Argonne Δ

NEURAL QUANTUM STATES FOR NEUTRON STARS

BRYCE FORE

Many-Body quantum physics with machine learning

OUTLINE

- Recent nuclei results
- Neutron star background
- Structure
- Why they are interesting
- Observation
- Continuous periodic systems
- Monte Carlo and neural quantum state details
- Variational Monte Carlo methods
- Hidden fermion ansatz
- Results
- Pure neutron matter
- Pfaffian + MPNN ansatz
- Preliminary symmetric matter

PIONLESS EFT HAMILTONIAN

- Pionless-EFT Hamiltonian

$$
H_{L O}=-\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}
$$

- Two body operators including spin and isospin dependence

$$
v_{i j}^{\mathrm{CI}}=\sum_{p=1}^{4} v^{p}\left(r_{i j}\right) O_{i j}^{p}
$$

$$
\begin{aligned}
& O_{i j}^{p=1,4}=\left(1, \tau_{i j}, \sigma_{i j}, \sigma_{i j} \tau_{i j}\right) \\
& \sigma_{i j}=\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}, \tau_{i j}=\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}
\end{aligned}
$$

> R. Schiavilla, AL, PRC 103, 054003(2021)

PIONLESS EFT HAMILTONIAN

NEURAL QUANTUM STATE RESULTS IN NUCLEI

A. Gnech, arXiv:2308.16266

NEUTRON STAR STRUCTURE

- Mostly neutrons but composition varies with density
- Nuclei in crust are squeezed into uniform matter in core
- Likely neutron superfluid in inner crust and outer core
- More exotic hadrons and leptons possible in outer core
- Inner core composition largely uncertain

NEUTRON STAR INTEREST

- Unique system for accessing nuclear EOS info
- High densities
- High isospin asymmetries
- Mergers result in creation of very heavy elements
- Relation between mass and radius controlled by nuclear EOS

NEUTRON STAR OBSERVATION

- Gravitational waves
- Kilonova light curves
- Pulsars
- Pulsar glitches
- Neutron star cooling

Time
GW170817 signal

BULK NUCLEAR MATTER SETUP

- Periodic boundary conditions and coordinate system
- Continuous positions
- Discrete spins
- Low densities where pionless Hamiltonian is accurate
- Unpolarized

CONTINUOUS PERIODIC SYSTEMS

- Requirements for periodic systems
- Uniform position initialization over simulation box
- Periodic coordinate system: $\quad \mathbf{r}_{i} \longrightarrow \tilde{\mathbf{r}}_{i}=\left\{\sin \left(\frac{2 \pi}{L} \mathbf{r}_{i}\right), \cos \left(\frac{2 \pi}{L} \mathbf{r}_{i}\right)\right\}$
- Potential energy from particle images
- Filled shells used for comparison to single determinant results
- First closed shell of neutron matter will have 14 particles since there are 7 momentum states and 2 spin states

VARIATIONAL MONTE CARLO (VMC)

1. Specify a parameterized function to act as the trial wavefunction

$$
\Psi_{T}(R, S ; \omega)=e^{U(R, S ; \omega)} \Phi(R, S ; \omega)
$$

2. Use Metropolis-Hastings algorithm to sample trial wavefunction

$$
\frac{\left\langle\Psi_{T}\right| O\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle} \approx \frac{1}{N_{\text {conf }}} \sum_{\{R, S\}} O_{L}(R, S)
$$

3. Optimize parameters of trial wavefunction to obtain lower energy

$$
E_{0} \leq E_{T}=\frac{\left\langle\Psi_{T}\right| \widehat{H}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}
$$

METROPOLIS-HASTINGS SAMPLING

- Given our trial wavefunction we can sample coordinates and spin using the Metropolis-Hastings algorithm

$$
P_{R}=\frac{\left|\Psi_{T}\left(R^{\prime}, S\right)\right|^{2}}{\left|\Psi_{T}(R, S)\right|^{2}} \quad P_{S}=\frac{\left|\Psi_{T}\left(R, S^{\prime}\right)\right|^{2}}{\left|\Psi_{T}(R, S)\right|^{2}}
$$

- Accept move if P greater than uniform random variable from 0 to 1
- Observables are estimated by taking averages over sampled configurations

$$
\begin{gathered}
\frac{\left\langle\Psi_{T}\right| O\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}=\frac{\sum_{S} \int d R\left|\Psi_{T}(R, S)\right|^{2} O_{L}(R, S)}{\sum_{S} \int d R\left|\Psi_{T}(R, S)\right|^{2}} \approx \frac{1}{N_{\text {conf }}} \sum_{\{R, S\}} O_{L}(R, S) \\
O_{L}=\frac{\langle R S| O\left|\Psi_{T}\right\rangle}{\left\langle R S \mid \Psi_{T}\right\rangle}
\end{gathered}
$$

STOCHASTIC RECONFIGURATION

Improve trial wavefunction by minimizing energy expectation value

$$
E_{0} \leq E_{T}=\frac{\left\langle\Psi_{T}\right| \widehat{H}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}
$$

