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The extended Agassi Model. Why?

• It is a solvable many-body model that allows to mimic the main characteristics of the 
pairing-plus-quadrupole model.

• It can be exactly solved even in the case of large systems.
• It is used to benchmark many-body approximations because of its great flexibility and 

simplicity to be solved for large systems.
• The model owns a very rich phase diagram and even presents shape coexistence.
• The model is, somehow, an extension of the two-level Lipkin-Meshkov-Glick model that 

incorporates pairing interaction.
• It is a model slightly more complex than the used ones in Quantum Information Science 

(e.g. Lipkin, Dicke, Tavis-Cumming or Hubbard models) and, therefore, of great interest.
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The extended Agassi Model
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Quantum Simulation of the model

The Jordan-Wigner Transformation
• It is a non-local transformation that maps the fermion 

creation/annihilation operators into spin operators
• It is usual to relabel the fermion index, i.e., 𝜎, 𝑚 → 𝑖

൝
𝒄𝝈,𝒎

† → 𝒄𝒊
† = 𝑰𝟏 ⊗ ⋯ ⨂𝑰𝒊−𝟏 ⊗ 𝝈𝒊

+ ⊗ 𝝈𝒊+𝟏
𝒛 ⊗ ⋯ ⊗ 𝝈𝑵

𝒛

𝒄𝝈,𝒎 →  𝒄𝒊 = 𝑰𝟏 ⊗ ⋯ ⨂𝑰𝒊−𝟏 ⊗ 𝝈𝒊
− ⊗ 𝝈𝒊+𝟏

𝒛 ⊗ ⋯ ⊗ 𝝈𝑵
𝒛

𝜎+ =
𝜎𝑥 + 𝑖𝜎𝑦

2
𝜎− =

𝜎𝑥 − 𝑖𝜎𝑦

2

𝜎𝑥 =
0 1
1 0

𝜎𝑦 =
0 −𝑖
𝑖 0

𝜎𝑧 =
1 0
0 −1

Pauli Matrices
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Quantum Simulation of the model

J=2: the case of 8 sites

𝑐1,2 → 𝑐1

𝑐1,1 → 𝑐2

𝑐1,−1 → 𝑐3

𝑐1,−2 → 𝑐4

𝑐−1,2 → 𝑐5

𝑐−1,1 → 𝑐6

𝑐−1,−1 → 𝑐7

𝑐−1,−2 → 𝑐8

For example:

𝑨𝟏 = 𝝈𝟐
− ⊗ 𝝈𝟑

− + 𝝈𝟏
− ⊗ 𝝈𝟐

𝒛 ⊗ 𝝈𝟑
𝒛 ⊗ 𝝈𝟒

−

The Hamiltonian

𝑯 = 𝑯𝟏 + 𝑯𝟐 + 𝑯𝟑 + 𝑯𝟒 + 𝑯𝟓 + 𝑯𝟔

𝑯𝒊, 𝑯𝒋 ≠ 𝟎 𝒊 ≠ 𝒋 = 𝟏 … 𝟔
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Quantum Simulation of the model

The evolution operator

𝑼 𝒕 = 𝒆−𝒊𝒕𝑯

Digital quantum simulation

LIE-TROTTER-SUZUKI (TROTTER) EXPANSION

𝑼 𝒕, 𝒏𝑻 = ෑ

𝒌=𝟏

𝟔

𝒆−𝒊𝒕𝑯𝒌/𝒏𝑻

𝒏𝑻

+ 𝓞
𝒕𝟐

𝒏𝑻

Trotter Steps
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How good is the Trotter approach?

