves as an
order parameter for the transition.
The overlapsQ(1) and Q(0), as well as the replica sym-

metric solution QRS are shown in Fig. 6a as a function
of transverse field hT , across the phase boundary indi-
cated by a vertical green dashed line. In the param-
agnetic phase at large hT , Q(0) = Q(1) = QRS, while
Q(1) − Q(0) starts to increase upon entering the glassy
phase. In this region, the replica symmetric solution cor-
responding to overlap QRS is unstable, therefore, it be-
comes unphysical. The critical scaling of the order pa-

Quantum	SK:	dynamical	MFT
A. Kiss	et	al.	arXiv:2306.07337	(2023)

See	also:	
Leschke	et	al.,	PRL	127,	207204	(2021)
Schindler	et	al.,	PRL	129,	220401	(2022)SG
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Population control bias

Self-learning DMC with Nw =4000 walkers guided by RBM with Nh hidden neurons

𝐒𝐊	 𝑁* = 150 Γ = Γ+ = 1.5𝐽	
𝑁, = 4000

2D EA	 𝑁* = 6×6 Γ = 1.5𝐽	
𝑁, = 4000



Edward-Anderson	order	parameter: 𝑞-. =
'
/
∑" 𝜎"0

(

Spin	overlap: 𝑞 = '
/
∑" 𝜎".0 𝜎"10 Two	copies: 𝐻232 = 𝐻. + 𝐻1                 (separable	RBM)

➜ 𝑞-. = 𝑞

Overlap distribution: Droplet picture  𝑃 𝑞 = '
(
𝛿 𝑞 − 𝑞-. + '

(
𝛿 𝑞 + 𝑞-.

   
   Replica simmetry breaking 𝑃 𝑞 = 0 > 0

𝑞 𝑞

Γ = 𝐽 < Γ4 Γ = 1.7𝐽 > Γ4

DMC	for	Quantum	SK	model:	 PRELIMINARY	RESULTS!!!

100 realizations



Summary:

• QMB physics via deep learning with NQS, DFT, supervised learning.

• Scalability matters.

• Sign problem is not the only problem.

• Promising results with neural DMC for quantum spin glasses.

• Scriva, Costa, McNaughton, SP, SciPost Phys. 15, 018 (2023)
• Costa, Fazio, SP, Phys. Rev. B (2023)
• Costa, Scriva, Fazio, SP, Phys. Rev. E 106 (4), 045309 (2022)
• Mujal, Martínez Miguel, Polls, Juliá-Díaz, S Pilati, SciPost Phys. 10 (3), 073 (2021)
• Saraceni, Cantori, SP, Phys. Rev. E 102, 033301 (2020)
• McNaughton, Milošević, Perali, SP, Phys. Rev. E 101 (5), 053312 (2020)
• SP, Pieri, Phys. Revs E 101 (6), 063308 (2020)
• SP, Inack, Pieri, Phys. Rev. E 100, 043301 (2019)
• SP, Pieri, Sci. Rep. 9,  5613 (2019)
• Inack, Giudici, Parolini, Santoro, SP, Phys. Rev. A 97 (3), 032307 (2018)