Gradient of energy $\left(G_{i}=\frac{d E_{T}}{d p_{i}}\right.$), supplemented by Quantum Fisher Information $S_{i j}$

$$
G_{i}=2\left(\frac{\left\langle\partial_{i} \Psi_{T}\right| \widehat{H}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}-E_{T} \frac{\left\langle\partial_{i} \Psi_{T} \mid \Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}\right) ; \quad S_{i j}=\frac{\left\langle\partial_{i} \Psi_{T} \mid \partial_{j} \Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}-\frac{\left\langle\partial_{i} \Psi_{T} \mid \Psi_{T}\right\rangle\left\langle\Psi_{T} \mid \partial_{j} \Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}
$$

Parameters at step s are updated as

$$
p^{s+1}=p^{s}-\eta(S+\Lambda)^{-1} G
$$

FERMIONIC TRIAL WAVEFUNCTIONS

$$
\Psi_{T}(X)=e^{U(X)} \Phi(X)
$$

$\Psi\left(\ldots, x_{i}, \ldots x_{j} \ldots\right)=-\Psi\left(\ldots, x_{j}, \ldots x_{i} \ldots\right)$
$U\left(\ldots, x_{i}, \ldots x_{j} \ldots\right)=U\left(\ldots, x_{j}, \ldots x_{i} \ldots\right)$
$\Phi\left(\ldots, x_{i}, \ldots x_{j} \ldots\right)=-\Phi\left(\ldots, x_{j}, \ldots x_{i} \ldots\right)$

- Slater determinant enforces antisymmetry
- Artificial neural networks compactly represent high-dimensional functions
- Single particle orbitals and Jastrow function can be represented by neural networks

$$
\Phi(R, S)=\left|\begin{array}{cccc}
\phi_{1}\left(r_{1}, s_{1}\right) & \phi_{1}\left(r_{2}, s_{2}\right) & \ldots & \phi_{1}\left(r_{n}, s_{n}\right) \\
\phi_{2}\left(r_{1}, s_{1}\right) & & & \vdots \\
\vdots & & & \\
\phi_{n}\left(r_{1}, s_{1}\right) & \ldots & & \phi_{n}\left(r_{n}, s_{n}\right)
\end{array}\right|
$$

DEEP SET ARCHITECTURE

- We require a generic function which is independent of particle ordering for the Jastrow function.

$$
U\left(\ldots, x_{i}, \ldots x_{j} \ldots\right)=U\left(\ldots, x_{j}, \ldots x_{i} \ldots\right)
$$

- By mapping the configuration for each particle to a latent space and summing the results we remove the particle ordering information.

$$
U(X)=\rho\left(\sum_{i} \vec{\phi}\left(x_{i}\right)\right) \quad \begin{aligned}
& \vec{\phi}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{\text {latent }} \\
& \\
& \rho: \mathbb{R}^{\text {latent }} \rightarrow \mathbb{R}
\end{aligned}
$$

- $\vec{\phi}$ and ρ are represented by neural networks

HIDDEN FERMIONS

$$
\Psi_{T}(X)=\left|\begin{array}{llllllll}
\phi_{1}\left(x_{1}\right) & \phi_{1}\left(x_{2}\right) & \phi_{1}\left(x_{3}\right) & \phi_{1}\left(x_{4}\right) & \phi_{1}\left(y_{1}\right) & \phi_{1}\left(y_{2}\right) & \phi_{1}\left(y_{3}\right) & \phi_{1}\left(y_{4}\right) \\
\phi_{2}\left(x_{1}\right) & \phi_{2}\left(x_{2}\right) & \phi_{2}\left(x_{3}\right) & \phi_{2}\left(x_{4}\right) & \phi_{2}\left(y_{1}\right) & \phi_{2}\left(y_{2}\right) & \phi_{2}\left(y_{3}\right) & \phi_{2}\left(y_{4}\right) \\
\phi_{3}\left(x_{1}\right) & \phi_{3}\left(x_{2}\right) & \phi_{3}\left(x_{3}\right) & \phi_{3}\left(x_{4}\right) & \phi_{3}\left(y_{1}\right) & \phi_{3}\left(y_{2}\right) & \phi_{3}\left(y_{3}\right) & \phi_{3}\left(y_{4}\right) \\
\phi_{4}\left(x_{1}\right) & \phi_{4}\left(x_{2}\right) & \phi_{4}\left(x_{3}\right) & \phi_{4}\left(x_{4}\right) & \phi_{4}\left(y_{1}\right) & \phi_{4}\left(y_{2}\right) & \phi_{4}\left(y_{3}\right) & \phi_{4}\left(y_{4}\right) \\
\chi_{1}\left(x_{1}\right) & \chi_{1}\left(x_{2}\right) & \chi_{1}\left(x_{3}\right) & \chi_{1}\left(x_{4}\right) & \chi_{1}\left(y_{1}\right) & \chi_{1}\left(y_{2}\right) & \chi_{1}\left(y_{3}\right) & \chi_{1}\left(y_{4}\right) \\
\chi_{2}\left(x_{1}\right) & \chi_{2}\left(x_{2}\right) & \chi_{2}\left(x_{3}\right) & \chi_{2}\left(x_{4}\right) & \chi_{2}\left(y_{1}\right) & \chi_{2}\left(y_{2}\right) & \chi_{2}\left(y_{3}\right) & \chi_{2}\left(y_{4}\right) \\
\chi_{3}\left(x_{1}\right) & \chi_{3}\left(x_{2}\right) & \chi_{3}\left(x_{3}\right) & \chi_{3}\left(x_{4}\right) & \chi_{3}\left(y_{1}\right) & \chi_{3}\left(y_{2}\right) & \chi_{3}\left(y_{3}\right) & \chi_{3}\left(y_{4}\right) \\
\chi_{4}\left(x_{1}\right) & \chi_{4}\left(x_{2}\right) & \chi_{4}\left(x_{3}\right) & \chi_{4}\left(x_{4}\right) & \chi_{4}\left(y_{1}\right) & \chi_{4}\left(y_{2}\right) & \chi_{4}\left(y_{3}\right) & \chi_{4}\left(y_{4}\right)
\end{array}\right|
$$