Check the Fidelity

𝑭 𝒕, 𝒏𝑻 = | 𝝓|𝑼 𝒕, 𝒏𝑻
†𝑼 𝒕 |𝝓 |𝟐

Initial state: | ۧ𝝓 = | ۧ↓𝟏↓𝟐↓𝟑↓𝟒↑𝟓↑𝟔↑𝟕↑𝟖

(With mínimum value of 𝑱𝟎 = −𝟐)

Parameters: 𝜺 = 𝟏, 𝒈 = 𝟎. 𝟐𝟓, 
𝑽 = 𝟎. 𝟐𝟓, 𝒉 = 𝟎. 𝟐𝟓 
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Exploring Quantum Phase Transitions (QPTs)

Quantum Phase Diagram

● Symmetric phase

● Hartree-Fock phase (HF)

● Bardeen-Cooper-Schrieffer

phase (BCS)

● Combined HF-BCS phase

● Closed Valley solution

𝑔 =
𝜀Σ

2𝑗−1
 𝑉 =

𝜀𝜒

2𝑗−1
        ℎ =

𝜀𝜆

2𝑗−1
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Exploring Quantum Phase Transitions (QPTs)

Correlation Functions

𝑪𝜶,𝜷 𝒊, 𝒋 = 𝝈𝒊
𝜶 ⊗ 𝝈𝒋

𝜷
− 𝝈𝒊

𝜶 𝝈𝒋
𝜷

𝑪𝒛 𝟏, 𝟐 = 𝝈𝟏
𝒛 ⊗ 𝝈𝟐

𝒛 − 𝝈𝟏
𝒛 𝝈𝟐

𝒛

Particular case

Initial state: | ۧ𝝓 = | ۧ↓𝟏↓𝟐↓𝟑↓𝟒↑𝟓↑𝟔↑𝟕↑𝟖

From HF phase to BCS phase
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Machine Learning - How to train your AI

We know how a dog looks like, but,
how do we explain that to a computer?

WE DON’T

DOG

On its side, but 

definitely a dog

Clearly a cute 

dog with a 

cute party hat

This is not a dog. This is a cat
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Machine Learning - How to train your AI

A lot of different methods

● Regression

● Clustering

● Decision Trees

● Reinforced Learning

● Genetic Algorithms

● Multilayer Perceptro

● Neural Networks

Supervised VS Unsupervised

Exploration VS Exploitation

Underfitting VS Overfitting

Accuracy VS Efficiency

Training VS Testing

“No Free Lunch” theorem
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Machine Learning - How to train your AI

AI in two steps - Step #1: Train

Data
(With labels)

Model that fits
that data

AI in two steps - Step #2: Predict

Data
(Without labels)

Predicted label 
for that data
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Deep Learning - Results

𝑪𝒛 𝟏, 𝟐 = 𝝈𝟏
𝒛 ⊗ 𝝈𝟐

𝒛 − 𝝈𝟏
𝒛 𝝈𝟐

𝒛

𝑼 𝒕 = 𝒆−𝒊𝒕𝑯 ≈ ෑ

𝒌=𝟏

𝟔

𝒆−𝒊𝒕𝑯𝒌/𝒏𝑻

𝒏𝑻

𝒇 𝒕 = 𝝓(𝒕) 𝝈𝟏
𝒛 ⊗ 𝝈𝟐

𝒛 𝝓(𝒕) −
𝝓(𝒕) 𝝈𝟏

𝒛 𝝓(𝒕) 𝝓(𝒕) 𝝈𝟐
𝒛 𝝓(𝒕)

Input=𝒇(𝒕)
CNN

Output= 𝑷 𝒚𝟏 , 𝑷 𝒚𝟐 , 𝑷 𝒚𝟑 , 𝑷 𝒚𝟒 , 𝑷 𝒚𝟓

Input:

Output:

• Symmetric= 0.00
• HF= 0.04
• BCS= 0.94
• Hf-BCS= 0.01
• Closed Valley= 0.01
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Convolutional Neural Network (CNN)- Results

98.35%
Categorical

Accuracy
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Convolutional Neural Network (CNN)- Results
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Convolutional Neural Network (CNN)- Results
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Convolutional Neural Network (CNN)- Results

98.35%
Categorical

Accuracy
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Mean error smaller than the 
step size (0.1)
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Conclusions

● The quantum simulation is feasible with polynomial resources.

● Observables can be measured with this experimental setup.

● These observables can provide information about the phase/shape of the system.

● Machine Learning methods can make use of this information to extract the 

Quantum Phases of the system.

● These methods are robust against introduced errors.

● It’s fast and very accurate. Easily tailored to specific cases and different 

Hamiltonians, as long as there is data.

A. Sáiz et. al. PRC 106, 064322 (2022) 
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