Machine Learning applied to the analysis of quantum phases in a quantum simulation of the Agassi model

ECT* workshop Many-body quantum physics with machine learning
4-8 September 2023

Pedro Pérez-Fernández

Álvaro Sáiz Castillo, José-Enrique García-Ramos, José Miguel Arias, Lucas Lamata

The extended Agassi Model. Why?

- It is a solvable many-body model that allows to mimic the main characteristics of the pairing-plus-quadrupole model.
- It can be exactly solved even in the case of large systems.
- It is used to benchmark many-body approximations because of its great flexibility and simplicity to be solved for large systems.
- The model owns a very rich phase diagram and even presents shape coexistence.
- The model is, somehow, an extension of the two-level Lipkin-Meshkov-Glick model that incorporates pairing interaction.
- It is a model slightly more complex than the used ones in Quantum Information Science (e.g. Lipkin, Dicke, Tavis-Cumming or Hubbard models) and, therefore, of great interest.

The extended Agassi Model

$$
\begin{gathered}
H=\varepsilon J^{0}-g \sum_{\sigma, \sigma^{\prime}} A_{\sigma}^{\dagger} A_{\sigma^{\prime}}-\frac{V}{2}\left[\left(J^{+}\right)^{2}+\left(J^{-}\right)^{2}\right]-2 h A_{0}^{\dagger} A_{0} \\
J^{+}=\sum_{m=-j}^{j} c_{1, m}^{\dagger} c_{-1, m} \quad J^{0}=\frac{1}{2} \sum_{m=-j}^{j}\left(c_{1, m}^{\dagger} c_{1, m}-c_{-1, m}^{\dagger} c_{-1, m}\right) \\
A_{1}^{\dagger}=\sum_{m=1}^{j} c_{1, m}^{\dagger} c_{1,-m}^{\dagger} \quad A_{-1}^{\dagger}=\sum_{m=1}^{j} c_{-1, m}^{\dagger} c_{-1,-m}^{\dagger} \quad \begin{array}{c}
\text { Spectrum Generator } \\
\text { Algebra } \mathbf{O}(5)
\end{array} \\
A_{0}^{\dagger}=\frac{1}{2} \sum_{m=1}^{j}\left(c_{-1, m}^{\dagger} c_{1,-m}^{\dagger}-c_{-1,-m}^{\dagger} c_{1, m}^{\dagger}\right) \quad N_{\sigma}=\sum_{m=-j}^{j} c_{\sigma, m}^{\dagger} c_{\sigma, m} \quad N=N_{1}+N_{-1}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{N}_{-1}
\end{aligned}
$$

Quantum Simulation of the model

The Jordan-Wigner Transformation

- It is a non-local transformation that maps the fermion creation/annihilation operators into spin operators
- It is usual to relabel the fermion index, i.e., $\sigma, m \rightarrow i$

$$
\left\{\begin{array}{l}
c_{\sigma, m}^{\dagger} \rightarrow c_{i}^{\dagger}=I_{1} \otimes \cdots \otimes I_{i-1} \otimes \sigma_{i}^{+} \otimes \sigma_{i+1}^{z} \otimes \cdots \otimes \sigma_{N}^{z} \\
c_{\sigma, m} \rightarrow c_{i}=I_{1} \otimes \cdots \otimes I_{i-1} \otimes \sigma_{i}^{-} \otimes \sigma_{i+1}^{z} \otimes \cdots \otimes \sigma_{N}^{z}
\end{array}\right.
$$

$$
\sigma^{+}=\frac{\sigma^{x}+i \sigma^{y}}{2} \quad \sigma^{-}=\frac{\sigma^{x}-i \sigma^{y}}{2} \quad \text { Pauli Matrices }
$$

$$
\sigma^{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Quantum Simulation of the model

$\mathrm{J}=2$: the case of 8 sites

For example:

$$
\begin{array}{ll}
c_{1,2} \rightarrow c_{1} & c_{-1,2} \rightarrow c_{5} \\
c_{1,1} \rightarrow c_{2} & c_{-1,1} \rightarrow c_{6} \\
c_{1,-1} \rightarrow c_{3} & c_{-1,-1} \rightarrow c_{7} \\
c_{1,-2} \rightarrow c_{4} & c_{-1,-2} \rightarrow c_{8}
\end{array}
$$

$$
A_{1}=\sigma_{2}^{-} \otimes \sigma_{3}^{-}+\sigma_{1}^{-} \otimes \sigma_{2}^{Z} \otimes \sigma_{3}^{Z} \otimes \sigma_{4}^{-}
$$

The Hamiltonian
$H=H_{1}+H_{2}+H_{3}+H_{4}+H_{5}+H_{6}$

$$
\left[H_{i}, H_{j}\right] \neq 0 \quad i \neq j=1 \ldots 6
$$

Quantum Simulation of the model

The evolution operator

$$
U(t)=e^{-i t H}
$$

Digital quantum simulation

LIE-TROTTER-SUZUKI (TROTTER) EXPANSION
 Trotter Steps
 $$
U\left(t, n_{T}\right)=\left(\prod_{k=1}^{6} e^{-i t H_{k} / n_{T}}\right)^{n_{T}}+\mathcal{O}\left(\frac{t^{2}}{n_{T}}\right)
$$

How good is the Trotter approach?