Visible wavefunctions
 on visible coordinates

Visible wavefunctions
on hidden coordinates
Hidden wavefunctions on visible coordinates

Hidden wavefunctions on hidden coordinates

PURE NEUTRON MATTER

Neutron Matter (14 particles, $0.04 \mathrm{fm}^{-3}$)

TWO BODY DENSITY

Central and spin two body densities

$$
\begin{aligned}
& g_{c}(r)=\frac{1}{2 \pi r^{2} \rho N} \sum_{i<j} \frac{\langle\psi| \delta\left(r_{i j}-r\right)|\psi\rangle}{\langle\psi \mid \psi\rangle} \\
& g_{\sigma}(r)=\frac{1}{2 \pi r^{2} \rho N} \sum_{i<j} \frac{\langle\psi| \delta\left(r_{i j}-r\right) \sigma_{i} \cdot \sigma_{j}|\psi\rangle}{\langle\psi \mid \psi\rangle}
\end{aligned}
$$

Spin singlet and triplet channel two body densities

$$
g_{0}(r)=\frac{1}{4}\left[g_{c}(r)-g_{\sigma}(r)\right] \quad g_{1}(r)=\frac{1}{4}\left[3 g_{c}(r)+g_{\sigma}(r)\right]
$$

TWO BODY DENSITY

IMPROVED TRIAL WAVEFUNCTION ANSATZ

$$
\begin{aligned}
& \Psi_{T}(X)=e^{U\left(X^{*}\right)} \Phi_{\mathrm{pf}}\left(X^{*}\right) \\
& \Phi_{p f}(X)=p f[M] \\
& M_{i j}=\phi\left(x_{i}, x_{j}\right)-\phi\left(x_{j}, x_{i}\right)
\end{aligned}
$$

- Input, X, preprocessed by MPNN to give X^{*}
- Slater determinant \rightarrow Pfaffian
- M must be skew symmetric, $A=-A^{T}$, and square with even size
- Built in pairwise structure
- Pfaffian requires only one MLP so uses far fewer parameters
- Extra row and column can be added for odd numbers of particles
https://arxiv.org/abs/2305.08831

MESSAGE PASSING NEURAL NETWORK

ANSATZ COMPARISONS

Neutron Matter (14 particles, $0.04 \mathrm{fm}^{-3}$)

Optimization step time (4 A100 GPUs, 32000 samples)

Pfaffian+MPNN	$\sim 42(s)$
Pfaffian	$\sim 21(s)$
MPNN	$\sim 35(s)$
Hidden nucleon	$\sim 46(s)$

PRELIMINARY 14 NEUTRONS + 14 PROTONS

MAGNETIC MOMENTS

MAGNETIC MOMENTS

CONCLUSIONS AND NEXT STEPS

- Questions:
- Determine if Jastrow function is needed for Pfaffian + MPNN ansatz
- How does the size of the Pfaffian+MPNN ansatz need to scale with increasing particle number?
- Next steps
- Investigations of nuclear matter with proton fractions between 0 and $1 / 2$ initially focusing on the emergence of clustering
- Implement more sophisticated nuclear potentials
- Larger systems possibly up to $A=40$ for nuclei

MPNN EQUATIONS

$$
\begin{aligned}
& h_{i}^{0}=\left(v_{i}, A\left(v_{i}\right)\right) \quad h_{i j}^{0}=\left(v_{i j}, B\left(v_{i j}\right)\right) \\
& m_{i j}^{t}=M_{t}\left(h_{i}^{t-1}, h_{j}^{t-1}, h_{i j}^{t-1}\right) \\
& m_{i}^{t}=\operatorname{Pool}_{j}\left(m_{i j}^{t}\right)
\end{aligned}
$$