Check the Fidelity

$$
\left.F\left(t, n_{T}\right)=\left|\langle\phi| \boldsymbol{U}\left(t, n_{T}\right)^{\dagger} \boldsymbol{U}(t)\right| \phi\right\rangle\left.\right|^{2}
$$

Initial state: $|\phi\rangle=\left|\downarrow_{1} \downarrow_{2} \downarrow_{3} \downarrow_{4} \uparrow_{5} \uparrow_{6} \uparrow_{7} \uparrow_{8}\right\rangle$ (With mínimum value of $\left\langle J^{0}\right\rangle=-2$)

Parameters: $\varepsilon=1, g=0.25$,

$$
V=0.25, h=0.25
$$

Exploring Quantum Phase Transitions (QPTs)

Quantum Phase Diagram

\square Symmetric $\quad \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

- Symmetric phase
- Hartree-Fock phase (HF)
- Bardeen-Cooper-Schrieffer phase (BCS)
- Combined HF-BCS phase
- Closed Valley solution

$$
g=\frac{\varepsilon \Sigma}{2 j-1} \quad V=\frac{\varepsilon \chi}{2 j-1} \quad h=\frac{\varepsilon \lambda}{2 j-1}
$$

Exploring Quantum Phase Transitions (QPTs)

Correlation Functions

$C_{\alpha, \beta}(i, j)=\left\langle\sigma_{i}^{\alpha} \otimes \sigma_{j}^{\beta}\right\rangle-\left\langle\sigma_{i}^{\alpha}\right\rangle\left\langle\sigma_{j}^{\beta}\right\rangle$

Particular case
$C_{z}(\mathbf{1}, \mathbf{2})=\left\langle\sigma_{1}^{z} \otimes \sigma_{2}^{z}\right\rangle-\left\langle\sigma_{1}^{z}\right\rangle\left\langle\sigma_{2}^{z}\right\rangle$
Initial state: $|\phi\rangle \underset{\Lambda}{=}\left|\downarrow_{1} \downarrow_{2} \downarrow_{3} \downarrow_{4} \uparrow_{5} \uparrow_{6} \uparrow_{7} \uparrow_{8}\right\rangle$

From HF phase to BCS phase

Machine Learning - How to train your AI

We know how a dog looks like, but, how do we explain that to a computer?

WE DON'T

Machine Learning - How to train your AI

A lot of different methods

- Regression
- Clustering
- Decision Trees
- Reinforced Learning
- Genetic Algorithms
- Multilayer Perceptro

Neural Networks

Supervised VS Unsupervised

Exploration VS Exploitation

Accuracy VS Efficiency
Underfitting VS Overfitting

Training VS Testing

Machine Learning - How to train your AI

Al in two steps - Step \#1: Train

Al in two steps - Step \#2: Predict

Deep Learning - Results

$$
\begin{aligned}
& C_{z}(1,2)=\left\langle\sigma_{1}^{z} \otimes \sigma_{2}^{z}\right\rangle-\left\langle\sigma_{1}^{z}\right\rangle\left\langle\sigma_{2}^{z}\right\rangle \\
& U(t)=e^{-i t H} \approx\left(\prod_{k=1}^{6} e^{-i t H_{k} / n_{T}}\right)^{n_{T}}
\end{aligned}
$$

Input:

$$
\begin{aligned}
& f(t)=\langle\phi(t)| \sigma_{1}^{Z} \otimes \sigma_{2}^{z}|\phi(t)\rangle- \\
& \langle\phi(t)| \sigma_{1}^{Z}|\phi(t)\rangle\langle\phi(t)| \sigma_{2}^{Z}|\phi(t)\rangle
\end{aligned}
$$

- Symmetric= 0.00
- $\mathrm{HF}=0.04$

Output:

- Hf-BCS= 0.01
- Closed Valley= 0.01

Convolutional Neural Network (CNN)-Results

\square Symmetric $\quad \square \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

Convolutional Neural Network (CNN)-Results

\square Symmetric $\quad \square \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

98.35\%
 Categorical
 Accuracy

Convolutional Neural Network (CNN)- Results

\square Symmetric $\quad \square \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

98.35\%
 Categorical
 Accuracy

Convolutional Neural Network (CNN)-Results

\square Symmetric $\quad \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

Convolutional Neural Network (CNN)-Results

\square Symmetric $\quad \square \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}-\mathrm{BCS} \quad \square$ Valley

98.35\%
 Categorical
 Accuracy

Convolutional Neural Network (CNN)-Results

\square Symmetric $\quad \square \mathrm{HF} \quad \square \mathrm{BCS} \quad \square \mathrm{HF}$-BCS $\quad \square$ Valley

Conclusions

- The quantum simulation is feasible with polynomial resources.
- Observables can be measured with this experimental setup.
- These observables can provide information about the phase/shape of the system.
- Machine Learning methods can make use of this information to extract the Quantum Phases of the system.
- These methods are robust against introduced errors.
- It's fast and very accurate. Easily tailored to specific cases and different Hamiltonians, as long as there is data.

$$
\text { A. Sáiz et. al. PRC 106, } 064322 \text { (2022) }
$$

